nessai.flowsampler

Main code that handles running and checkpoiting the sampler.

Module Contents

Classes

FlowSampler

Main class to handle running the nested sampler.

Attributes

logger

nessai.flowsampler.logger
class nessai.flowsampler.FlowSampler(model, output='./', resume=True, resume_file='nested_sampler_resume.pkl', weights_file=None, signal_handling=True, exit_code=130, max_threads=1, **kwargs)

Main class to handle running the nested sampler.

Parameters
modelnessai.model.Model

User-defined model.

outputstr, optional

Output directory

resumebool, optional

If True try to resume the sampler is the resume file exists.

resume_filestr, optional

File to resume sampler from.

weights_filesstr, optional

Weights files used to resume sampler that replaces the weights file saved internally.

max_threadsint, optional

Maximum number of threads to use. If None torch uses all available threads.

signal_handlingbool

Enable or disable signal handling.

exit_codeint, optional

Exit code to use when forceably exiting the sampler.

kwargs

Keyword arguments passed to NestedSampler.

run(self, plot=True, save=True)

Run the nested samper

Parameters
plotbool, optional

Toggle plots produced once the sampler has converged

savebool, optional

Toggle automatic saving of results

save_kwargs(self, kwargs)

Save the dictionary of keyword arguments used.

Uses an encoder class to handle numpy arrays.

Parameters
kwargsdict

Dictionary of kwargs to save.

save_results(self, filename)

Save the results from sampling to a specific JSON file.

Parameters
filenamestr

Name of file to save results to.

safe_exit(self, signum=None, frame=None)

Safely exit. This includes closing the multiprocessing pool.