Parametric simulation studies on the wave propagation of solar radio emission: the source size, duration, and position by Zhang et al.*

2021-05-11 219 views

The imaging and spectroscopy observations of solar radio bursts can provide information on the non-thermal electrons associated with the transient energy release in the solar active region and the parameters of the background plasma. However,  the corona plasma is an inhomogeneous refractive media for solar radio waves. Propagation effects, namely the refraction and scattering of waves, can cause the deformation of the observed radio source, including the expansion of the […]

Propagation Effects in Quiet Sun Observations at Meter Wavelengths
by R. Sharma and D. Oberoi

2021-02-02 187 views

The quiet Sun coronal emission dominantly comes from thermal bremsstrahlung. As this radiation traverses the coronal medium on its way to the Earthbound observer, the coronal optical depth, τ, along typical ray paths is neither low enough to be approximated as optically thin, nor high enough to be treated as optically thick. On its way to the observer, it gets modified substantially due to propagation effects —primarily refraction and scattering—through the […]

First observation of a transitioning Type II solar radio burst using the Low-Frequency Array (LOFAR)
by Nicolina Chrysaphi et al

2020-05-26 376 views

Type II solar radio bursts are believed to be excited by shock waves. They are often linked to shocks driven by solar eruptive events like Coronal Mass Ejections (CMEs) and solar flares, and are characterised by a slow drift from high to low frequencies thought to reflect the speed with which the shock propagates away from the Sun.  Shock-excited emissions that show very little or no frequency drift are known […]

First imaging spectroscopy observations of puzzling solar drift pair bursts
by A. Kuznetsov and E. Kontar

2019-12-17 340 views

Drift pairs are a rare and puzzling type of solar radio emission, firstly identified by Roberts (1958). They occur at low frequencies (~10-100 MHz) and look like two parallel frequency-drifting narrow-band stripes separated in time. The drift rates (typically ~2-8 MHz/s) are intermediate between those of type II and type III bursts; both positive and negative frequency drifts are observed. The most enigmatic characteristic of drift pair bursts is that […]

Anisotropic radio-wave scattering in the solar corona
Nicolina Chrysaphi et al.*

2019-11-26 428 views

Solar radio emission is produced in the turbulent medium of the solar atmosphere, and its observed properties (source position, size, time profile, polarization, etc.) are significantly affected by the propagation of the radio waves from the emitter to the observer. Scattering of radio waves on random density irregularities has long been recognized as an important process for the interpretation of radio source sizes (e.g., Steinberg et al. 1971), positions (e.g., […]

Observations of solar radio burst fine structures with LOFAR
by E. Kontar et al.*

2017-11-28 1,360 views

During solar flares, electrons are accelerated up to relativistic speeds. As they propagate upwards through the solar corona, they produce so-called type III radio bursts. These type III bursts often demonstrate fine structure, with their spectra consisting of multiple narrowband “striae”; most likely, these structures are caused by small-scale density inhomogeneities of the coronal plasma so that the subsequent fundamental plasma processes that produce the radio bursts is produced in […]