
Autoconf
Creating Automatic Configuration Scripts

for version 2.106, 18 September 2005

David MacKenzie
Ben Elliston
Akim Demaille

This manual is for gnu Autoconf (version 2.106, 18 September 2005), a package for creating
scripts to configure source code packages using templates and an M4 macro package.
Copyright c© 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002, 2003 Free Software
Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under
the terms of the gnu Free Documentation License, Version 1.1 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with the Front-Cover texts being “A gnu Manual,” and with the Back-Cover
Texts as in (a) below. A copy of the license is included in the section entitled
“gnu Free Documentation License.”
(a) The FSF’s Back-Cover Text is: “You have freedom to copy and modify
this gnu Manual, like gnu software. Copies published by the Free Software
Foundation raise funds for gnu development.”

i

Table of Contents

1 Introduction . 1

2 The gnu Build System . 3
2.1 Automake . 3
2.2 Libtool . 3
2.3 Pointers . 4

3 Making configure Scripts 5
3.1 Writing ‘configure.ac’ . 6

3.1.1 A Shell Script Compiler . 6
3.1.2 The Autoconf Language . 7
3.1.3 Standard ‘configure.ac’ Layout . 8

3.2 Using autoscan to Create ‘configure.ac’ 9
3.3 Using ifnames to List Conditionals . 10
3.4 Using autoconf to Create configure . 10
3.5 Using autoreconf to Update configure Scripts 12

4 Initialization and Output Files. 15
4.1 Initializing configure . 15
4.2 Notices in configure . 15
4.3 Finding configure Input . 16
4.4 Outputting Files . 17
4.5 Performing Configuration Actions . 18
4.6 Creating Configuration Files . 19
4.7 Substitutions in Makefiles . 20

4.7.1 Preset Output Variables . 20
4.7.2 Installation Directory Variables . 22
4.7.3 Build Directories . 25
4.7.4 Automatic Remaking . 25

4.8 Configuration Header Files . 26
4.8.1 Configuration Header Templates . 27
4.8.2 Using autoheader to Create ‘config.h.in’ 28
4.8.3 Autoheader Macros . 29

4.9 Running Arbitrary Configuration Commands 30
4.10 Creating Configuration Links . 30
4.11 Configuring Other Packages in Subdirectories 31
4.12 Default Prefix . 32

ii Autoconf

5 Existing Tests . 33
5.1 Common Behavior . 33

5.1.1 Standard Symbols . 33
5.1.2 Default Includes . 33

5.2 Alternative Programs . 34
5.2.1 Particular Program Checks. 35
5.2.2 Generic Program and File Checks 37

5.3 Files . 38
5.4 Library Files . 38
5.5 Library Functions . 39

5.5.1 Portability of C Functions . 39
5.5.2 Particular Function Checks . 41
5.5.3 Generic Function Checks . 46

5.6 Header Files . 48
5.6.1 Portability of Headers . 48
5.6.2 Particular Header Checks . 49
5.6.3 Generic Header Checks . 53

5.7 Declarations . 54
5.7.1 Particular Declaration Checks . 54
5.7.2 Generic Declaration Checks . 54

5.8 Structures . 55
5.8.1 Particular Structure Checks . 55
5.8.2 Generic Structure Checks . 56

5.9 Types . 56
5.9.1 Particular Type Checks . 56
5.9.2 Generic Type Checks . 57

5.10 Compilers and Preprocessors . 58
5.10.1 Specific Compiler Characteristics 58
5.10.2 Generic Compiler Characteristics 58
5.10.3 C Compiler Characteristics . 59
5.10.4 C++ Compiler Characteristics . 63

5.11 Compiling and preprocessing Fortran . 63
5.11.1 Fortran Compiler Characteristics 64
5.11.2 Fortran features and extensions supported. 70
5.11.3 Preprocessing Fortran . 72

5.12 System Services . 76
5.13 UNIX Variants . 77

iii

6 Writing Tests . 79
6.1 Language Choice . 79
6.2 Writing Test Programs . 80

6.2.1 Guidelines for Test Programs . 80
6.2.2 Test Functions . 81
6.2.3 Generating Sources . 82

6.3 Running the Preprocessor . 84
6.4 Running the Compiler . 85
6.5 Running the Linker . 85
6.6 Checking Run Time Behavior . 86
6.7 Systemology . 87
6.8 Multiple Cases . 87

7 Results of Tests. 89
7.1 Defining C Preprocessor Symbols . 89
7.2 Setting Output Variables . 90
7.3 Caching Results . 91

7.3.1 Cache Variable Names . 93
7.3.2 Cache Files . 93
7.3.3 Cache Checkpointing . 94

7.4 Printing Messages . 94

8 Programming in M4 . 97
8.1 M4 Quotation . 97

8.1.1 Active Characters . 97
8.1.2 One Macro Call . 98
8.1.3 Quotation and Nested Macros . 98
8.1.4 changequote is Evil . 100
8.1.5 Quadrigraphs . 101
8.1.6 Quotation Rule Of Thumb . 102

8.2 Using autom4te . 103
8.2.1 Invoking autom4te . 103
8.2.2 Customizing autom4te . 107

8.3 Programming in M4sugar . 108
8.3.1 Redefined M4 Macros. 108
8.3.2 Evaluation Macros . 109
8.3.3 Forbidden Patterns . 109

8.4 Programming in M4sh . 110

9 Writing Autoconf Macros 111
9.1 Macro Definitions . 111
9.2 Macro Names . 111
9.3 Reporting Messages. 112
9.4 Dependencies Between Macros . 113

9.4.1 Prerequisite Macros . 113
9.4.2 Suggested Ordering. 114

9.5 Obsoleting Macros . 115
9.6 Coding Style . 115

iv Autoconf

10 Portable Shell Programming 119
10.1 Shellology. 119
10.2 Here-Documents . 121
10.3 File Descriptors . 122
10.4 File System Conventions . 123
10.5 Shell Substitutions . 124
10.6 Assignments . 127
10.7 Parentheses in Shell Scripts . 128
10.8 Special Shell Variables . 128
10.9 Limitations of Shell Builtins . 132
10.10 Limitations of Usual Tools . 139
10.11 Limitations of Make . 146

11 Manual Configuration. 157
11.1 Specifying the System Type . 157
11.2 Getting the Canonical System Type . 158
11.3 Using the System Type . 158

12 Site Configuration . 161
12.1 Working With External Software . 161
12.2 Choosing Package Options . 162
12.3 Making Your Help Strings Look Pretty 163
12.4 Configuring Site Details . 163
12.5 Transforming Program Names When Installing 164

12.5.1 Transformation Options . 164
12.5.2 Transformation Examples . 164
12.5.3 Transformation Rules . 165

12.6 Setting Site Defaults . 165

13 Running configure Scripts 167
13.1 Basic Installation . 167
13.2 Compilers and Options . 168
13.3 Compiling For Multiple Architectures . 168
13.4 Installation Names . 168
13.5 Optional Features . 168
13.6 Specifying the System Type . 169
13.7 Sharing Defaults . 169
13.8 Defining Variables . 169
13.9 configure Invocation . 169

14 Recreating a Configuration 171

v

15 Obsolete Constructs . 173
15.1 Obsolete ‘config.status’ Invocation . 173
15.2 ‘acconfig.h’ . 174
15.3 Using autoupdate to Modernize ‘configure.ac’ 174
15.4 Obsolete Macros. 175
15.5 Upgrading From Version 1 . 185

15.5.1 Changed File Names . 185
15.5.2 Changed Makefiles . 185
15.5.3 Changed Macros . 186
15.5.4 Changed Results . 186
15.5.5 Changed Macro Writing . 187

15.6 Upgrading From Version 2.13 . 188
15.6.1 Changed Quotation . 188
15.6.2 New Macros . 189
15.6.3 Hosts and Cross-Compilation . 190
15.6.4 AC_LIBOBJ vs.LIBOBJS . 191
15.6.5 AC_FOO_IFELSE vs.AC_TRY_FOO . 192

16 Generating Test Suites with Autotest 195
16.1 Using an Autotest Test Suite . 195

16.1.1 testsuite Scripts. 195
16.1.2 Autotest Logs . 197

16.2 Writing ‘testsuite.at’ . 197
16.3 Running testsuite Scripts . 199
16.4 Making testsuite Scripts . 200

17 Frequent Autoconf Questions, with answers
. 203

17.1 Distributing configure Scripts . 203
17.2 Why Require gnu M4? . 203
17.3 How Can I Bootstrap? . 203
17.4 Why Not Imake? . 204
17.5 How Do I #define Installation Directories?. 205
17.6 What is ‘autom4te.cache’? . 206
17.7 Header Present But Cannot Be Compiled 206

18 History of Autoconf . 209
18.1 Genesis . 209
18.2 Exodus . 209
18.3 Leviticus. 210
18.4 Numbers . 210
18.5 Deuteronomy . 211

Appendix A Copying This Manual 213
A.1 GNU Free Documentation License . 213

A.1.1 ADDENDUM: How to use this License for your
documents . 219

vi Autoconf

Appendix B Indices . 221
B.1 Environment Variable Index . 221
B.2 Output Variable Index . 221
B.3 Preprocessor Symbol Index . 223
B.4 Autoconf Macro Index . 224
B.5 M4 Macro Index . 228
B.6 Autotest Macro Index . 228
B.7 Program and Function Index . 229
B.8 Concept Index . 231

Chapter 1: Introduction 1

1 Introduction

A physicist, an engineer, and a computer scientist were discussing the
nature of God. “Surely a Physicist,” said the physicist, “because
early in the Creation, God made Light; and you know, Maxwell’s

equations, the dual nature of electromagnetic waves, the relativistic
consequences. . . ” “An Engineer!,” said the engineer, “because

before making Light, God split the Chaos into Land and Water; it takes a
hell of an engineer to handle that big amount of mud, and orderly

separation of solids from liquids. . . ” The computer scientist
shouted: “And the Chaos, where do you think it was coming from, hmm?”

—Anonymous
Autoconf is a tool for producing shell scripts that automatically configure software source

code packages to adapt to many kinds of unix-like systems. The configuration scripts
produced by Autoconf are independent of Autoconf when they are run, so their users do
not need to have Autoconf.

The configuration scripts produced by Autoconf require no manual user intervention
when run; they do not normally even need an argument specifying the system type. Instead,
they individually test for the presence of each feature that the software package they are
for might need. (Before each check, they print a one-line message stating what they are
checking for, so the user doesn’t get too bored while waiting for the script to finish.) As a
result, they deal well with systems that are hybrids or customized from the more common
unix variants. There is no need to maintain files that list the features supported by each
release of each variant of unix.

For each software package that Autoconf is used with, it creates a configuration script
from a template file that lists the system features that the package needs or can use. After
the shell code to recognize and respond to a system feature has been written, Autoconf
allows it to be shared by many software packages that can use (or need) that feature. If it
later turns out that the shell code needs adjustment for some reason, it needs to be changed
in only one place; all of the configuration scripts can be regenerated automatically to take
advantage of the updated code.

The Metaconfig package is similar in purpose to Autoconf, but the scripts it produces
require manual user intervention, which is quite inconvenient when configuring large source
trees. Unlike Metaconfig scripts, Autoconf scripts can support cross-compiling, if some care
is taken in writing them.

Autoconf does not solve all problems related to making portable software packages—for
a more complete solution, it should be used in concert with other gnu build tools like
Automake and Libtool. These other tools take on jobs like the creation of a portable,
recursive ‘Makefile’ with all of the standard targets, linking of shared libraries, and so on.
See Chapter 2 [The GNU Build System], page 3, for more information.

Autoconf imposes some restrictions on the names of macros used with #if in C programs
(see Section B.3 [Preprocessor Symbol Index], page 223).

Autoconf requires gnu M4 in order to generate the scripts. It uses features that some
unix versions of M4, including gnu M4 1.3, do not have. You must use version 1.4 or later
of gnu M4.

2 Autoconf

See Section 15.5 [Autoconf 1], page 185, for information about upgrading from version 1.
See Chapter 18 [History], page 209, for the story of Autoconf’s development. See Chapter 17
[FAQ], page 203, for answers to some common questions about Autoconf.

See the Autoconf web page1 for up-to-date information, details on the mailing lists,
pointers to a list of known bugs, etc.

Mail suggestions to the Autoconf mailing list.
Bug reports should be preferably submitted to the Autoconf Gnats database2, or sent to

the Autoconf Bugs mailing list. If possible, first check that your bug is not already solved
in current development versions, and that it has not been reported yet. Be sure to include
all the needed information and a short ‘configure.ac’ that demonstrates the problem.

Autoconf’s development tree is accessible via cvs; see the Autoconf web page for details.
There is also a cvsweb interface to the Autoconf development tree3. Patches relative to the
current cvs version can be sent for review to the Autoconf Patches mailing list.

Because of its mission, Autoconf includes only a set of often-used macros that have
already demonstrated their usefulness. Nevertheless, if you wish to share your macros, or
find existing ones, see the Autoconf Macro Archive4, which is kindly run by Peter Simons.

1 Autoconf web page, http://www.gnu.org/software/autoconf/autoconf.html.
2 Autoconf Gnats database, http://bugs.gnu.org/cgi-bin/gnatsweb.pl?database=autoconf.
3 cvsweb interface to the Autoconf development tree, http://subversions.gnu.org/cgi-

bin/cvsweb/autoconf/.
4 Autoconf Macro Archive, http://www.gnu.org/software/ac-archive/.

mailto:autoconf@gnu.org
mailto:bug-autoconf@gnu.org
mailto:autoconf-patches@gnu.org
mailto:simons@computer.org

Chapter 2: The gnu Build System 3

2 The gnu Build System

Autoconf solves an important problem—reliable discovery of system-specific build and run-
time information—but this is only one piece of the puzzle for the development of portable
software. To this end, the gnu project has developed a suite of integrated utilities to finish
the job Autoconf started: the gnu build system, whose most important components are
Autoconf, Automake, and Libtool. In this chapter, we introduce you to those tools, point
you to sources of more information, and try to convince you to use the entire gnu build
system for your software.

2.1 Automake

The ubiquity of make means that a ‘Makefile’ is almost the only viable way to distribute
automatic build rules for software, but one quickly runs into make’s numerous limitations.
Its lack of support for automatic dependency tracking, recursive builds in subdirectories,
reliable timestamps (e.g., for network filesystems), and so on, mean that developers must
painfully (and often incorrectly) reinvent the wheel for each project. Portability is non-
trivial, thanks to the quirks of make on many systems. On top of all this is the manual
labor required to implement the many standard targets that users have come to expect
(make install, make distclean, make uninstall, etc.). Since you are, of course, using
Autoconf, you also have to insert repetitive code in your Makefile.in to recognize @CC@,
@CFLAGS@, and other substitutions provided by configure. Into this mess steps Automake.

Automake allows you to specify your build needs in a Makefile.am file with a vastly
simpler and more powerful syntax than that of a plain Makefile, and then generates a
portable Makefile.in for use with Autoconf. For example, the Makefile.am to build and
install a simple “Hello world” program might look like:

bin_PROGRAMS = hello
hello_SOURCES = hello.c

The resulting Makefile.in (~400 lines) automatically supports all the standard targets,
the substitutions provided by Autoconf, automatic dependency tracking, VPATH build-
ing, and so on. make will build the hello program, and make install will install it in
‘/usr/local/bin’ (or whatever prefix was given to configure, if not ‘/usr/local’).

The benefits of Automake increase for larger packages (especially ones with subdirecto-
ries), but even for small programs the added convenience and portability can be substantial.
And that’s not all. . . .

2.2 Libtool

Very often, one wants to build not only programs, but libraries, so that other programs can
benefit from the fruits of your labor. Ideally, one would like to produce shared (dynamically
linked) libraries, which can be used by multiple programs without duplication on disk or
in memory and can be updated independently of the linked programs. Producing shared
libraries portably, however, is the stuff of nightmares—each system has its own incompatible
tools, compiler flags, and magic incantations. Fortunately, gnu provides a solution: Libtool.

4 Autoconf

Libtool handles all the requirements of building shared libraries for you, and at this
time seems to be the only way to do so with any portability. It also handles many other
headaches, such as: the interaction of Makefile rules with the variable suffixes of shared
libraries, linking reliably with shared libraries before they are installed by the superuser,
and supplying a consistent versioning system (so that different versions of a library can
be installed or upgraded without breaking binary compatibility). Although Libtool, like
Autoconf, can be used on its own, it is most simply utilized in conjunction with Automake—
there, Libtool is used automatically whenever shared libraries are needed, and you need not
know its syntax.

2.3 Pointers

Developers who are used to the simplicity of make for small projects on a single system
might be daunted at the prospect of learning to use Automake and Autoconf. As your
software is distributed to more and more users, however, you will otherwise quickly find
yourself putting lots of effort into reinventing the services that the gnu build tools provide,
and making the same mistakes that they once made and overcame. (Besides, since you’re
already learning Autoconf, Automake will be a piece of cake.)

There are a number of places that you can go to for more information on the gnu build
tools.
− Web

The home pages for Autoconf1, Automake2, and Libtool3.
− Automake Manual

See section “Automake” in gnu Automake, for more information on Automake.
− Books

The book gnu Autoconf, Automake and Libtool4 describes the complete gnu build
environment. You can also find the entire book on-line at “The Goat Book” home
page5.

− Tutorials and Examples
The Autoconf Developer Page6 maintains links to a number of Autoconf/Automake
tutorials online, and also links to the Autoconf Macro Archive7.

1 Autoconf, http://www.gnu.org/software/autoconf/.
2 Automake, http://www.gnu.org/software/automake/.
3 Libtool, http://www.gnu.org/software/libtool/.
4 gnu Autoconf, Automake and Libtool, by G. V. Vaughan, B. Elliston, T. Tromey, and I. L. Taylor. New

Riders, 2000, ISBN 1578701902.
5 “The Goat Book” home page, http://sources.redhat.com/autobook/.
6 Autoconf Developer Page, http://sources.redhat.com/autoconf/.
7 Autoconf Macro Archive, http://www.gnu.org/software/ac-archive/.

Chapter 3: Making configure Scripts 5

3 Making configure Scripts

The configuration scripts that Autoconf produces are by convention called configure.
When run, configure creates several files, replacing configuration parameters in them
with appropriate values. The files that configure creates are:

− one or more ‘Makefile’ files, usually one in each subdirectory of the package (see
Section 4.7 [Makefile Substitutions], page 20);

− optionally, a C header file, the name of which is configurable, containing #define
directives (see Section 4.8 [Configuration Headers], page 26);

− a shell script called ‘config.status’ that, when run, will recreate the files listed above
(see Chapter 14 [config.status Invocation], page 171);

− an optional shell script normally called ‘config.cache’ (created when using ‘configure
--config-cache’) that saves the results of running many of the tests (see Section 7.3.2
[Cache Files], page 93);

− a file called ‘config.log’ containing any messages produced by compilers, to help
debugging if configure makes a mistake.

To create a configure script with Autoconf, you need to write an Autoconf input
file ‘configure.ac’ (or ‘configure.in’) and run autoconf on it. If you write your own
feature tests to supplement those that come with Autoconf, you might also write files called
‘aclocal.m4’ and ‘acsite.m4’. If you use a C header file to contain #define directives,
you might also run autoheader, and you will distribute the generated file ‘config.h.in’
with the package.

Here is a diagram showing how the files that can be used in configuration are produced.
Programs that are executed are suffixed by ‘*’. Optional files are enclosed in square brackets
(‘[]’). autoconf and autoheader also read the installed Autoconf macro files (by reading
‘autoconf.m4’).

Files used in preparing a software package for distribution:

your source files --> [autoscan*] --> [configure.scan] --> configure.ac

configure.ac --.
| .------> autoconf* -----> configure

[aclocal.m4] --+---+
| ‘-----> [autoheader*] --> [config.h.in]

[acsite.m4] ---’

Makefile.in -------------------------------> Makefile.in

Files used in configuring a software package:

.-------------> [config.cache]
configure* ------------+-------------> config.log

|
[config.h.in] -. v .-> [config.h] -.

+--> config.status* -+ +--> make*
Makefile.in ---’ ‘-> Makefile ---’

6 Autoconf

3.1 Writing ‘configure.ac’

To produce a configure script for a software package, create a file called ‘configure.ac’
that contains invocations of the Autoconf macros that test the system features your package
needs or can use. Autoconf macros already exist to check for many features; see Chapter 5
[Existing Tests], page 33, for their descriptions. For most other features, you can use
Autoconf template macros to produce custom checks; see Chapter 6 [Writing Tests], page 79,
for information about them. For especially tricky or specialized features, ‘configure.ac’
might need to contain some hand-crafted shell commands; see Chapter 10 [Portable Shell],
page 119. The autoscan program can give you a good start in writing ‘configure.ac’ (see
Section 3.2 [autoscan Invocation], page 9, for more information).

Previous versions of Autoconf promoted the name ‘configure.in’, which is somewhat
ambiguous (the tool needed to process this file is not described by its extension), and
introduces a slight confusion with ‘config.h.in’ and so on (for which ‘.in’ means “to be
processed by configure”). Using ‘configure.ac’ is now preferred.

3.1.1 A Shell Script Compiler

Just as for any other computer language, in order to properly program ‘configure.ac’ in
Autoconf you must understand what problem the language tries to address and how it does
so.

The problem Autoconf addresses is that the world is a mess. After all, you are using
Autoconf in order to have your package compile easily on all sorts of different systems,
some of them being extremely hostile. Autoconf itself bears the price for these differences:
configure must run on all those systems, and thus configure must limit itself to their
lowest common denominator of features.

Naturally, you might then think of shell scripts; who needs autoconf? A set of properly
written shell functions is enough to make it easy to write configure scripts by hand. Sigh!
Unfortunately, shell functions do not belong to the least common denominator; therefore,
where you would like to define a function and use it ten times, you would instead need to
copy its body ten times.

So, what is really needed is some kind of compiler, autoconf, that takes an Autoconf
program, ‘configure.ac’, and transforms it into a portable shell script, configure.

How does autoconf perform this task?

There are two obvious possibilities: creating a brand new language or extending an
existing one. The former option is very attractive: all sorts of optimizations could easily be
implemented in the compiler and many rigorous checks could be performed on the Autoconf
program (e.g., rejecting any non-portable construct). Alternatively, you can extend an
existing language, such as the sh (Bourne shell) language.

Autoconf does the latter: it is a layer on top of sh. It was therefore most convenient
to implement autoconf as a macro expander: a program that repeatedly performs macro
expansions on text input, replacing macro calls with macro bodies and producing a pure
sh script in the end. Instead of implementing a dedicated Autoconf macro expander, it is
natural to use an existing general-purpose macro language, such as M4, and implement the
extensions as a set of M4 macros.

Chapter 3: Making configure Scripts 7

3.1.2 The Autoconf Language

The Autoconf language is very different from many other computer languages because it
treats actual code the same as plain text. Whereas in C, for instance, data and instructions
have very different syntactic status, in Autoconf their status is rigorously the same. There-
fore, we need a means to distinguish literal strings from text to be expanded: quotation.

When calling macros that take arguments, there must not be any blank space between
the macro name and the open parenthesis. Arguments should be enclosed within the M4
quote characters ‘[’ and ‘]’, and be separated by commas. Any leading spaces in arguments
are ignored, unless they are quoted. You may safely leave out the quotes when the argument
is simple text, but always quote complex arguments such as other macro calls. This rule
applies recursively for every macro call, including macros called from other macros.

For instance:
AC_CHECK_HEADER([stdio.h],

[AC_DEFINE([HAVE_STDIO_H])],
[AC_MSG_ERROR([Sorry, can’t do anything for you])])

is quoted properly. You may safely simplify its quotation to:
AC_CHECK_HEADER(stdio.h,

[AC_DEFINE(HAVE_STDIO_H)],
[AC_MSG_ERROR([Sorry, can’t do anything for you])])

Notice that the argument of AC_MSG_ERROR is still quoted; otherwise, its comma would have
been interpreted as an argument separator.

The following example is wrong and dangerous, as it is underquoted:
AC_CHECK_HEADER(stdio.h,

AC_DEFINE(HAVE_STDIO_H),
AC_MSG_ERROR([Sorry, can’t do anything for you]))

In other cases, you may have to use text that also resembles a macro call. You must
quote that text even when it is not passed as a macro argument:

echo "Hard rock was here! --[AC_DC]"

which will result in
echo "Hard rock was here! --AC_DC"

When you use the same text in a macro argument, you must therefore have an extra
quotation level (since one is stripped away by the macro substitution). In general, then, it
is a good idea to use double quoting for all literal string arguments:

AC_MSG_WARN([[AC_DC stinks --Iron Maiden]])

You are now able to understand one of the constructs of Autoconf that has been contin-
ually misunderstood. . . The rule of thumb is that whenever you expect macro expansion,
expect quote expansion; i.e., expect one level of quotes to be lost. For instance:

AC_COMPILE_IFELSE([char b[10];],, [AC_MSG_ERROR([you lose])])

is incorrect: here, the first argument of AC_COMPILE_IFELSE is ‘char b[10];’ and will be
expanded once, which results in ‘char b10;’. (There was an idiom common in Autoconf’s
past to address this issue via the M4 changequote primitive, but do not use it!) Let’s
take a closer look: the author meant the first argument to be understood as a literal, and
therefore it must be quoted twice:

8 Autoconf

AC_COMPILE_IFELSE([[char b[10];]],, [AC_MSG_ERROR([you lose])])

Voilà, you actually produce ‘char b[10];’ this time!

The careful reader will notice that, according to these guidelines, the “properly” quoted
AC_CHECK_HEADER example above is actually lacking three pairs of quotes! Nevertheless,
for the sake of readability, double quotation of literals is used only where needed in this
manual.

Some macros take optional arguments, which this documentation represents as [arg] (not
to be confused with the quote characters). You may just leave them empty, or use ‘[]’ to
make the emptiness of the argument explicit, or you may simply omit the trailing commas.
The three lines below are equivalent:

AC_CHECK_HEADERS(stdio.h, [], [], [])
AC_CHECK_HEADERS(stdio.h,,,)
AC_CHECK_HEADERS(stdio.h)

It is best to put each macro call on its own line in ‘configure.ac’. Most of the macros
don’t add extra newlines; they rely on the newline after the macro call to terminate the
commands. This approach makes the generated configure script a little easier to read by
not inserting lots of blank lines. It is generally safe to set shell variables on the same line
as a macro call, because the shell allows assignments without intervening newlines.

You can include comments in ‘configure.ac’ files by starting them with the ‘#’. For
example, it is helpful to begin ‘configure.ac’ files with a line like this:

Process this file with autoconf to produce a configure script.

3.1.3 Standard ‘configure.ac’ Layout

The order in which ‘configure.ac’ calls the Autoconf macros is not important, with a few
exceptions. Every ‘configure.ac’ must contain a call to AC_INIT before the checks, and a
call to AC_OUTPUT at the end (see Section 4.4 [Output], page 17). Additionally, some macros
rely on other macros having been called first, because they check previously set values of
some variables to decide what to do. These macros are noted in the individual descriptions
(see Chapter 5 [Existing Tests], page 33), and they also warn you when configure is created
if they are called out of order.

To encourage consistency, here is a suggested order for calling the Autoconf macros.
Generally speaking, the things near the end of this list are those that could depend on
things earlier in it. For example, library functions could be affected by types and libraries.

Chapter 3: Making configure Scripts 9

Autoconf requirements
AC_INIT(package, version, bug-report-address)
information on the package
checks for programs
checks for libraries
checks for header files
checks for types
checks for structures
checks for compiler characteristics
checks for library functions
checks for system services
AC_CONFIG_FILES([file...])
AC_OUTPUT

3.2 Using autoscan to Create ‘configure.ac’

The autoscan program can help you create and/or maintain a ‘configure.ac’ file for a
software package. autoscan examines source files in the directory tree rooted at a directory
given as a command line argument, or the current directory if none is given. It searches the
source files for common portability problems and creates a file ‘configure.scan’ which is a
preliminary ‘configure.ac’ for that package, and checks a possibly existing ‘configure.ac’
for completeness.

When using autoscan to create a ‘configure.ac’, you should manually examine
‘configure.scan’ before renaming it to ‘configure.ac’; it will probably need some
adjustments. Occasionally, autoscan outputs a macro in the wrong order relative to
another macro, so that autoconf produces a warning; you need to move such macros
manually. Also, if you want the package to use a configuration header file, you must add a
call to AC_CONFIG_HEADERS (see Section 4.8 [Configuration Headers], page 26). You might
also have to change or add some #if directives to your program in order to make it work
with Autoconf (see Section 3.3 [ifnames Invocation], page 10, for information about a
program that can help with that job).

When using autoscan to maintain a ‘configure.ac’, simply consider adding its sug-
gestions. The file ‘autoscan.log’ will contain detailed information on why a macro is
requested.

autoscan uses several data files (installed along with Autoconf) to determine which
macros to output when it finds particular symbols in a package’s source files. These data
files all have the same format: each line consists of a symbol, whitespace, and the Autoconf
macro to output if that symbol is encountered. Lines starting with ‘#’ are comments.

autoscan accepts the following options:

‘--help’
‘-h’ Print a summary of the command line options and exit.

‘--version’
‘-V’ Print the version number of Autoconf and exit.

‘--verbose’
‘-v’ Print the names of the files it examines and the potentially interesting symbols

it finds in them. This output can be voluminous.

10 Autoconf

‘--include=dir ’
‘-I dir ’ Append dir to the include path. Multiple invocations accumulate.

‘--prepend-include=dir ’
‘-B dir ’ Prepend dir to the include path. Multiple invocations accumulate.

3.3 Using ifnames to List Conditionals

ifnames can help you write ‘configure.ac’ for a software package. It prints the identifiers
that the package already uses in C preprocessor conditionals. If a package has already been
set up to have some portability, ifnames can thus help you figure out what its configure
needs to check for. It may help fill in some gaps in a ‘configure.ac’ generated by autoscan
(see Section 3.2 [autoscan Invocation], page 9).

ifnames scans all of the C source files named on the command line (or the standard
input, if none are given) and writes to the standard output a sorted list of all the identifiers
that appear in those files in #if, #elif, #ifdef, or #ifndef directives. It prints each
identifier on a line, followed by a space-separated list of the files in which that identifier
occurs.
ifnames accepts the following options:

‘--help’
‘-h’ Print a summary of the command line options and exit.

‘--version’
‘-V’ Print the version number of Autoconf and exit.

3.4 Using autoconf to Create configure

To create configure from ‘configure.ac’, run the autoconf program with no arguments.
autoconf processes ‘configure.ac’ with the M4 macro processor, using the Autoconf
macros. If you give autoconf an argument, it reads that file instead of ‘configure.ac’
and writes the configuration script to the standard output instead of to configure. If you
give autoconf the argument ‘-’, it reads from the standard input instead of ‘configure.ac’
and writes the configuration script to the standard output.

The Autoconf macros are defined in several files. Some of the files are distributed with
Autoconf; autoconf reads them first. Then it looks for the optional file ‘acsite.m4’ in
the directory that contains the distributed Autoconf macro files, and for the optional file
‘aclocal.m4’ in the current directory. Those files can contain your site’s or the package’s
own Autoconf macro definitions (see Chapter 9 [Writing Autoconf Macros], page 111, for
more information). If a macro is defined in more than one of the files that autoconf reads,
the last definition it reads overrides the earlier ones.

autoconf accepts the following options:

‘--help’
‘-h’ Print a summary of the command line options and exit.

‘--version’
‘-V’ Print the version number of Autoconf and exit.

‘--verbose’
‘-v’ Report processing steps.

Chapter 3: Making configure Scripts 11

‘--debug’
‘-d’ Don’t remove the temporary files.

‘--force’
‘-f’ Remake ‘configure’ even if newer than its input files.

‘--include=dir ’
‘-I dir ’ Append dir to the include path. Multiple invocations accumulate.

‘--prepend-include=dir ’
‘-B dir ’ Prepend dir to the include path. Multiple invocations accumulate.

‘--output=file ’
‘-o file ’ Save output (script or trace) to file. The file ‘-’ stands for the standard output.

‘--warnings=category ’
‘-W category ’

Report the warnings related to category (which can actually be a comma
separated list). See Section 9.3 [Reporting Messages], page 112, macro AC_
DIAGNOSE, for a comprehensive list of categories. Special values include:

‘all’ report all the warnings

‘none’ report none

‘error’ treats warnings as errors

‘no-category ’
disable warnings falling into category

Warnings about ‘syntax’ are enabled by default, and the environment
variable WARNINGS, a comma separated list of categories, is honored.
Passing ‘-W category ’ will actually behave as if you had passed
‘--warnings=syntax,$WARNINGS,category ’. If you want to disable the
defaults and WARNINGS, but (for example) enable the warnings about obsolete
constructs, you would use ‘-W none,obsolete’.
Because autoconf uses autom4te behind the scenes, it displays a back trace
for errors, but not for warnings; if you want them, just pass ‘-W error’. See
Section 8.2.1 [autom4te Invocation], page 103, for some examples.

‘--trace=macro[:format]’
‘-t macro[:format]’

Do not create the configure script, but list the calls to macro according to
the format. Multiple ‘--trace’ arguments can be used to list several macros.
Multiple ‘--trace’ arguments for a single macro are not cumulative; instead,
you should just make format as long as needed.
The format is a regular string, with newlines if desired, and several special
escape codes. It defaults to ‘$f:$l:$n:$%’; see Section 8.2.1 [autom4te Invo-
cation], page 103, for details on the format.

‘--initialization’
‘-i’ By default, ‘--trace’ does not trace the initialization of the Autoconf macros

(typically the AC_DEFUN definitions). This results in a noticeable speedup, but
can be disabled by this option.

12 Autoconf

It is often necessary to check the content of a ‘configure.ac’ file, but parsing it yourself
is extremely fragile and error-prone. It is suggested that you rely upon ‘--trace’ to scan
‘configure.ac’. For instance, to find the list of variables that are substituted, use:

$ autoconf -t AC_SUBST

configure.ac:2:AC_SUBST:ECHO_C
configure.ac:2:AC_SUBST:ECHO_N
configure.ac:2:AC_SUBST:ECHO_T
More traces deleted

The example below highlights the difference between ‘$@’, ‘$*’, and $%.

$ cat configure.ac

AC_DEFINE(This, is, [an
[example]])
$ autoconf -t ’AC_DEFINE:@: $@
: $
$: $%’
@: [This],[is],[an
[example]]
*: This,is,an
[example]
$: This:is:an [example]

The format gives you a lot of freedom:

$ autoconf -t ’AC_SUBST:$$ac_subst{"$1"} = "$f:$l";’
$ac_subst{"ECHO_C"} = "configure.ac:2";
$ac_subst{"ECHO_N"} = "configure.ac:2";
$ac_subst{"ECHO_T"} = "configure.ac:2";
More traces deleted

A long separator can be used to improve the readability of complex structures, and to ease
their parsing (for instance when no single character is suitable as a separator):

$ autoconf -t ’AM_MISSING_PROG:${|:::::|}*’
ACLOCAL|:::::|aclocal|:::::|$missing_dir
AUTOCONF|:::::|autoconf|:::::|$missing_dir
AUTOMAKE|:::::|automake|:::::|$missing_dir
More traces deleted

3.5 Using autoreconf to Update configure Scripts

Installing the various components of the gnu Build System can be tedious: running
autopoint for Gettext, automake for ‘Makefile.in’ etc. in each directory. It may be
needed either because some tools such as automake have been updated on your system, or
because some of the sources such as ‘configure.ac’ have been updated, or finally, simply
in order to install the gnu Build System in a fresh tree.

autoreconf runs autoconf, autoheader, aclocal, automake, libtoolize, and
autopoint (when appropriate) repeatedly to update the gnu Build System in the specified
directories and their subdirectories (see Section 4.11 [Subdirectories], page 31). By default,
it only remakes those files that are older than their sources.

Chapter 3: Making configure Scripts 13

If you install a new version of some tool, you can make autoreconf remake all of the
files by giving it the ‘--force’ option.

See Section 4.7.4 [Automatic Remaking], page 25, for ‘Makefile’ rules to automatically
remake configure scripts when their source files change. That method handles the times-
tamps of configuration header templates properly, but does not pass ‘--autoconf-dir=dir ’
or ‘--localdir=dir ’.
autoreconf accepts the following options:

‘--help’
‘-h’ Print a summary of the command line options and exit.

‘--version’
‘-V’ Print the version number of Autoconf and exit.

‘--verbose’
Print the name of each directory where autoreconf runs autoconf (and
autoheader, if appropriate).

‘--debug’
‘-d’ Don’t remove the temporary files.

‘--force’
‘-f’ Remake even ‘configure’ scripts and configuration headers that are newer than

their input files (‘configure.ac’ and, if present, ‘aclocal.m4’).

‘--install’
‘-i’ Install the missing auxiliary files in the package. By default, files are copied;

this can be changed with ‘--symlink’.
This option triggers calls to ‘automake --add-missing’, ‘libtoolize’,
‘autopoint’, etc.

‘--symlink’
‘-s’ When used with ‘--install’, install symbolic links to the missing auxiliary

files instead of copying them.

‘--make’
‘-m’ When the directories were configured, update the configuration by running

‘./config.status --recheck && ./config.status’, and then run ‘make’.

‘--include=dir ’
‘-I dir ’ Append dir to the include path. Multiple invocations accumulate.

‘--prepend-include=dir ’
‘-B dir ’ Prepend dir to the include path. Multiple invocations accumulate.

‘--warnings=category ’
‘-W category ’

Report the warnings related to category (which can actually be a comma sep-
arated list).

‘cross’ related to cross compilation issues.

‘obsolete’
report the uses of obsolete constructs.

14 Autoconf

‘portability’
portability issues

‘syntax’ dubious syntactic constructs.

‘all’ report all the warnings

‘none’ report none

‘error’ treats warnings as errors

‘no-category ’
disable warnings falling into category

Warnings about ‘syntax’ are enabled by default, and the environment
variable WARNINGS, a comma separated list of categories, is honored.
Passing ‘-W category ’ will actually behave as if you had passed
‘--warnings=syntax,$WARNINGS,category ’. If you want to disable the
defaults and WARNINGS, but (for example) enable the warnings about obsolete
constructs, you would use ‘-W none,obsolete’.

Chapter 4: Initialization and Output Files 15

4 Initialization and Output Files

Autoconf-generated configure scripts need some information about how to initialize, such
as how to find the package’s source files and about the output files to produce. The following
sections describe the initialization and the creation of output files.

4.1 Initializing configure

Every configure script must call AC_INIT before doing anything else. The only other
required macro is AC_OUTPUT (see Section 4.4 [Output], page 17).

[Macro]AC INIT (package, version, [bug-report], [tarname])
Process any command-line arguments and perform various initializations and verifi-
cations.
Set the name of the package and its version. These are typically used in ‘--version’
support, including that of configure. The optional argument bug-report should be
the email to which users should send bug reports. The package tarname differs from
package: the latter designates the full package name (e.g., ‘GNU Autoconf’), while
the former is meant for distribution tar ball names (e.g., ‘autoconf’). It defaults to
package with ‘GNU ’ stripped, lower-cased, and all characters other than alphanumerics
and underscores are changed to ‘-’.
It is preferable that the arguments of AC_INIT be static, i.e., there should not be any
shell computation, but they can be computed by M4.
The following M4 macros (e.g., AC_PACKAGE_NAME), output variables (e.g., PACKAGE_
NAME), and preprocessor symbols (e.g., PACKAGE_NAME) are defined by AC_INIT:

AC_PACKAGE_NAME, PACKAGE_NAME
Exactly package.

AC_PACKAGE_TARNAME, PACKAGE_TARNAME
Exactly tarname.

AC_PACKAGE_VERSION, PACKAGE_VERSION
Exactly version.

AC_PACKAGE_STRING, PACKAGE_STRING
Exactly ‘package version ’.

AC_PACKAGE_BUGREPORT, PACKAGE_BUGREPORT
Exactly bug-report.

4.2 Notices in configure

The following macros manage version numbers for configure scripts. Using them is op-
tional.

[Macro]AC PREREQ (version)
Ensure that a recent enough version of Autoconf is being used. If the version of Au-
toconf being used to create configure is earlier than version, print an error message
to the standard error output and exit with failure (exit status is 63). For example:

16 Autoconf

AC_PREREQ(2.106)

This macro is the only macro that may be used before AC_INIT, but for consistency,
you are invited not to do so.

[Macro]AC COPYRIGHT (copyright-notice)
State that, in addition to the Free Software Foundation’s copyright on the Autoconf
macros, parts of your configure are covered by the copyright-notice.
The copyright-notice will show up in both the head of configure and in ‘configure
--version’.

[Macro]AC REVISION (revision-info)
Copy revision stamp revision-info into the configure script, with any dollar
signs or double-quotes removed. This macro lets you put a revision stamp from
‘configure.ac’ into configure without rcs or cvs changing it when you check in
configure. That way, you can determine easily which revision of ‘configure.ac’ a
particular configure corresponds to.
For example, this line in ‘configure.ac’:

AC_REVISION($Revision: 1.30 $)

produces this in configure:
#! /bin/sh
From configure.ac Revision: 1.30

4.3 Finding configure Input

[Macro]AC CONFIG SRCDIR (unique-file-in-source-dir)
unique-file-in-source-dir is some file that is in the package’s source directory;
configure checks for this file’s existence to make sure that the directory that it
is told contains the source code in fact does. Occasionally people accidentally
specify the wrong directory with ‘--srcdir’; this is a safety check. See Section 13.9
[configure Invocation], page 169, for more information.

Packages that do manual configuration or use the install program might need to tell
configure where to find some other shell scripts by calling AC_CONFIG_AUX_DIR, though
the default places it looks are correct for most cases.

[Macro]AC CONFIG AUX DIR (dir)
Use the auxiliary build tools (e.g., ‘install-sh’, ‘config.sub’, ‘config.guess’,
Cygnus configure, Automake and Libtool scripts etc.) that are in directory dir.
These are auxiliary files used in configuration. dir can be either absolute or relative
to ‘srcdir ’. The default is ‘srcdir ’ or ‘srcdir/..’ or ‘srcdir/../..’, whichever is
the first that contains ‘install-sh’. The other files are not checked for, so that us-
ing AC_PROG_INSTALL does not automatically require distributing the other auxiliary
files. It checks for ‘install.sh’ also, but that name is obsolete because some make
have a rule that creates ‘install’ from it if there is no ‘Makefile’.

Similarly, packages that use aclocal should declare where local macros can be found
using AC_CONFIG_MACRO_DIR.

Chapter 4: Initialization and Output Files 17

[Macro]AC CONFIG MACRO DIR (dir)
Future versions of autopoint, libtoolize, aclocal and autoreconf will use direc-
tory dir as the location of additional local Autoconf macros. Be sure to call this
macro directly from ‘configure.ac’ so that tools that install macros for aclocal can
find the declaration before ‘--trace’ can be called safely.

4.4 Outputting Files

Every Autoconf script, e.g., ‘configure.ac’, should finish by calling AC_OUTPUT. That is
the macro that generates and runs ‘config.status’, which will create the ‘Makefile’s and
any other files resulting from configuration. This is the only required macro besides AC_INIT
(see Section 4.3 [Input], page 16).

[Macro]AC OUTPUT
Generate ‘config.status’ and launch it. Call this macro once, at the end of
‘configure.ac’.

‘config.status’ will perform all the configuration actions: all the output files (see
Section 4.6 [Configuration Files], page 19, macro AC_CONFIG_FILES), header files (see
Section 4.8 [Configuration Headers], page 26, macro AC_CONFIG_HEADERS), commands
(see Section 4.9 [Configuration Commands], page 30, macro AC_CONFIG_COMMANDS),
links (see Section 4.10 [Configuration Links], page 30, macro AC_CONFIG_LINKS), sub-
directories to configure (see Section 4.11 [Subdirectories], page 31, macro AC_CONFIG_
SUBDIRS) are honored.

The location of your AC_OUTPUT invocation is the exact point where configuration
actions are taken: any code afterwards will be executed by configure once
config.status was run. If you want to bind actions to config.status itself
(independently of whether configure is being run), see Section 4.9 [Running
Arbitrary Configuration Commands], page 30.

Historically, the usage of AC_OUTPUT was somewhat different. See Section 15.4 [Obsolete
Macros], page 175, for a description of the arguments that AC_OUTPUT used to support.

If you run make in subdirectories, you should run it using the make variable MAKE. Most
versions of make set MAKE to the name of the make program plus any options it was given.
(But many do not include in it the values of any variables set on the command line, so those
are not passed on automatically.) Some old versions of make do not set this variable. The
following macro allows you to use it even with those versions.

[Macro]AC PROG MAKE SET
If make predefines the Make variable MAKE, define output variable SET_MAKE to be
empty. Otherwise, define SET_MAKE to contain ‘MAKE=make’. Calls AC_SUBST for SET_
MAKE.

If you use this macro, place a line like this in each ‘Makefile.in’ that runs MAKE on
other directories:

@SET_MAKE@

18 Autoconf

4.5 Performing Configuration Actions

‘configure’ is designed so that it appears to do everything itself, but there is actually a
hidden slave: ‘config.status’. ‘configure’ is in charge of examining your system, but it is
‘config.status’ that actually takes the proper actions based on the results of ‘configure’.
The most typical task of ‘config.status’ is to instantiate files.

This section describes the common behavior of the four standard instantiating macros:
AC_CONFIG_FILES, AC_CONFIG_HEADERS, AC_CONFIG_COMMANDS and AC_CONFIG_LINKS.
They all have this prototype:

AC_CONFIG_FOOS(tag..., [commands], [init-cmds])

where the arguments are:

tag . . . A whitespace-separated list of tags, which are typically the names of the files
to instantiate.
You are encouraged to use literals as tags. In particular, you should avoid

... && my_foos="$my_foos fooo"

... && my_foos="$my_foos foooo"
AC_CONFIG_FOOS($my_foos)

and use this instead:
... && AC_CONFIG_FOOS(fooo)
... && AC_CONFIG_FOOS(foooo)

The macros AC_CONFIG_FILES and AC_CONFIG_HEADERS use special tags: they
may have the form ‘output ’ or ‘output:inputs ’. The file output is instantiated
from its templates, inputs (defaulting to ‘output.in’).
For instance ‘AC_CONFIG_FILES(Makefile:boiler/top.mk:boiler/bot.mk)’
asks for the creation of ‘Makefile’ that will be the expansion of the output
variables in the concatenation of ‘boiler/top.mk’ and ‘boiler/bot.mk’.
The special value ‘-’ might be used to denote the standard output when used
in output, or the standard input when used in the inputs. You most probably
don’t need to use this in ‘configure.ac’, but it is convenient when using the
command line interface of ‘./config.status’, see Chapter 14 [config.status
Invocation], page 171, for more details.
The inputs may be absolute or relative filenames. In the latter case they are
first looked for in the build tree, and then in the source tree.

commands
Shell commands output literally into ‘config.status’, and associated with a
tag that the user can use to tell ‘config.status’ which the commands to run.
The commands are run each time a tag request is given to ‘config.status’,
typically each time the file ‘tag ’ is created.
The variables set during the execution of configure are not available here: you
first need to set them via the init-cmds. Nonetheless the following variables are
precomputed:

srcdir The path from the top build directory to the top source directory.
This is what configure’s option ‘--srcdir’ sets.

Chapter 4: Initialization and Output Files 19

ac_top_srcdir
The path from the current build directory to the top source direc-
tory.

ac_top_builddir
The path from the current build directory to the top build direc-
tory. It can be empty, or else ends with a slash, so that you may
concatenate it.

ac_srcdir
The path from the current build directory to the corresponding
source directory.

The current directory refers to the directory (or pseudo-directory) containing
the input part of tags. For instance, running

AC_CONFIG_COMMANDS([deep/dir/out:in/in.in], [...], [...])

with ‘--srcdir=../package’ produces the following values:
Argument of --srcdir
srcdir=’../package’
Reversing deep/dir
ac_top_builddir=’../../’
Concatenation of $ac_top_builddir and srcdir
ac_top_srcdir=’../../../package’
Concatenation of $ac_top_srcdir and deep/dir
ac_srcdir=’../../../package/deep/dir’

independently of ‘in/in.in’.

init-cmds Shell commands output unquoted near the beginning of ‘config.status’, and
executed each time ‘config.status’ runs (regardless of the tag). Because they
are unquoted, for example, ‘$var’ will be output as the value of var. init-
cmds is typically used by ‘configure’ to give ‘config.status’ some variables
it needs to run the commands.
You should be extremely cautious in your variable names: all the init-cmds
share the same name space and may overwrite each other in unpredictable
ways. Sorry. . . .

All these macros can be called multiple times, with different tags, of course!

4.6 Creating Configuration Files

Be sure to read the previous section, Section 4.5 [Configuration Actions], page 18.

[Macro]AC CONFIG FILES (file . . . , [cmds], [init-cmds])
Make AC_OUTPUT create each ‘file ’ by copying an input file (by default ‘file.in’),
substituting the output variable values. This macro is one of the instantiating macros;
see Section 4.5 [Configuration Actions], page 18. See Section 4.7 [Makefile Substitu-
tions], page 20, for more information on using output variables. See Section 7.2
[Setting Output Variables], page 90, for more information on creating them. This
macro creates the directory that the file is in if it doesn’t exist. Usually, ‘Makefile’s
are created this way, but other files, such as ‘.gdbinit’, can be specified as well.

20 Autoconf

Typical calls to AC_CONFIG_FILES look like this:

AC_CONFIG_FILES([Makefile src/Makefile man/Makefile X/Imakefile])
AC_CONFIG_FILES([autoconf], [chmod +x autoconf])

You can override an input file name by appending to file a colon-separated list of
input files. Examples:

AC_CONFIG_FILES([Makefile:boiler/top.mk:boiler/bot.mk]
[lib/Makefile:boiler/lib.mk])

Doing this allows you to keep your file names acceptable to MS-DOS, or to prepend
and/or append boilerplate to the file.

4.7 Substitutions in Makefiles

Each subdirectory in a distribution that contains something to be compiled or installed
should come with a file ‘Makefile.in’, from which configure will create a ‘Makefile’ in
that directory. To create a ‘Makefile’, configure performs a simple variable substitution,
replacing occurrences of ‘@variable@’ in ‘Makefile.in’ with the value that configure has
determined for that variable. Variables that are substituted into output files in this way
are called output variables. They are ordinary shell variables that are set in configure. To
make configure substitute a particular variable into the output files, the macro AC_SUBST
must be called with that variable name as an argument. Any occurrences of ‘@variable@’
for other variables are left unchanged. See Section 7.2 [Setting Output Variables], page 90,
for more information on creating output variables with AC_SUBST.

A software package that uses a configure script should be distributed with a file
‘Makefile.in’, but no ‘Makefile’; that way, the user has to properly configure the package
for the local system before compiling it.

See section “Makefile Conventions” in The gnu Coding Standards, for more information
on what to put in ‘Makefile’s.

4.7.1 Preset Output Variables

Some output variables are preset by the Autoconf macros. Some of the Autoconf macros
set additional output variables, which are mentioned in the descriptions for those macros.
See Section B.2 [Output Variable Index], page 221, for a complete list of output variables.
See Section 4.7.2 [Installation Directory Variables], page 22, for the list of the preset ones
related to installation directories. Below are listed the other preset ones. They all are
precious variables (see Section 7.2 [Setting Output Variables], page 90, AC_ARG_VAR).

[Variable]CFLAGS
Debugging and optimization options for the C compiler. If it is not set in the envi-
ronment when configure runs, the default value is set when you call AC_PROG_CC (or
empty if you don’t). configure uses this variable when compiling programs to test
for C features.

[Variable]configure input
A comment saying that the file was generated automatically by configure and giving
the name of the input file. AC_OUTPUT adds a comment line containing this variable
to the top of every ‘Makefile’ it creates. For other files, you should reference this

Chapter 4: Initialization and Output Files 21

variable in a comment at the top of each input file. For example, an input shell script
should begin like this:

#! /bin/sh
@configure_input@

The presence of that line also reminds people editing the file that it needs to be
processed by configure in order to be used.

[Variable]CPPFLAGS
Header file search directory (‘-Idir ’) and any other miscellaneous options for the
C and C++ preprocessors and compilers. If it is not set in the environment when
configure runs, the default value is empty. configure uses this variable when
compiling or preprocessing programs to test for C and C++ features.

[Variable]CXXFLAGS
Debugging and optimization options for the C++ compiler. If it is not set in the
environment when configure runs, the default value is set when you call AC_PROG_
CXX (or empty if you don’t). configure uses this variable when compiling programs
to test for C++ features.

[Variable]DEFS
‘-D’ options to pass to the C compiler. If AC_CONFIG_HEADERS is called, configure
replaces ‘@DEFS@’ with ‘-DHAVE_CONFIG_H’ instead (see Section 4.8 [Configuration
Headers], page 26). This variable is not defined while configure is performing its
tests, only when creating the output files. See Section 7.2 [Setting Output Variables],
page 90, for how to check the results of previous tests.

[Variable]ECHO C
[Variable]ECHO N
[Variable]ECHO T

How does one suppress the trailing newline from echo for question-answer message
pairs? These variables provide a way:

echo $ECHO_N "And the winner is... $ECHO_C"
sleep 100000000000
echo "${ECHO_T}dead."

Some old and uncommon echo implementations offer no means to achieve this, in
which case ECHO_T is set to tab. You might not want to use it.

[Variable]FCFLAGS
Debugging and optimization options for the Fortran compiler. If it is not set in the
environment when configure runs, the default value is set when you call AC_PROG_FC
(or empty if you don’t). configure uses this variable when compiling programs to
test for Fortran features.

[Variable]FFLAGS
Debugging and optimization options for the Fortran 77 compiler. If it is not set in the
environment when configure runs, the default value is set when you call AC_PROG_
F77 (or empty if you don’t). configure uses this variable when compiling programs
to test for Fortran 77 features.

22 Autoconf

[Variable]LDFLAGS
Stripping (‘-s’), path (‘-L’), and any other miscellaneous options for the linker. Don’t
use this variable to pass library names (‘-l’) to the linker, use LIBS instead. If it is not
set in the environment when configure runs, the default value is empty. configure
uses this variable when linking programs to test for C, C++, and Fortran features.

[Variable]LIBS
‘-l’ options to pass to the linker. The default value is empty, but some Autoconf
macros may prepend extra libraries to this variable if those libraries are found and
provide necessary functions, see Section 5.4 [Libraries], page 38. configure uses this
variable when linking programs to test for C, C++, and Fortran features.

[Variable]builddir
Rigorously equal to ‘.’. Added for symmetry only.

[Variable]abs builddir
Absolute path of builddir.

[Variable]top builddir
The relative path to the top-level of the current build tree. In the top-level directory,
this is the same as builddir.

[Variable]abs top builddir
Absolute path of top_builddir.

[Variable]srcdir
The relative path to the directory that contains the source code for that ‘Makefile’.

[Variable]abs srcdir
Absolute path of srcdir.

[Variable]top srcdir
The relative path to the top-level source code directory for the package. In the top-
level directory, this is the same as srcdir.

[Variable]abs top srcdir
Absolute path of top_srcdir.

4.7.2 Installation Directory Variables

The following variables specify the directories where the package will be installed, see section
“Variables for Installation Directories” in The gnu Coding Standards, for more information.
See the end of this section for details on when and how to use these variables.

[Variable]bindir
The directory for installing executables that users run.

[Variable]datadir
The directory for installing read-only architecture-independent data.

Chapter 4: Initialization and Output Files 23

[Variable]exec prefix
The installation prefix for architecture-dependent files. By default it’s the same as
prefix. You should avoid installing anything directly to exec prefix. However, the
default value for directories containing architecture-dependent files should be relative
to exec prefix.

[Variable]includedir
The directory for installing C header files.

[Variable]infodir
The directory for installing documentation in Info format.

[Variable]libdir
The directory for installing object code libraries.

[Variable]libexecdir
The directory for installing executables that other programs run.

[Variable]localstatedir
The directory for installing modifiable single-machine data.

[Variable]mandir
The top-level directory for installing documentation in man format.

[Variable]oldincludedir
The directory for installing C header files for non-GCC compilers.

[Variable]prefix
The common installation prefix for all files. If exec prefix is defined to a different
value, prefix is used only for architecture-independent files.

[Variable]sbindir
The directory for installing executables that system administrators run.

[Variable]sharedstatedir
The directory for installing modifiable architecture-independent data.

[Variable]sysconfdir
The directory for installing read-only single-machine data.

Most of these variables have values that rely on prefix or exec_prefix. It is deliberate
that the directory output variables keep them unexpanded: typically ‘@datadir@’ will be
replaced by ‘${prefix}/share’, not ‘/usr/local/share’.

This behavior is mandated by the gnu coding standards, so that when the user runs:

‘make’ she can still specify a different prefix from the one specified to configure, in
which case, if needed, the package shall hard code dependencies corresponding
to the make-specified prefix.

24 Autoconf

‘make install’
she can specify a different installation location, in which case the package must
still depend on the location which was compiled in (i.e., never recompile when
‘make install’ is run). This is an extremely important feature, as many people
may decide to install all the files of a package grouped together, and then install
links from the final locations to there.

In order to support these features, it is essential that datadir remains being defined as
‘${prefix}/share’ to depend upon the current value of prefix.

A corollary is that you should not use these variables except in Makefiles. For
instance, instead of trying to evaluate datadir in ‘configure’ and hard-coding it in
Makefiles using e.g., ‘AC_DEFINE_UNQUOTED(DATADIR, "$datadir")’, you should add
‘-DDATADIR="$(datadir)"’ to your CPPFLAGS.

Similarly you should not rely on AC_OUTPUT_FILES to replace datadir and friends in
your shell scripts and other files, rather let make manage their replacement. For instance
Autoconf ships templates of its shell scripts ending with ‘.in’, and uses a Makefile snippet
similar to:

edit = sed \
-e ’s,@datadir\@,$(pkgdatadir),g’ \
-e ’s,@prefix\@,$(prefix),g’

autoconf: Makefile $(srcdir)/autoconf.in
rm -f autoconf autoconf.tmp
$(edit) $(srcdir)/autoconf.in >autoconf.tmp
chmod +x autoconf.tmp
mv autoconf.tmp autoconf

autoheader: Makefile $(srcdir)/autoheader.in
rm -f autoheader autoheader.tmp
$(edit) $(srcdir)/autoconf.in >autoheader.tmp
chmod +x autoheader.tmp
mv autoheader.tmp autoheader

Some details are noteworthy:

‘@datadir\@’
The backslash prevents configure from replacing ‘@datadir@’ in the sed ex-
pression itself.

‘$(pkgdatadir)’
Don’t use ‘@pkgdatadir@’! Use the matching makefile variable instead.

‘,’ Don’t use ‘/’ in the sed expression(s) since most likely the variables you use,
such as ‘$(pkgdatadir)’, will contain some.

‘Dependency on ‘Makefile’’
Since edit uses values that depend on the configuration specific values (prefix
etc.) and not only on VERSION and so forth, the output depends on ‘Makefile’,
not ‘configure.ac’.

‘Separated dependencies and Single Suffix Rules’
You can’t use them! The above snippet cannot be (portably) rewritten as:

Chapter 4: Initialization and Output Files 25

autoconf autoheader: Makefile
.in:

rm -f $@ $@.tmp
$(edit) $< >$@.tmp
chmod +x $@.tmp
mv $@.tmp $@

See Section 10.11 [Limitations of Make], page 146, for details.

‘‘$(srcdir)’’
Be sure to specify the path to the sources, otherwise the package won’t support
separated builds.

4.7.3 Build Directories

You can support compiling a software package for several architectures simultaneously from
the same copy of the source code. The object files for each architecture are kept in their
own directory.

To support doing this, make uses the VPATH variable to find the files that are in the
source directory. gnu Make and most other recent make programs can do this. Older make
programs do not support VPATH; when using them, the source code must be in the same
directory as the object files.

To support VPATH, each ‘Makefile.in’ should contain two lines that look like:
srcdir = @srcdir@
VPATH = @srcdir@

Do not set VPATH to the value of another variable, for example ‘VPATH = $(srcdir)’,
because some versions of make do not do variable substitutions on the value of VPATH.

configure substitutes the correct value for srcdir when it produces ‘Makefile’.
Do not use the make variable $<, which expands to the file name of the file in the source

directory (found with VPATH), except in implicit rules. (An implicit rule is one such as
‘.c.o’, which tells how to create a ‘.o’ file from a ‘.c’ file.) Some versions of make do not
set $< in explicit rules; they expand it to an empty value.

Instead, ‘Makefile’ command lines should always refer to source files by prefixing them
with ‘$(srcdir)/’. For example:

time.info: time.texinfo
$(MAKEINFO) $(srcdir)/time.texinfo

4.7.4 Automatic Remaking

You can put rules like the following in the top-level ‘Makefile.in’ for a package to au-
tomatically update the configuration information when you change the configuration files.
This example includes all of the optional files, such as ‘aclocal.m4’ and those related to
configuration header files. Omit from the ‘Makefile.in’ rules for any of these files that
your package does not use.

The ‘$(srcdir)/’ prefix is included because of limitations in the VPATH mechanism.
The ‘stamp-’ files are necessary because the timestamps of ‘config.h.in’ and

‘config.h’ will not be changed if remaking them does not change their contents. This
feature avoids unnecessary recompilation. You should include the file ‘stamp-h.in’ your

26 Autoconf

package’s distribution, so make will consider ‘config.h.in’ up to date. Don’t use touch
(see Section 10.10 [Limitations of Usual Tools], page 139), rather use echo (using date
would cause needless differences, hence cvs conflicts etc.).

$(srcdir)/configure: configure.ac aclocal.m4
cd $(srcdir) && autoconf

autoheader might not change config.h.in, so touch a stamp file.
$(srcdir)/config.h.in: stamp-h.in
$(srcdir)/stamp-h.in: configure.ac aclocal.m4

cd $(srcdir) && autoheader
echo timestamp > $(srcdir)/stamp-h.in

config.h: stamp-h
stamp-h: config.h.in config.status

./config.status

Makefile: Makefile.in config.status
./config.status

config.status: configure
./config.status --recheck

(Be careful if you copy these lines directly into your Makefile, as you will need to convert
the indented lines to start with the tab character.)

In addition, you should use ‘AC_CONFIG_FILES([stamp-h], [echo timestamp >
stamp-h])’ so ‘config.status’ will ensure that ‘config.h’ is considered up to date. See
Section 4.4 [Output], page 17, for more information about AC_OUTPUT.

See Chapter 14 [config.status Invocation], page 171, for more examples of handling
configuration-related dependencies.

4.8 Configuration Header Files

When a package contains more than a few tests that define C preprocessor symbols, the
command lines to pass ‘-D’ options to the compiler can get quite long. This causes two
problems. One is that the make output is hard to visually scan for errors. More seriously, the
command lines can exceed the length limits of some operating systems. As an alternative to
passing ‘-D’ options to the compiler, configure scripts can create a C header file containing
‘#define’ directives. The AC_CONFIG_HEADERS macro selects this kind of output. It should
be called right after AC_INIT.

The package should ‘#include’ the configuration header file before any other header
files, to prevent inconsistencies in declarations (for example, if it redefines const). Use
‘#include <config.h>’ instead of ‘#include "config.h"’, and pass the C compiler a ‘-I.’
option (or ‘-I..’; whichever directory contains ‘config.h’). That way, even if the source
directory is configured itself (perhaps to make a distribution), other build directories can
also be configured without finding the ‘config.h’ from the source directory.

Chapter 4: Initialization and Output Files 27

[Macro]AC CONFIG HEADERS (header . . . , [cmds], [init-cmds])
This macro is one of the instantiating macros; see Section 4.5 [Configuration Actions],
page 18. Make AC_OUTPUT create the file(s) in the whitespace-separated list header
containing C preprocessor #define statements, and replace ‘@DEFS@’ in generated files
with ‘-DHAVE_CONFIG_H’ instead of the value of DEFS. The usual name for header is
‘config.h’.

If header already exists and its contents are identical to what AC_OUTPUT would put in
it, it is left alone. Doing this allows making some changes in the configuration without
needlessly causing object files that depend on the header file to be recompiled.

Usually the input file is named ‘header.in’; however, you can override the input file
name by appending to header a colon-separated list of input files. Examples:

AC_CONFIG_HEADERS([config.h:config.hin])
AC_CONFIG_HEADERS([defines.h:defs.pre:defines.h.in:defs.post])

Doing this allows you to keep your file names acceptable to MS-DOS, or to prepend
and/or append boilerplate to the file.

See Section 4.5 [Configuration Actions], page 18, for more details on header.

4.8.1 Configuration Header Templates

Your distribution should contain a template file that looks as you want the final header
file to look, including comments, with #undef statements which are used as hooks. For
example, suppose your ‘configure.ac’ makes these calls:

AC_CONFIG_HEADERS([conf.h])
AC_CHECK_HEADERS([unistd.h])

Then you could have code like the following in ‘conf.h.in’. On systems that have
‘unistd.h’, configure will ‘#define’ ‘HAVE_UNISTD_H’ to 1. On other systems, the whole
line will be commented out (in case the system predefines that symbol).

/* Define as 1 if you have unistd.h. */
#undef HAVE_UNISTD_H

Pay attention that ‘#undef’ is in the first column, and there is nothing behind
‘HAVE_UNISTD_H’, not even white spaces. You can then decode the configuration header
using the preprocessor directives:

#include <conf.h>

#if HAVE_UNISTD_H
include <unistd.h>
#else
/* We are in trouble. */
#endif

The use of old form templates, with ‘#define’ instead of ‘#undef’ is strongly discouraged.
Similarly with old templates with comments on the same line as the ‘#undef’. Anyway,
putting comments in preprocessor macros has never been a good idea.

Since it is a tedious task to keep a template header up to date, you may use autoheader
to generate it, see Section 4.8.2 [autoheader Invocation], page 28.

28 Autoconf

4.8.2 Using autoheader to Create ‘config.h.in’

The autoheader program can create a template file of C ‘#define’ statements for
configure to use. If ‘configure.ac’ invokes AC_CONFIG_HEADERS(file), autoheader
creates ‘file.in’; if multiple file arguments are given, the first one is used. Otherwise,
autoheader creates ‘config.h.in’.

In order to do its job, autoheader needs you to document all of the symbols that you
might use; i.e., there must be at least one AC_DEFINE or one AC_DEFINE_UNQUOTED call
with a third argument for each symbol (see Section 7.1 [Defining Symbols], page 89). An
additional constraint is that the first argument of AC_DEFINE must be a literal. Note that
all symbols defined by Autoconf’s builtin tests are already documented properly; you only
need to document those that you define yourself.

You might wonder why autoheader is needed: after all, why would configure need
to “patch” a ‘config.h.in’ to produce a ‘config.h’ instead of just creating ‘config.h’
from scratch? Well, when everything rocks, the answer is just that we are wasting our time
maintaining autoheader: generating ‘config.h’ directly is all that is needed. When things
go wrong, however, you’ll be thankful for the existence of autoheader.

The fact that the symbols are documented is important in order to check that ‘config.h’
makes sense. The fact that there is a well-defined list of symbols that should be #define’d
(or not) is also important for people who are porting packages to environments where
configure cannot be run: they just have to fill in the blanks.

But let’s come back to the point: autoheader’s invocation. . .

If you give autoheader an argument, it uses that file instead of ‘configure.ac’ and
writes the header file to the standard output instead of to ‘config.h.in’. If you give
autoheader an argument of ‘-’, it reads the standard input instead of ‘configure.ac’ and
writes the header file to the standard output.

autoheader accepts the following options:

‘--help’
‘-h’ Print a summary of the command line options and exit.

‘--version’
‘-V’ Print the version number of Autoconf and exit.

‘--verbose’
‘-v’ Report processing steps.

‘--debug’
‘-d’ Don’t remove the temporary files.

‘--force’
‘-f’ Remake the template file even if newer than its input files.

‘--include=dir ’
‘-I dir ’ Append dir to include path. Multiple invocations accumulate.

‘--prepend-include=dir ’
‘-B dir ’ Prepend dir to include path. Multiple invocations accumulate.

Chapter 4: Initialization and Output Files 29

‘--warnings=category ’
‘-W category ’

Report the warnings related to category (which can actually be a comma sep-
arated list). Current categories include:

‘obsolete’
report the uses of obsolete constructs

‘all’ report all the warnings

‘none’ report none

‘error’ treats warnings as errors

‘no-category ’
disable warnings falling into category

4.8.3 Autoheader Macros

autoheader scans ‘configure.ac’ and figures out which C preprocessor symbols it might
define. It knows how to generate templates for symbols defined by AC_CHECK_HEADERS, AC_
CHECK_FUNCS etc., but if you AC_DEFINE any additional symbol, you must define a template
for it. If there are missing templates, autoheader fails with an error message.

The simplest way to create a template for a symbol is to supply the description argument
to an ‘AC_DEFINE(symbol)’; see Section 7.1 [Defining Symbols], page 89. You may also use
one of the following macros.

[Macro]AH VERBATIM (key, template)
Tell autoheader to include the template as-is in the header template file. This
template is associated with the key, which is used to sort all the different templates
and guarantee their uniqueness. It should be a symbol that can be AC_DEFINE’d.

For example:

AH_VERBATIM([_GNU_SOURCE],
[/* Enable GNU extensions on systems that have them. */
#ifndef _GNU_SOURCE
define _GNU_SOURCE
#endif])

[Macro]AH TEMPLATE (key, description)
Tell autoheader to generate a template for key. This macro generates standard
templates just like AC_DEFINE when a description is given.

For example:

AH_TEMPLATE([CRAY_STACKSEG_END],
[Define to one of _getb67, GETB67, getb67
for Cray-2 and Cray-YMP systems. This
function is required for alloca.c support
on those systems.])

will generate the following template, with the description properly justified.

30 Autoconf

/* Define to one of _getb67, GETB67, getb67 for Cray-2 and
Cray-YMP systems. This function is required for alloca.c
support on those systems. */

#undef CRAY_STACKSEG_END

[Macro]AH TOP (text)
Include text at the top of the header template file.

[Macro]AH BOTTOM (text)
Include text at the bottom of the header template file.

4.9 Running Arbitrary Configuration Commands

You can execute arbitrary commands before, during, and after ‘config.status’ is run.
The three following macros accumulate the commands to run when they are called mul-
tiple times. AC_CONFIG_COMMANDS replaces the obsolete macro AC_OUTPUT_COMMANDS; see
Section 15.4 [Obsolete Macros], page 175, for details.

[Macro]AC CONFIG COMMANDS (tag . . . , [cmds], [init-cmds])
Specify additional shell commands to run at the end of ‘config.status’, and shell
commands to initialize any variables from configure. Associate the commands with
tag. Since typically the cmds create a file, tag should naturally be the name of
that file. If needed, the directory hosting tag is created. This macro is one of the
instantiating macros; see Section 4.5 [Configuration Actions], page 18.

Here is an unrealistic example:

fubar=42
AC_CONFIG_COMMANDS([fubar],

[echo this is extra $fubar, and so on.],
[fubar=$fubar])

Here is a better one:

AC_CONFIG_COMMANDS([time-stamp], [date >time-stamp])

[Macro]AC CONFIG COMMANDS PRE (cmds)
Execute the cmds right before creating ‘config.status’.

[Macro]AC CONFIG COMMANDS POST (cmds)
Execute the cmds right after creating ‘config.status’.

4.10 Creating Configuration Links

You may find it convenient to create links whose destinations depend upon results of tests.
One can use AC_CONFIG_COMMANDS but the creation of relative symbolic links can be delicate
when the package is built in a directory different from the source directory.

[Macro]AC CONFIG LINKS (dest:source . . . , [cmds], [init-cmds])
Make AC_OUTPUT link each of the existing files source to the corresponding link name
dest. Makes a symbolic link if possible, otherwise a hard link if possible, otherwise a
copy. The dest and source names should be relative to the top level source or build

Chapter 4: Initialization and Output Files 31

directory. This macro is one of the instantiating macros; see Section 4.5 [Configuration
Actions], page 18.
For example, this call:

AC_CONFIG_LINKS(host.h:config/$machine.h
object.h:config/$obj_format.h)

creates in the current directory ‘host.h’ as a link to ‘srcdir/config/$machine.h’,
and ‘object.h’ as a link to ‘srcdir/config/$obj_format.h’.
The tempting value ‘.’ for dest is invalid: it makes it impossible for ‘config.status’
to guess the links to establish.
One can then run:

./config.status host.h object.h

to create the links.

4.11 Configuring Other Packages in Subdirectories

In most situations, calling AC_OUTPUT is sufficient to produce ‘Makefile’s in subdirectories.
However, configure scripts that control more than one independent package can use AC_
CONFIG_SUBDIRS to run configure scripts for other packages in subdirectories.

[Macro]AC CONFIG SUBDIRS (dir . . .)
Make AC_OUTPUT run configure in each subdirectory dir in the given whitespace-
separated list. Each dir should be a literal, i.e., please do not use:

if test "$package_foo_enabled" = yes; then
$my_subdirs="$my_subdirs foo"

fi
AC_CONFIG_SUBDIRS($my_subdirs)

because this prevents ‘./configure --help=recursive’ from displaying the options
of the package foo. Rather, you should write:

if test "$package_foo_enabled" = yes; then
AC_CONFIG_SUBDIRS(foo)

fi

If a given dir is not found, an error is reported: if the subdirectory is optional, write:
if test -d $srcdir/foo; then
AC_CONFIG_SUBDIRS(foo)

fi

If a given dir contains configure.gnu, it is run instead of configure. This is for
packages that might use a non-Autoconf script Configure, which can’t be called
through a wrapper configure since it would be the same file on case-insensitive
filesystems. Likewise, if a dir contains ‘configure.in’ but no configure, the Cygnus
configure script found by AC_CONFIG_AUX_DIR is used.
The subdirectory configure scripts are given the same command line options that
were given to this configure script, with minor changes if needed, which include:
− adjusting a relative path for the cache file;
− adjusting a relative path for the source directory;

32 Autoconf

− propagating the current value of $prefix, including if it was defaulted, and if
the default values of the top level and of the subdirectory ‘configure’ differ.

This macro also sets the output variable subdirs to the list of directories ‘dir ...’.
‘Makefile’ rules can use this variable to determine which subdirectories to recurse
into.
This macro may be called multiple times.

4.12 Default Prefix

By default, configure sets the prefix for files it installs to ‘/usr/local’. The user of
configure can select a different prefix using the ‘--prefix’ and ‘--exec-prefix’ options.
There are two ways to change the default: when creating configure, and when running it.

Some software packages might want to install in a directory other than ‘/usr/local’ by
default. To accomplish that, use the AC_PREFIX_DEFAULT macro.

[Macro]AC PREFIX DEFAULT (prefix)
Set the default installation prefix to prefix instead of ‘/usr/local’.

It may be convenient for users to have configure guess the installation prefix from the
location of a related program that they have already installed. If you wish to do that, you
can call AC_PREFIX_PROGRAM.

[Macro]AC PREFIX PROGRAM (program)
If the user did not specify an installation prefix (using the ‘--prefix’ option), guess
a value for it by looking for program in PATH, the way the shell does. If program is
found, set the prefix to the parent of the directory containing program, else default
the prefix as described above (‘/usr/local’ or AC_PREFIX_DEFAULT). For example,
if program is gcc and the PATH contains ‘/usr/local/gnu/bin/gcc’, set the prefix
to ‘/usr/local/gnu’.

Chapter 5: Existing Tests 33

5 Existing Tests

These macros test for particular system features that packages might need or want to use. If
you need to test for a kind of feature that none of these macros check for, you can probably
do it by calling primitive test macros with appropriate arguments (see Chapter 6 [Writing
Tests], page 79).

These tests print messages telling the user which feature they’re checking for, and what
they find. They cache their results for future configure runs (see Section 7.3 [Caching
Results], page 91).

Some of these macros set output variables. See Section 4.7 [Makefile Substitutions],
page 20, for how to get their values. The phrase “define name” is used below as a shorthand
to mean “define C preprocessor symbol name to the value 1”. See Section 7.1 [Defining
Symbols], page 89, for how to get those symbol definitions into your program.

5.1 Common Behavior

Much effort has been expended to make Autoconf easy to learn. The most obvious way to
reach this goal is simply to enforce standard interfaces and behaviors, avoiding exceptions
as much as possible. Because of history and inertia, unfortunately, there are still too many
exceptions in Autoconf; nevertheless, this section describes some of the common rules.

5.1.1 Standard Symbols

All the generic macros that AC_DEFINE a symbol as a result of their test transform their
arguments to a standard alphabet. First, argument is converted to upper case and any
asterisks (‘*’) are each converted to ‘P’. Any remaining characters that are not alphanumeric
are converted to underscores.

For instance,
AC_CHECK_TYPES(struct $Expensive*)

will define the symbol ‘HAVE_STRUCT__EXPENSIVEP’ if the check succeeds.

5.1.2 Default Includes

Several tests depend upon a set of header files. Since these headers are not universally
available, tests actually have to provide a set of protected includes, such as:

#if TIME_WITH_SYS_TIME
include <sys/time.h>
include <time.h>
#else
if HAVE_SYS_TIME_H
include <sys/time.h>
else
include <time.h>
endif
#endif

Unless you know exactly what you are doing, you should avoid using unconditional includes,
and check the existence of the headers you include beforehand (see Section 5.6 [Header Files],
page 48).

34 Autoconf

Most generic macros use the following macro to provide the default set of includes:

[Macro]AC DEFAULT INCLUDES ([include-directives])
Expand to include-directives if defined, otherwise to:

#include <stdio.h>
#if HAVE_SYS_TYPES_H
include <sys/types.h>
#endif
#if HAVE_SYS_STAT_H
include <sys/stat.h>
#endif
#if STDC_HEADERS
include <stdlib.h>
include <stddef.h>
#else
if HAVE_STDLIB_H
include <stdlib.h>
endif
#endif
#if HAVE_STRING_H
if !STDC_HEADERS && HAVE_MEMORY_H
include <memory.h>
endif
include <string.h>
#endif
#if HAVE_STRINGS_H
include <strings.h>
#endif
#if HAVE_INTTYPES_H
include <inttypes.h>
#else
if HAVE_STDINT_H
include <stdint.h>
endif
#endif
#if HAVE_UNISTD_H
include <unistd.h>
#endif

If the default includes are used, then check for the presence of these headers and their
compatibility, i.e., you don’t need to run AC_HEADERS_STDC, nor check for ‘stdlib.h’
etc.

These headers are checked for in the same order as they are included. For instance,
on some systems ‘string.h’ and ‘strings.h’ both exist, but conflict. Then HAVE_
STRING_H will be defined, but HAVE_STRINGS_H won’t.

Chapter 5: Existing Tests 35

5.2 Alternative Programs

These macros check for the presence or behavior of particular programs. They are used to
choose between several alternative programs and to decide what to do once one has been
chosen. If there is no macro specifically defined to check for a program you need, and you
don’t need to check for any special properties of it, then you can use one of the general
program-check macros.

5.2.1 Particular Program Checks

These macros check for particular programs—whether they exist, and in some cases whether
they support certain features.

[Macro]AC PROG AWK
Check for gawk, mawk, nawk, and awk, in that order, and set output variable AWK to
the first one that is found. It tries gawk first because that is reported to be the best
implementation.

[Macro]AC PROG EGREP
Check for grep -E and egrep, in that order, and set output variable EGREP to the
first one that is found.

[Macro]AC PROG FGREP
Check for grep -F and fgrep, in that order, and set output variable FGREP to the
first one that is found.

[Macro]AC PROG INSTALL
Set output variable INSTALL to the path of a bsd-compatible install program, if
one is found in the current PATH. Otherwise, set INSTALL to ‘dir/install-sh -c’,
checking the directories specified to AC_CONFIG_AUX_DIR (or its default directories)
to determine dir (see Section 4.4 [Output], page 17). Also set the variables INSTALL_
PROGRAM and INSTALL_SCRIPT to ‘${INSTALL}’ and INSTALL_DATA to ‘${INSTALL}
-m 644’.
This macro screens out various instances of install known not to work. It prefers
to find a C program rather than a shell script, for speed. Instead of ‘install-sh’,
it can also use ‘install.sh’, but that name is obsolete because some make programs
have a rule that creates ‘install’ from it if there is no ‘Makefile’.
Autoconf comes with a copy of ‘install-sh’ that you can use. If you use AC_PROG_
INSTALL, you must include either ‘install-sh’ or ‘install.sh’ in your distribution,
or configure will produce an error message saying it can’t find them—even if the
system you’re on has a good install program. This check is a safety measure to
prevent you from accidentally leaving that file out, which would prevent your package
from installing on systems that don’t have a bsd-compatible install program.
If you need to use your own installation program because it has features not found
in standard install programs, there is no reason to use AC_PROG_INSTALL; just put
the file name of your program into your ‘Makefile.in’ files.

[Macro]AC PROG LEX
If flex is found, set output variable LEX to ‘flex’ and LEXLIB to ‘-lfl’, if that library
is in a standard place. Otherwise set LEX to ‘lex’ and LEXLIB to ‘-ll’.

36 Autoconf

Define YYTEXT_POINTER if yytext is a ‘char *’ instead of a ‘char []’. Also set output
variable LEX_OUTPUT_ROOT to the base of the file name that the lexer generates; usually
‘lex.yy’, but sometimes something else. These results vary according to whether lex
or flex is being used.

You are encouraged to use Flex in your sources, since it is both more pleasant to use
than plain Lex and the C source it produces is portable. In order to ensure portability,
however, you must either provide a function yywrap or, if you don’t use it (e.g., your
scanner has no ‘#include’-like feature), simply include a ‘%noyywrap’ statement in
the scanner’s source. Once this done, the scanner is portable (unless you felt free to
use nonportable constructs) and does not depend on any library. In this case, and in
this case only, it is suggested that you use this Autoconf snippet:

AC_PROG_LEX
if test "$LEX" != flex; then
LEX="$SHELL $missing_dir/missing flex"
AC_SUBST(LEX_OUTPUT_ROOT, lex.yy)
AC_SUBST(LEXLIB, ’’)

fi

The shell script missing can be found in the Automake distribution.

To ensure backward compatibility, Automake’s AM_PROG_LEX invokes (indirectly) this
macro twice, which will cause an annoying but benign “AC_PROG_LEX invoked multiple
times” warning. Future versions of Automake will fix this issue; meanwhile, just ignore
this message.

[Macro]AC PROG LN S
If ‘ln -s’ works on the current file system (the operating system and file system
support symbolic links), set the output variable LN_S to ‘ln -s’; otherwise, if ‘ln’
works, set LN_S to ‘ln’, and otherwise set it to ‘cp -p’.

If you make a link in a directory other than the current directory, its meaning depends
on whether ‘ln’ or ‘ln -s’ is used. To safely create links using ‘$(LN_S)’, either find
out which form is used and adjust the arguments, or always invoke ln in the directory
where the link is to be created.

In other words, it does not work to do:

$(LN_S) foo /x/bar

Instead, do:

(cd /x && $(LN_S) foo bar)

[Macro]AC PROG RANLIB
Set output variable RANLIB to ‘ranlib’ if ranlib is found, and otherwise to ‘:’ (do
nothing).

[Macro]AC PROG YACC
If bison is found, set output variable YACC to ‘bison -y’. Otherwise, if byacc is
found, set YACC to ‘byacc’. Otherwise set YACC to ‘yacc’.

Chapter 5: Existing Tests 37

5.2.2 Generic Program and File Checks

These macros are used to find programs not covered by the “particular” test macros. If you
need to check the behavior of a program as well as find out whether it is present, you have
to write your own test for it (see Chapter 6 [Writing Tests], page 79). By default, these
macros use the environment variable PATH. If you need to check for a program that might
not be in the user’s PATH, you can pass a modified path to use instead, like this:

AC_PATH_PROG([INETD], [inetd], [/usr/libexec/inetd],
[$PATH:/usr/libexec:/usr/sbin:/usr/etc:etc])

You are strongly encouraged to declare the variable passed to AC_CHECK_PROG etc. as
precious, See Section 7.2 [Setting Output Variables], page 90, AC_ARG_VAR, for more details.

[Macro]AC CHECK PROG (variable, prog-to-check-for, value-if-found,
[value-if-not-found], [path], [reject])

Check whether program prog-to-check-for exists in PATH. If it is found, set variable
to value-if-found, otherwise to value-if-not-found, if given. Always pass over reject
(an absolute file name) even if it is the first found in the search path; in that case, set
variable using the absolute file name of the prog-to-check-for found that is not reject.
If variable was already set, do nothing. Calls AC_SUBST for variable.

[Macro]AC CHECK PROGS (variable, progs-to-check-for, [value-if-not-found],
[path])

Check for each program in the whitespace-separated list progs-to-check-for existing
in the PATH. If one is found, set variable to the name of that program. Otherwise,
continue checking the next program in the list. If none of the programs in the list
are found, set variable to value-if-not-found; if value-if-not-found is not specified, the
value of variable is not changed. Calls AC_SUBST for variable.

[Macro]AC CHECK TOOL (variable, prog-to-check-for, [value-if-not-found], [path])
Like AC_CHECK_PROG, but first looks for prog-to-check-for with a prefix of the host type
as determined by AC_CANONICAL_HOST, followed by a dash (see Section 11.2 [Canon-
icalizing], page 158). For example, if the user runs ‘configure --host=i386-gnu’,
then this call:

AC_CHECK_TOOL(RANLIB, ranlib, :)

sets RANLIB to ‘i386-gnu-ranlib’ if that program exists in PATH, or otherwise to
‘ranlib’ if that program exists in PATH, or to ‘:’ if neither program exists.

[Macro]AC CHECK TOOLS (variable, progs-to-check-for, [value-if-not-found],
[path])

Like AC_CHECK_TOOL, each of the tools in the list progs-to-check-for are checked with
a prefix of the host type as determined by AC_CANONICAL_HOST, followed by a dash
(see Section 11.2 [Canonicalizing], page 158). If none of the tools can be found with
a prefix, then the first one without a prefix is used. If a tool is found, set variable to
the name of that program. If none of the tools in the list are found, set variable to
value-if-not-found; if value-if-not-found is not specified, the value of variable is not
changed. Calls AC_SUBST for variable.

[Macro]AC PATH PROG (variable, prog-to-check-for, [value-if-not-found], [path])
Like AC_CHECK_PROG, but set variable to the entire path of prog-to-check-for if found.

38 Autoconf

[Macro]AC PATH PROGS (variable, progs-to-check-for, [value-if-not-found], [path])
Like AC_CHECK_PROGS, but if any of progs-to-check-for are found, set variable to the
entire path of the program found.

[Macro]AC PATH TOOL (variable, prog-to-check-for, [value-if-not-found], [path])
Like AC_CHECK_TOOL, but set variable to the entire path of the program if it is found.

5.3 Files

You might also need to check for the existence of files. Before using these macros, ask
yourself whether a run-time test might not be a better solution. Be aware that, like most
Autoconf macros, they test a feature of the host machine, and therefore, they die when
cross-compiling.

[Macro]AC CHECK FILE (file, [action-if-found], [action-if-not-found])
Check whether file file exists on the native system. If it is found, execute action-if-
found, otherwise do action-if-not-found, if given.

[Macro]AC CHECK FILES (files, [action-if-found], [action-if-not-found])
Executes AC_CHECK_FILE once for each file listed in files. Additionally, defines
‘HAVE_file ’ (see Section 5.1.1 [Standard Symbols], page 33) for each file found.

5.4 Library Files

The following macros check for the presence of certain C, C++, or Fortran library archive
files.

[Macro]AC CHECK LIB (library, function, [action-if-found], [action-if-not-found],
[other-libraries])

Depending on the current language(see Section 6.1 [Language Choice], page 79), try to
ensure that the C, C++, or Fortran function function is available by checking whether
a test program can be linked with the library library to get the function. library is the
base name of the library; e.g., to check for ‘-lmp’, use ‘mp’ as the library argument.

action-if-found is a list of shell commands to run if the link with the library succeeds;
action-if-not-found is a list of shell commands to run if the link fails. If action-if-
found is not specified, the default action will prepend ‘-llibrary ’ to LIBS and define
‘HAVE_LIBlibrary ’ (in all capitals). This macro is intended to support building
LIBS in a right-to-left (least-dependent to most-dependent) fashion such that library
dependencies are satisfied as a natural side-effect of consecutive tests. Some linkers are
very sensitive to library ordering so the order in which LIBS is generated is important
to reliable detection of libraries.

If linking with library results in unresolved symbols that would be resolved by linking
with additional libraries, give those libraries as the other-libraries argument, separated
by spaces: e.g., ‘-lXt -lX11’. Otherwise, this macro will fail to detect that library
is present, because linking the test program will always fail with unresolved symbols.
The other-libraries argument should be limited to cases where it is desirable to test
for one library in the presence of another that is not already in LIBS.

Chapter 5: Existing Tests 39

[Macro]AC SEARCH LIBS (function, search-libs, [action-if-found],
[action-if-not-found], [other-libraries])

Search for a library defining function if it’s not already available. This equates to call-
ing ‘AC_LINK_IFELSE([AC_LANG_CALL([], [function])])’ first with no libraries,
then for each library listed in search-libs.
Add ‘-llibrary ’ to LIBS for the first library found to contain function, and run
action-if-found. If the function is not found, run action-if-not-found.
If linking with library results in unresolved symbols that would be resolved by linking
with additional libraries, give those libraries as the other-libraries argument, separated
by spaces: e.g., ‘-lXt -lX11’. Otherwise, this macro will fail to detect that function
is present, because linking the test program will always fail with unresolved symbols.

5.5 Library Functions

The following macros check for particular C library functions. If there is no macro specifi-
cally defined to check for a function you need, and you don’t need to check for any special
properties of it, then you can use one of the general function-check macros.

5.5.1 Portability of C Functions

Most usual functions can either be missing, or be buggy, or be limited on some architectures.
This section tries to make an inventory of these portability issues. By definition, this list
will always require additions. Please help us keeping it as complete as possible.

exit Did you know that, on some older hosts, exit returns int? This is because
exit predates void, and there was a long tradition of it returning int.

putenv POSIX specifies that putenv puts the given string directly in environ, but
some systems make a copy of it instead (eg. glibc 2.0, or BSD). And when a
copy is made, unsetenv might not free it, causing a memory leak (eg. FreeBSD
4).
POSIX specifies that putenv("FOO") removes ‘FOO’ from the environment, but
on some systems (eg. FreeBSD 4) this is not the case and instead unsetenv
must be used.
On MINGW, a call putenv("FOO=") removes ‘FOO’ from the environment,
rather than inserting it with an empty value.

signal handler
Normally signal takes a handler function with a return type of void, but some
old systems required int instead. Any actual int value returned is not used,
this is only a difference in the function prototype demanded.
All systems we know of in current use take void. Presumably int was to
support K&R C, where of course void is not available. AC_TYPE_SIGNAL (see
Section 5.9.1 [Particular Types], page 56) can be used to establish the correct
type in all cases.

snprintf The ISO C99 standard says that if the output array isn’t big enough and if no
other errors occur, snprintf and vsnprintf truncate the output and return the
number of bytes that ought to have been produced. Some older systems return

40 Autoconf

the truncated length (e.g., gnu C Library 2.0.x or irix 6.5), some a negative
value (e.g., earlier gnu C Library versions), and some the buffer length without
truncation (e.g., 32-bit Solaris 7). Also, some buggy older systems ignore the
length and overrun the buffer (e.g., 64-bit Solaris 7).

sprintf The ISO C standard says sprintf and vsprintf return the number of bytes
written, but on some old systems (SunOS 4 for instance) they return the buffer
pointer instead.

sscanf On various old systems, e.g., HP-UX 9, sscanf requires that its input string
be writable (though it doesn’t actually change it). This can be a problem
when using gcc since it normally puts constant strings in read-only memory
(see section “Incompatibilities” in Using and Porting the gnu Compiler Collec-
tion). Apparently in some cases even having format strings read-only can be a
problem.

strnlen aix 4.3 provides a broken version which produces the following results:
strnlen ("foobar", 0) = 0
strnlen ("foobar", 1) = 3
strnlen ("foobar", 2) = 2
strnlen ("foobar", 3) = 1
strnlen ("foobar", 4) = 0
strnlen ("foobar", 5) = 6
strnlen ("foobar", 6) = 6
strnlen ("foobar", 7) = 6
strnlen ("foobar", 8) = 6
strnlen ("foobar", 9) = 6

sysconf _SC_PAGESIZE is standard, but some older systems (eg. HP-UX 9) have _SC_
PAGE_SIZE instead. This can be tested with #ifdef.

unlink The posix spec says that unlink causes the given file to be removed only after
there are no more open file handles for it. Not all OS’s support this behavior
though. So even on systems that provide unlink, you cannot portably assume
it is OK to call it on files that are open. For example, on Windows 9x and ME,
such a call would fail; on DOS it could even lead to file system corruption, as
the file might end up being written to after the OS has removed it.

unsetenv On MINGW, unsetenv is not available, but a variable ‘FOO’ can be removed
with a call putenv("FOO="), as described under putenv above.

va_copy The ISO C99 standard provides va_copy for copying va_list variables. It may
be available in older environments too, though possibly as __va_copy (e.g., gcc
in strict C89 mode). These can be tested with #ifdef. A fallback to memcpy
(&dst, &src, sizeof(va_list)) will give maximum portability.

va_list va_list is not necessarily just a pointer. It can be a struct (e.g., gcc on
Alpha), which means NULL is not portable. Or it can be an array (e.g., gcc in
some PowerPC configurations), which means as a function parameter it can be
effectively call-by-reference and library routines might modify the value back
in the caller (e.g., vsnprintf in the gnu C Library 2.1).

Chapter 5: Existing Tests 41

Signed >> Normally the C >> right shift of a signed type replicates the high bit, giving
a so-called “arithmetic” shift. But care should be taken since the ISO C stan-
dard doesn’t require that behavior. On those few processors without a native
arithmetic shift (for instance Cray vector systems) zero bits may be shifted in,
the same as a shift of an unsigned type.

5.5.2 Particular Function Checks

These macros check for particular C functions—whether they exist, and in some cases how
they respond when given certain arguments.

[Macro]AC FUNC ALLOCA
Check how to get alloca. Tries to get a builtin version by checking for ‘alloca.h’
or the predefined C preprocessor macros __GNUC__ and _AIX. If this macro finds
‘alloca.h’, it defines HAVE_ALLOCA_H.

If those attempts fail, it looks for the function in the standard C library. If any
of those methods succeed, it defines HAVE_ALLOCA. Otherwise, it sets the output
variable ALLOCA to ‘alloca.o’ and defines C_ALLOCA (so programs can periodically call
‘alloca(0)’ to garbage collect). This variable is separate from LIBOBJS so multiple
programs can share the value of ALLOCA without needing to create an actual library,
in case only some of them use the code in LIBOBJS.

This macro does not try to get alloca from the System V R3 ‘libPW’ or the System
V R4 ‘libucb’ because those libraries contain some incompatible functions that cause
trouble. Some versions do not even contain alloca or contain a buggy version. If
you still want to use their alloca, use ar to extract ‘alloca.o’ from them instead of
compiling ‘alloca.c’.

Source files that use alloca should start with a piece of code like the following, to
declare it properly. In some versions of aix, the declaration of alloca must precede
everything else except for comments and preprocessor directives. The #pragma di-
rective is indented so that pre-ansi C compilers will ignore it, rather than choke on
it.

/* AIX requires this to be the first thing in the file. */
#ifndef __GNUC__
if HAVE_ALLOCA_H
include <alloca.h>
else
ifdef _AIX
#pragma alloca
else
ifndef alloca /* predefined by HP cc +Olibcalls */
char *alloca ();
endif
endif
endif
#endif

42 Autoconf

[Macro]AC FUNC CHOWN
If the chown function is available and works (in particular, it should accept ‘-1’ for
uid and gid), define HAVE_CHOWN.

[Macro]AC FUNC CLOSEDIR VOID
If the closedir function does not return a meaningful value, define CLOSEDIR_VOID.
Otherwise, callers ought to check its return value for an error indicator.

[Macro]AC FUNC ERROR AT LINE
If the error_at_line function is not found, require an AC_LIBOBJ replacement of
‘error’.

[Macro]AC FUNC FNMATCH
If the fnmatch function conforms to posix, define HAVE_FNMATCH. Detect common
implementation bugs, for example, the bugs in Solaris 2.4.

Note that for historical reasons, contrary to the other specific AC_FUNC macros, AC_
FUNC_FNMATCH does not replace a broken/missing fnmatch. See AC_REPLACE_FNMATCH
below.

[Macro]AC FUNC FNMATCH GNU
Behave like AC_REPLACE_FNMATCH (replace) but also test whether fnmatch supports
gnu extensions. Detect common implementation bugs, for example, the bugs in the
gnu C Library 2.1.

[Macro]AC FUNC FORK
This macro checks for the fork and vfork functions. If a working fork is found,
define HAVE_WORKING_FORK. This macro checks whether fork is just a stub by trying
to run it.

If ‘vfork.h’ is found, define HAVE_VFORK_H. If a working vfork is found, define HAVE_
WORKING_VFORK. Otherwise, define vfork to be fork for backward compatibility
with previous versions of autoconf. This macro checks for several known errors in
implementations of vfork and considers the system to not have a working vfork if
it detects any of them. It is not considered to be an implementation error if a child’s
invocation of signal modifies the parent’s signal handler, since child processes rarely
change their signal handlers.

Since this macro defines vfork only for backward compatibility with previous versions
of autoconf you’re encouraged to define it yourself in new code:

#if !HAVE_WORKING_VFORK
define vfork fork
#endif

[Macro]AC FUNC FSEEKO
If the fseeko function is available, define HAVE_FSEEKO. Define _LARGEFILE_SOURCE if
necessary to make the prototype visible on some systems (e.g. glibc 2.2). Otherwise
linkage problems may occur when compiling with AC_SYS_LARGEFILE on largefile-
sensitive systems where off_t does not default to a 64bit entity.

Chapter 5: Existing Tests 43

[Macro]AC FUNC GETGROUPS
If the getgroups function is available and works (unlike on Ultrix 4.3, where
‘getgroups (0, 0)’ always fails), define HAVE_GETGROUPS. Set GETGROUPS_LIBS to
any libraries needed to get that function. This macro runs AC_TYPE_GETGROUPS.

[Macro]AC FUNC GETLOADAVG
Check how to get the system load averages. To perform its tests properly, this macro
needs the file ‘getloadavg.c’; therefore, be sure to set the AC_LIBOBJ replacement di-
rectory properly (see Section 5.5.3 [Generic Functions], page 46, AC_CONFIG_LIBOBJ_
DIR).
If the system has the getloadavg function, define HAVE_GETLOADAVG, and
set GETLOADAVG_LIBS to any libraries needed to get that function. Also add
GETLOADAVG_LIBS to LIBS. Otherwise, require an AC_LIBOBJ replacement for
‘getloadavg’ with source code in ‘dir/getloadavg.c’, and possibly define several
other C preprocessor macros and output variables:
1. Define C_GETLOADAVG.
2. Define SVR4, DGUX, UMAX, or UMAX4_3 if on those systems.
3. If ‘nlist.h’ is found, define HAVE_NLIST_H.
4. If ‘struct nlist’ has an ‘n_un.n_name’ member, define HAVE_STRUCT_NLIST_N_

UN_N_NAME. The obsolete symbol NLIST_NAME_UNION is still defined, but do not
depend upon it.

5. Programs may need to be installed setgid (or setuid) for getloadavg to work. In
this case, define GETLOADAVG_PRIVILEGED, set the output variable NEED_SETGID
to ‘true’ (and otherwise to ‘false’), and set KMEM_GROUP to the name of the
group that should own the installed program.

[Macro]AC FUNC GETMNTENT
Check for getmntent in the ‘sun’, ‘seq’, and ‘gen’ libraries, for irix 4, PTX, and
Unixware, respectively. Then, if getmntent is available, define HAVE_GETMNTENT.

[Macro]AC FUNC GETPGRP
Define GETPGRP_VOID if it is an error to pass 0 to getpgrp; this is the posix behavior.
On older BSD systems, you must pass 0 to getpgrp, as it takes an argument and
behaves like posix’s getpgid.

#if GETPGRP_VOID
pid = getpgrp ();

#else
pid = getpgrp (0);

#endif

This macro does not check whether getpgrp exists at all; if you need to work in that
situation, first call AC_CHECK_FUNC for getpgrp.

[Macro]AC FUNC LSTAT FOLLOWS SLASHED SYMLINK
If ‘link’ is a symbolic link, then lstat should treat ‘link/’ the same as ‘link/.’.
However, many older lstat implementations incorrectly ignore trailing slashes.
It is safe to assume that if lstat incorrectly ignores trailing slashes, then other
symbolic-link-aware functions like unlink also incorrectly ignore trailing slashes.

44 Autoconf

If lstat behaves properly, define LSTAT_FOLLOWS_SLASHED_SYMLINK, otherwise re-
quire an AC_LIBOBJ replacement of lstat.

[Macro]AC FUNC MALLOC
If the malloc function is compatible with the gnu C library malloc (i.e., ‘malloc (0)’
returns a valid pointer), define HAVE_MALLOC to 1. Otherwise define HAVE_MALLOC to
0, ask for an AC_LIBOBJ replacement for ‘malloc’, and define malloc to rpl_malloc
so that the native malloc is not used in the main project.

Typically, the replacement file ‘malloc.c’ should look like (note the ‘#undef malloc’):

#if HAVE_CONFIG_H
include <config.h>
#endif
#undef malloc

#include <sys/types.h>

void *malloc ();

/* Allocate an N-byte block of memory from the heap.
If N is zero, allocate a 1-byte block. */

void *
rpl_malloc (size_t n)
{
if (n == 0)
n = 1;

return malloc (n);
}

[Macro]AC FUNC MEMCMP
If the memcmp function is not available, or does not work on 8-bit data (like the one on
SunOS 4.1.3), or fails when comparing 16 bytes or more and with at least one buffer
not starting on a 4-byte boundary (such as the one on NeXT x86 OpenStep), require
an AC_LIBOBJ replacement for ‘memcmp’.

[Macro]AC FUNC MBRTOWC
Define HAVE_MBRTOWC to 1 if the function mbrtowc and the type mbstate_t are prop-
erly declared.

[Macro]AC FUNC MKTIME
If the mktime function is not available, or does not work correctly, require an AC_
LIBOBJ replacement for ‘mktime’. For the purposes of this test, mktime should con-
form to the posix standard and should be the inverse of localtime.

[Macro]AC FUNC MMAP
If the mmap function exists and works correctly, define HAVE_MMAP. Only checks private
fixed mapping of already-mapped memory.

Chapter 5: Existing Tests 45

[Macro]AC FUNC OBSTACK
If the obstacks are found, define HAVE_OBSTACK, else require an AC_LIBOBJ replace-
ment for ‘obstack’.

[Macro]AC FUNC REALLOC
If the realloc function is compatible with the gnu C library realloc (i.e., ‘realloc
(0, 0)’ returns a valid pointer), define HAVE_REALLOC to 1. Otherwise define HAVE_
REALLOC to 0, ask for an AC_LIBOBJ replacement for ‘realloc’, and define realloc
to rpl_realloc so that the native realloc is not used in the main project. See
AC_FUNC_MALLOC for details.

[Macro]AC FUNC SELECT ARGTYPES
Determines the correct type to be passed for each of the select function’s arguments,
and defines those types in SELECT_TYPE_ARG1, SELECT_TYPE_ARG234, and SELECT_
TYPE_ARG5 respectively. SELECT_TYPE_ARG1 defaults to ‘int’, SELECT_TYPE_ARG234
defaults to ‘int *’, and SELECT_TYPE_ARG5 defaults to ‘struct timeval *’.

[Macro]AC FUNC SETPGRP
If setpgrp takes no argument (the posix version), define SETPGRP_VOID. Otherwise,
it is the bsd version, which takes two process IDs as arguments. This macro does not
check whether setpgrp exists at all; if you need to work in that situation, first call
AC_CHECK_FUNC for setpgrp.

[Macro]AC FUNC STAT
[Macro]AC FUNC LSTAT

Determine whether stat or lstat have the bug that it succeeds when given the zero-
length file name as argument. The stat and lstat from SunOS 4.1.4 and the Hurd
(as of 1998-11-01) do this.
If it does, then define HAVE_STAT_EMPTY_STRING_BUG (or HAVE_LSTAT_EMPTY_
STRING_BUG) and ask for an AC_LIBOBJ replacement of it.

[Macro]AC FUNC SETVBUF REVERSED
If setvbuf takes the buffering type as its second argument and the buffer pointer as
the third, instead of the other way around, define SETVBUF_REVERSED.

[Macro]AC FUNC STRCOLL
If the strcoll function exists and works correctly, define HAVE_STRCOLL. This does
a bit more than ‘AC_CHECK_FUNCS(strcoll)’, because some systems have incorrect
definitions of strcoll that should not be used.

[Macro]AC FUNC STRTOD
If the strtod function does not exist or doesn’t work correctly, ask for an AC_LIBOBJ
replacement of ‘strtod’. In this case, because ‘strtod.c’ is likely to need ‘pow’, set
the output variable POW_LIB to the extra library needed.

[Macro]AC FUNC STRERROR R
If strerror_r is available, define HAVE_STRERROR_R, and if it is declared, define
HAVE_DECL_STRERROR_R. If it returns a char * message, define STRERROR_R_CHAR_
P; otherwise it returns an int error number. The Thread-Safe Functions option of

46 Autoconf

posix requires strerror_r to return int, but many systems (including, for example,
version 2.2.4 of the gnu C Library) return a char * value that is not necessarily equal
to the buffer argument.

[Macro]AC FUNC STRFTIME
Check for strftime in the ‘intl’ library, for SCO unix. Then, if strftime is avail-
able, define HAVE_STRFTIME.

[Macro]AC FUNC STRNLEN
If the strnlen function is not available, or is buggy (like the one from aix 4.3),
require an AC_LIBOBJ replacement for it.

[Macro]AC FUNC UTIME NULL
If ‘utime(file, NULL)’ sets file’s timestamp to the present, define HAVE_UTIME_NULL.

[Macro]AC FUNC VPRINTF
If vprintf is found, define HAVE_VPRINTF. Otherwise, if _doprnt is found, define
HAVE_DOPRNT. (If vprintf is available, you may assume that vfprintf and vsprintf
are also available.)

[Macro]AC REPLACE FNMATCH
If the fnmatch function does not conform to posix (see AC_FUNC_FNMATCH), ask for
its AC_LIBOBJ replacement.
The files ‘fnmatch.c’, ‘fnmatch_loop.c’, and ‘fnmatch_.h’ in the AC_LIBOBJ replace-
ment directory are assumed to contain a copy of the source code of gnu fnmatch.
If necessary, this source code is compiled as an AC_LIBOBJ replacement, and the
‘fnmatch_.h’ file is linked to ‘fnmatch.h’ so that it can be included in place of the
system <fnmatch.h>.

5.5.3 Generic Function Checks

These macros are used to find functions not covered by the “particular” test macros. If the
functions might be in libraries other than the default C library, first call AC_CHECK_LIB for
those libraries. If you need to check the behavior of a function as well as find out whether
it is present, you have to write your own test for it (see Chapter 6 [Writing Tests], page 79).

[Macro]AC CHECK FUNC (function, [action-if-found], [action-if-not-found])
If C function function is available, run shell commands action-if-found, otherwise
action-if-not-found. If you just want to define a symbol if the function is available,
consider using AC_CHECK_FUNCS instead. This macro checks for functions with C link-
age even when AC_LANG(C++) has been called, since C is more standardized than C++.
(see Section 6.1 [Language Choice], page 79, for more information about selecting the
language for checks.)

[Macro]AC CHECK FUNCS (function. . . , [action-if-found], [action-if-not-found])
For each function in the whitespace-separated argument list, define HAVE_function
(in all capitals) if it is available. If action-if-found is given, it is additional shell code
to execute when one of the functions is found. You can give it a value of ‘break’ to
break out of the loop on the first match. If action-if-not-found is given, it is executed
when one of the functions is not found.

Chapter 5: Existing Tests 47

Autoconf follows a philosophy that was formed over the years by those who have strug-
gled for portability: isolate the portability issues in specific files, and then program as if
you were in a posix environment. Some functions may be missing or unfixable, and your
package must be ready to replace them.

[Macro]AC LIBOBJ (function)
Specify that ‘function.c’ must be included in the executables to replace a missing
or broken implementation of function.
Technically, it adds ‘function.$ac_objext’ to the output variable LIBOBJS if it is
not already in, and calls AC_LIBSOURCE for ‘function.c’. You should not directly
change LIBOBJS, since this is not traceable.

[Macro]AC LIBSOURCE (file)
Specify that file might be needed to compile the project. If you need to know what
files might be needed by a ‘configure.ac’, you should trace AC_LIBSOURCE. file must
be a literal.
This macro is called automatically from AC_LIBOBJ, but you must call it explicitly
if you pass a shell variable to AC_LIBOBJ. In that case, since shell variables cannot
be traced statically, you must pass to AC_LIBSOURCE any possible files that the shell
variable might cause AC_LIBOBJ to need. For example, if you want to pass a variable
$foo_or_bar to AC_LIBOBJ that holds either "foo" or "bar", you should do:

AC_LIBSOURCE(foo.c)
AC_LIBSOURCE(bar.c)
AC_LIBOBJ($foo_or_bar)

There is usually a way to avoid this, however, and you are encouraged to simply call
AC_LIBOBJ with literal arguments.
Note that this macro replaces the obsolete AC_LIBOBJ_DECL, with slightly different
semantics: the old macro took the function name, e.g., foo, as its argument rather
than the file name.

[Macro]AC LIBSOURCES (files)
Like AC_LIBSOURCE, but accepts one or more files in a comma-separated M4 list.
Thus, the above example might be rewritten:

AC_LIBSOURCES([foo.c, bar.c])
AC_LIBOBJ($foo_or_bar)

[Macro]AC CONFIG LIBOBJ DIR (directory)
Specify that AC_LIBOBJ replacement files are to be found in directory, a relative path
starting from the top level of the source tree. The replacement directory defaults
to ‘.’, the top level directory, and the most typical value is ‘lib’, corresponding to
‘AC_CONFIG_LIBOBJ_DIR(lib)’.
configure might need to know the replacement directory for the following reasons:
(i) some checks use the replacement files, (ii) some macros bypass broken system
headers by installing links to the replacement headers, etc.

It is common to merely check for the existence of a function, and ask for its AC_LIBOBJ
replacement if missing. The following macro is a convenient shorthand.

48 Autoconf

[Macro]AC REPLACE FUNCS (function. . .)
Like AC_CHECK_FUNCS, but uses ‘AC_LIBOBJ(function)’ as action-if-not-found.
You can declare your replacement function by enclosing the prototype in ‘#if
!HAVE_function ’. If the system has the function, it probably declares it in a header
file you should be including, so you shouldn’t redeclare it lest your declaration
conflict.

5.6 Header Files

The following macros check for the presence of certain C header files. If there is no macro
specifically defined to check for a header file you need, and you don’t need to check for any
special properties of it, then you can use one of the general header-file check macros.

5.6.1 Portability of Headers

This section tries to collect knowledge about common headers, and the problems they cause.
By definition, this list will always require additions. Please help us keeping it as complete
as possible.

‘inttypes.h’ vs. ‘stdint.h’
Paul Eggert notes that: ISO C 1999 says that ‘inttypes.h’ includes ‘stdint.h’,
so there’s no need to include ‘stdint.h’ separately in a standard environ-
ment. Many implementations have ‘inttypes.h’ but not ‘stdint.h’ (e.g.,
Solaris 7), but I don’t know of any implementation that has ‘stdint.h’ but
not ‘inttypes.h’. Nor do I know of any free software that includes ‘stdint.h’;
‘stdint.h’ seems to be a creation of the committee.

‘linux/irda.h’
It requires ‘linux/types.h’ and ‘sys/socket.h’.

‘linux/random.h’
It requires ‘linux/types.h’.

‘net/if.h’
On Darwin, this file requires that ‘sys/socket.h’ be included beforehand. One
should run:

AC_CHECK_HEADERS([sys/socket.h])
AC_CHECK_HEADERS([net/if.h], [], [],
[#include <stdio.h>
#if STDC_HEADERS
include <stdlib.h>
include <stddef.h>
#else
if HAVE_STDLIB_H
include <stdlib.h>
endif
#endif
#if HAVE_SYS_SOCKET_H
include <sys/socket.h>
#endif
])

Chapter 5: Existing Tests 49

‘netinet/if_ether.h’
On Darwin, this file requires that ‘stdio.h’ and ‘sys/socket.h’ be included
beforehand. One should run:

AC_CHECK_HEADERS([sys/socket.h])
AC_CHECK_HEADERS([netinet/if_ether.h], [], [],
[#include <stdio.h>
#if STDC_HEADERS
include <stdlib.h>
include <stddef.h>
#else
if HAVE_STDLIB_H
include <stdlib.h>
endif
#endif
#if HAVE_SYS_SOCKET_H
include <sys/socket.h>
#endif
])

‘stdint.h’
See above, item ‘inttypes.h’ vs. ‘stdint.h’.

‘stdlib.h’
On many systems (e.g., Darwin), ‘stdio.h’ is a prerequisite.

‘sys/mount.h’
On FreeBSD 4.8 on ia32 and using gcc version 2.95.4, ‘sys/params.h’ is a
prerequisite.

‘sys/socket.h’
On Darwin, ‘stdlib.h’ is a prerequisite.

‘sys/ucred.h’
On HP Tru64 5.1, ‘sys/types.h’ is a prerequisite.

‘X11/extensions/scrnsaver.h’
Using XFree86, this header requires ‘X11/Xlib.h’, which is probably so required
that you might not even consider looking for it.

AC_CHECK_HEADERS([X11/extensions/scrnsaver.h], [], [],
[[#include <X11/Xlib.h>
]])

5.6.2 Particular Header Checks

These macros check for particular system header files—whether they exist, and in some
cases whether they declare certain symbols.

[Macro]AC HEADER DIRENT
Check for the following header files. For the first one that is found and defines ‘DIR’,
define the listed C preprocessor macro:
‘dirent.h’ HAVE_DIRENT_H

50 Autoconf

‘sys/ndir.h’ HAVE_SYS_NDIR_H
‘sys/dir.h’ HAVE_SYS_DIR_H
‘ndir.h’ HAVE_NDIR_H

The directory-library declarations in your source code should look something like the
following:

#if HAVE_DIRENT_H
include <dirent.h>
define NAMLEN(dirent) strlen((dirent)->d_name)
#else
define dirent direct
define NAMLEN(dirent) (dirent)->d_namlen
if HAVE_SYS_NDIR_H
include <sys/ndir.h>
endif
if HAVE_SYS_DIR_H
include <sys/dir.h>
endif
if HAVE_NDIR_H
include <ndir.h>
endif
#endif

Using the above declarations, the program would declare variables to be of type
struct dirent, not struct direct, and would access the length of a directory entry
name by passing a pointer to a struct dirent to the NAMLEN macro.
This macro also checks for the SCO Xenix ‘dir’ and ‘x’ libraries.

[Macro]AC HEADER MAJOR
If ‘sys/types.h’ does not define major, minor, and makedev, but ‘sys/mkdev.h’
does, define MAJOR_IN_MKDEV; otherwise, if ‘sys/sysmacros.h’ does, define MAJOR_
IN_SYSMACROS.

[Macro]AC HEADER STAT
If the macros S_ISDIR, S_ISREG, etc. defined in ‘sys/stat.h’ do not work properly
(returning false positives), define STAT_MACROS_BROKEN. This is the case on Tektronix
UTekV, Amdahl UTS and Motorola System V/88.

[Macro]AC HEADER STDBOOL
If ‘stdbool.h’ exists and is conformant to C99, define HAVE_STDBOOL_H to 1; if the
type _Bool is defined, define HAVE__BOOL to 1. To fulfill the C99 requirements, your
‘system.h’ should contain the following code:
#if HAVE_STDBOOL_H
include <stdbool.h>
#else
if ! HAVE__BOOL
ifdef __cplusplus
typedef bool _Bool;
else

Chapter 5: Existing Tests 51

typedef unsigned char _Bool;
endif
endif
define bool _Bool
define false 0
define true 1
define __bool_true_false_are_defined 1
#endif

[Macro]AC HEADER STDC
Define STDC_HEADERS if the system has ansi C header files. Specifically, this macro
checks for ‘stdlib.h’, ‘stdarg.h’, ‘string.h’, and ‘float.h’; if the system has those,
it probably has the rest of the ansi C header files. This macro also checks whether
‘string.h’ declares memchr (and thus presumably the other mem functions), whether
‘stdlib.h’ declare free (and thus presumably malloc and other related functions),
and whether the ‘ctype.h’ macros work on characters with the high bit set, as ansi
C requires.

Use STDC_HEADERS instead of __STDC__ to determine whether the system has ansi-
compliant header files (and probably C library functions) because many systems that
have GCC do not have ansi C header files.

On systems without ansi C headers, there is so much variation that it is probably
easier to declare the functions you use than to figure out exactly what the system
header files declare. Some systems contain a mix of functions from ansi and bsd;
some are mostly ansi but lack ‘memmove’; some define the bsd functions as macros in
‘string.h’ or ‘strings.h’; some have only the bsd functions but ‘string.h’; some
declare the memory functions in ‘memory.h’, some in ‘string.h’; etc. It is probably
sufficient to check for one string function and one memory function; if the library has
the ansi versions of those then it probably has most of the others. If you put the
following in ‘configure.ac’:

AC_HEADER_STDC
AC_CHECK_FUNCS(strchr memcpy)

then, in your code, you can use declarations like this:

#if STDC_HEADERS
include <string.h>
#else
if !HAVE_STRCHR
define strchr index
define strrchr rindex
endif
char *strchr (), *strrchr ();
if !HAVE_MEMCPY
define memcpy(d, s, n) bcopy ((s), (d), (n))
define memmove(d, s, n) bcopy ((s), (d), (n))
endif
#endif

52 Autoconf

If you use a function like memchr, memset, strtok, or strspn, which have no bsd
equivalent, then macros won’t suffice; you must provide an implementation of each
function. An easy way to incorporate your implementations only when needed (since
the ones in system C libraries may be hand optimized) is to, taking memchr for
example, put it in ‘memchr.c’ and use ‘AC_REPLACE_FUNCS(memchr)’.

[Macro]AC HEADER SYS WAIT
If ‘sys/wait.h’ exists and is compatible with posix, define HAVE_SYS_WAIT_H. In-
compatibility can occur if ‘sys/wait.h’ does not exist, or if it uses the old bsd union
wait instead of int to store a status value. If ‘sys/wait.h’ is not posix compatible,
then instead of including it, define the posix macros with their usual interpretations.
Here is an example:

#include <sys/types.h>
#if HAVE_SYS_WAIT_H
include <sys/wait.h>
#endif
#ifndef WEXITSTATUS
define WEXITSTATUS(stat_val) ((unsigned)(stat_val) >> 8)
#endif
#ifndef WIFEXITED
define WIFEXITED(stat_val) (((stat_val) & 255) == 0)
#endif

_POSIX_VERSION is defined when ‘unistd.h’ is included on posix systems. If there is
no ‘unistd.h’, it is definitely not a posix system. However, some non-posix systems do
have ‘unistd.h’.

The way to check if the system supports posix is:

#if HAVE_UNISTD_H
include <sys/types.h>
include <unistd.h>
#endif

#ifdef _POSIX_VERSION
/* Code for POSIX systems. */
#endif

[Macro]AC HEADER TIME
If a program may include both ‘time.h’ and ‘sys/time.h’, define TIME_WITH_SYS_
TIME. On some older systems, ‘sys/time.h’ includes ‘time.h’, but ‘time.h’ is not
protected against multiple inclusion, so programs should not explicitly include both
files. This macro is useful in programs that use, for example, struct timeval as well
as struct tm. It is best used in conjunction with HAVE_SYS_TIME_H, which can be
checked for using AC_CHECK_HEADERS(sys/time.h).

Chapter 5: Existing Tests 53

#if TIME_WITH_SYS_TIME
include <sys/time.h>
include <time.h>
#else
if HAVE_SYS_TIME_H
include <sys/time.h>
else
include <time.h>
endif
#endif

[Macro]AC HEADER TIOCGWINSZ
If the use of TIOCGWINSZ requires ‘<sys/ioctl.h>’, then define GWINSZ_IN_SYS_
IOCTL. Otherwise TIOCGWINSZ can be found in ‘<termios.h>’.
Use:

#if HAVE_TERMIOS_H
include <termios.h>
#endif

#if GWINSZ_IN_SYS_IOCTL
include <sys/ioctl.h>
#endif

5.6.3 Generic Header Checks

These macros are used to find system header files not covered by the “particular” test
macros. If you need to check the contents of a header as well as find out whether it is
present, you have to write your own test for it (see Chapter 6 [Writing Tests], page 79).

[Macro]AC CHECK HEADER (header-file, [action-if-found], [action-if-not-found],
[includes = ‘default-includes’])

If the system header file header-file is compilable, execute shell commands action-if-
found, otherwise execute action-if-not-found. If you just want to define a symbol if
the header file is available, consider using AC_CHECK_HEADERS instead.
For compatibility issues with older versions of Autoconf, please read below.

[Macro]AC CHECK HEADERS (header-file . . . , [action-if-found],
[action-if-not-found], [includes = ‘default-includes’])

For each given system header file header-file in the whitespace-separated argument list
that exists, define HAVE_header-file (in all capitals). If action-if-found is given, it
is additional shell code to execute when one of the header files is found. You can give
it a value of ‘break’ to break out of the loop on the first match. If action-if-not-found
is given, it is executed when one of the header files is not found.
For compatibility issues with older versions of Autoconf, please read below.

Previous versions of Autoconf merely checked whether the header was accepted by the
preprocessor. This was changed because the old test was inappropriate for typical uses.
Headers are typically used to compile, not merely to preprocess, and the old behavior

54 Autoconf

sometimes accepted headers that clashed at compile-time. If you need to check whether a
header is preprocessable, you can use AC_PREPROC_IFELSE (see Section 6.3 [Running the
Preprocessor], page 84).

This scheme, which improves the robustness of the test, also requires that you make
sure that headers that must be included before the header-file be part of the includes, (see
Section 5.1.2 [Default Includes], page 33). If looking for ‘bar.h’, which requires that ‘foo.h’
be included before if it exists, we suggest the following scheme:
AC_CHECK_HEADERS([foo.h])
AC_CHECK_HEADERS([bar.h], [], [],
[#if HAVE_FOO_H
include <foo.h>
endif
])

5.7 Declarations

The following macros check for the declaration of variables and functions. If there is no
macro specifically defined to check for a symbol you need, then you can use the general
macros (see Section 5.7.2 [Generic Declarations], page 54) or, for more complex tests, you
may use AC_COMPILE_IFELSE (see Section 6.4 [Running the Compiler], page 85).

5.7.1 Particular Declaration Checks

There are no specific macros for declarations.

5.7.2 Generic Declaration Checks

These macros are used to find declarations not covered by the “particular” test macros.

[Macro]AC CHECK DECL (symbol, [action-if-found], [action-if-not-found],
[includes = ‘default-includes’])

If symbol (a function or a variable) is not declared in includes and a declaration
is needed, run the shell commands action-if-not-found, otherwise action-if-found. If
no includes are specified, the default includes are used (see Section 5.1.2 [Default
Includes], page 33).
This macro actually tests whether it is valid to use symbol as an r-value, not if it is
really declared, because it is much safer to avoid introducing extra declarations when
they are not needed.

[Macro]AC CHECK DECLS (symbols, [action-if-found], [action-if-not-found],
[includes = ‘default-includes’])

For each of the symbols (comma-separated list), define HAVE_DECL_symbol (in all
capitals) to ‘1’ if symbol is declared, otherwise to ‘0’. If action-if-not-found is given,
it is additional shell code to execute when one of the function declarations is needed,
otherwise action-if-found is executed.
This macro uses an m4 list as first argument:

AC_CHECK_DECLS(strdup)
AC_CHECK_DECLS([strlen])
AC_CHECK_DECLS([malloc, realloc, calloc, free])

Chapter 5: Existing Tests 55

Unlike the other ‘AC_CHECK_*S’ macros, when a symbol is not declared, HAVE_DECL_
symbol is defined to ‘0’ instead of leaving HAVE_DECL_symbol undeclared. When you
are sure that the check was performed, use HAVE_DECL_symbol just like any other
result of Autoconf:

#if !HAVE_DECL_SYMBOL
extern char *symbol;
#endif

If the test may have not been performed, however, because it is safer not to declare
a symbol than to use a declaration that conflicts with the system’s one, you should
use:

#if defined HAVE_DECL_MALLOC && !HAVE_DECL_MALLOC
void *malloc (size_t *s);
#endif

You fall into the second category only in extreme situations: either your files may be
used without being configured, or they are used during the configuration. In most
cases the traditional approach is enough.

5.8 Structures

The following macros check for the presence of certain members in C structures. If there is
no macro specifically defined to check for a member you need, then you can use the general
structure-member macros (see Section 5.8.2 [Generic Structures], page 56) or, for more
complex tests, you may use AC_COMPILE_IFELSE (see Section 6.4 [Running the Compiler],
page 85).

5.8.1 Particular Structure Checks

The following macros check for certain structures or structure members.

[Macro]AC STRUCT ST BLKSIZE
If struct stat contains an st_blksize member, define HAVE_STRUCT_STAT_ST_
BLKSIZE. The former name, HAVE_ST_BLKSIZE is to be avoided, as its support will
cease in the future. This macro is obsoleted, and should be replaced by

AC_CHECK_MEMBERS([struct stat.st_blksize])

[Macro]AC STRUCT ST BLOCKS
If struct stat contains an st_blocks member, define HAVE_STRUCT_STAT_ST_
BLOCKS. Otherwise, require an AC_LIBOBJ replacement of ‘fileblocks’. The former
name, HAVE_ST_BLOCKS is to be avoided, as its support will cease in the future.

[Macro]AC STRUCT ST RDEV
If struct stat contains an st_rdev member, define HAVE_STRUCT_STAT_ST_RDEV.
The former name for this macro, HAVE_ST_RDEV, is to be avoided as it will cease to
be supported in the future. Actually, even the new macro is obsolete and should be
replaced by:

AC_CHECK_MEMBERS([struct stat.st_rdev])

56 Autoconf

[Macro]AC STRUCT TM
If ‘time.h’ does not define struct tm, define TM_IN_SYS_TIME, which means that
including ‘sys/time.h’ had better define struct tm.

[Macro]AC STRUCT TIMEZONE
Figure out how to get the current timezone. If struct tm has a tm_zone member,
define HAVE_STRUCT_TM_TM_ZONE (and the obsoleted HAVE_TM_ZONE). Otherwise, if
the external array tzname is found, define HAVE_TZNAME.

5.8.2 Generic Structure Checks

These macros are used to find structure members not covered by the “particular” test
macros.

[Macro]AC CHECK MEMBER (aggregate.member, [action-if-found],
[action-if-not-found], [includes = ‘default-includes’])

Check whether member is a member of the aggregate aggregate. If no includes are
specified, the default includes are used (see Section 5.1.2 [Default Includes], page 33).

AC_CHECK_MEMBER(struct passwd.pw_gecos,,
[AC_MSG_ERROR([We need ‘passwd.pw_gecos’!])],
[#include <pwd.h>])

You can use this macro for sub-members:

AC_CHECK_MEMBER(struct top.middle.bot)

[Macro]AC CHECK MEMBERS (members, [action-if-found], [action-if-not-found],
[includes = ‘default-includes’])

Check for the existence of each ‘aggregate.member ’ of members using the previous
macro. When member belongs to aggregate, define HAVE_aggregate_member (in all
capitals, with spaces and dots replaced by underscores). If action-if-found is given,
it is executed for each of the found members. If action-if-not-found is given, it is
executed for each of the members that could not be found.

This macro uses m4 lists:

AC_CHECK_MEMBERS([struct stat.st_rdev, struct stat.st_blksize])

5.9 Types

The following macros check for C types, either builtin or typedefs. If there is no macro
specifically defined to check for a type you need, and you don’t need to check for any
special properties of it, then you can use a general type-check macro.

5.9.1 Particular Type Checks

These macros check for particular C types in ‘sys/types.h’, ‘stdlib.h’ and others, if they
exist.

[Macro]AC TYPE GETGROUPS
Define GETGROUPS_T to be whichever of gid_t or int is the base type of the array
argument to getgroups.

Chapter 5: Existing Tests 57

[Macro]AC TYPE MBSTATE T
Define HAVE_MBSTATE_T if <wchar.h> declares the mbstate_t type. Also, define
mbstate_t to be a type if <wchar.h> does not declare it.

[Macro]AC TYPE MODE T
Equivalent to ‘AC_CHECK_TYPE(mode_t, int)’.

[Macro]AC TYPE OFF T
Equivalent to ‘AC_CHECK_TYPE(off_t, long)’.

[Macro]AC TYPE PID T
Equivalent to ‘AC_CHECK_TYPE(pid_t, int)’.

[Macro]AC TYPE SIGNAL
If ‘signal.h’ declares signal as returning a pointer to a function returning void,
define RETSIGTYPE to be void; otherwise, define it to be int.

Define signal handlers as returning type RETSIGTYPE:

RETSIGTYPE
hup_handler ()
{
...
}

[Macro]AC TYPE SIZE T
Equivalent to ‘AC_CHECK_TYPE(size_t, unsigned)’.

[Macro]AC TYPE UID T
If uid_t is not defined, define uid_t to be int and gid_t to be int.

5.9.2 Generic Type Checks

These macros are used to check for types not covered by the “particular” test macros.

[Macro]AC CHECK TYPE (type, [action-if-found], [action-if-not-found], [includes =
‘default-includes’])

Check whether type is defined. It may be a compiler builtin type or defined by the
includes (see Section 5.1.2 [Default Includes], page 33).

[Macro]AC CHECK TYPES (types, [action-if-found], [action-if-not-found],
[includes = ‘default-includes’])

For each type of the types that is defined, define HAVE_type (in all capitals). If
no includes are specified, the default includes are used (see Section 5.1.2 [Default
Includes], page 33). If action-if-found is given, it is additional shell code to execute
when one of the types is found. If action-if-not-found is given, it is executed when
one of the types is not found.

This macro uses m4 lists:

AC_CHECK_TYPES(ptrdiff_t)
AC_CHECK_TYPES([unsigned long long, uintmax_t])

58 Autoconf

Autoconf, up to 2.13, used to provide to another version of AC_CHECK_TYPE, broken by
design. In order to keep backward compatibility, a simple heuristics, quite safe but not
totally, is implemented. In case of doubt, read the documentation of the former AC_CHECK_
TYPE, see Section 15.4 [Obsolete Macros], page 175.

5.10 Compilers and Preprocessors

All the tests for compilers (AC_PROG_CC, AC_PROG_CXX, AC_PROG_F77) define the output
variable EXEEXT based on the output of the compiler, typically to the empty string if Unix
and ‘.exe’ if Win32 or OS/2.

They also define the output variable OBJEXT based on the output of the compiler, after
‘.c’ files have been excluded, typically to ‘o’ if Unix, ‘obj’ if Win32.

If the compiler being used does not produce executables, the tests fail. If the executables
can’t be run, and cross-compilation is not enabled, they fail too. See Chapter 11 [Manual
Configuration], page 157, for more on support for cross compiling.

5.10.1 Specific Compiler Characteristics

Some compilers exhibit different behaviors.

Static/Dynamic Expressions
Autoconf relies on a trick to extract one bit of information from the C compiler:
using negative array sizes. For instance the following excerpt of a C source
demonstrates how to test whether ‘int’s are 4 bytes long:

int
main (void)
{
static int test_array [sizeof (int) == 4 ? 1 : -1];
test_array [0] = 0
return 0;

}

To our knowledge, there is a single compiler that does not support this trick:
the HP C compilers (the real one, not only the “bundled”) on HP-UX 11.00:

$ cc -c -Ae +O2 +Onolimit conftest.c

cc: "conftest.c": error 1879: Variable-length arrays cannot \
have static storage.

Autoconf works around this problem by casting sizeof (int) to long before
comparing it.

5.10.2 Generic Compiler Characteristics

[Macro]AC CHECK SIZEOF (type, [unused], [includes = ‘default-includes’])
Define SIZEOF_type (see Section 5.1.1 [Standard Symbols], page 33) to be the size
in bytes of type. If ‘type’ is unknown, it gets a size of 0. If no includes are specified,
the default includes are used (see Section 5.1.2 [Default Includes], page 33). If you
provide include, be sure to include ‘stdio.h’ which is required for this macro to run.
This macro now works even when cross-compiling. The unused argument was used
when cross-compiling.

Chapter 5: Existing Tests 59

For example, the call
AC_CHECK_SIZEOF(int *)

defines SIZEOF_INT_P to be 8 on DEC Alpha AXP systems.

[Macro]AC LANG WERROR
Normally Autoconf ignores warnings generated by the compiler, linker, and prepro-
cessor. If this macro is used, warnings will be treated as fatal errors instead for the
current language. This macro is useful when the results of configuration will be used
where warnings are unacceptable; for instance, if parts of a program are built with
the GCC ‘-Werror’ option. If the whole program will be built using ‘-Werror’ it is
often simpler to put ‘-Werror’ in the compiler flags (CFLAGS etc.).

5.10.3 C Compiler Characteristics

The following macros provide ways to find and exercise a C Compiler. There are a few
constructs that ought to be avoided, but do not deserve being checked for, since they can
easily be worked around.

Don’t use lines containing solitary backslashes
They tickle a bug in the HP-UX C compiler (checked on HP-UX 10.20, 11.00,
and 11i). Running the compiler on the following source,

#ifdef __STDC__
/\
* A comment with backslash-newlines in it. %{ %} *\
\
/
char str[] = "\\
" A string with backslash-newlines in it %{ %} \\
"";
char apostrophe = ’\\
\
’\
’;
#endif

yields
error cpp: "foo.c", line 13: error 4048: Non-terminating comment at end of file.
error cpp: "foo.c", line 13: error 4033: Missing #endif at end of file.

Removing the lines with solitary backslashes solves the problem.

Don’t compile several files at once if output matters to you
Some compilers, such as the HP’s, reports the name of the file it is compiling
when they are several. For instance:

$ cc a.c b.c

a.c:
b.c:

This can cause problems if you observe the output of the compiler to detect fail-
ures. Invoking ‘cc -c a.c -o a.o; cc -c b.c -o b.o; cc a.o b.o -o c’ solves
the issue.

60 Autoconf

Don’t rely on correct #line support
On Solaris 8, c89 (Sun WorkShop 6 update 2 C 5.3 Patch 111679-08
2002/05/09)) rejects #line directives whose line numbers are greater than
32767. In addition, nothing in posix makes this invalid. That is the reason
why Autoconf stopped issuing #line directives.

[Macro]AC PROG CC ([compiler-search-list])
Determine a C compiler to use. If CC is not already set in the environment, check for
gcc and cc, then for other C compilers. Set output variable CC to the name of the
compiler found.
This macro may, however, be invoked with an optional first argument which, if spec-
ified, must be a space separated list of C compilers to search for. This just gives
the user an opportunity to specify an alternative search list for the C compiler. For
example, if you didn’t like the default order, then you could invoke AC_PROG_CC like
this:

AC_PROG_CC(cl egcs gcc cc)

If the C compiler is not in ansi C mode by default, try to add an option to output
variable CC to make it so. This macro tries various options that select ansi C on
some system or another. It considers the compiler to be in ansi C mode if it handles
function prototypes correctly.
After calling this macro you can check whether the C compiler has been set to accept
ansi C; if not, the shell variable ac_cv_prog_cc_stdc is set to ‘no’. If you wrote your
source code in ansi C, you can make an un-ansified copy of it by using the program
ansi2knr, which comes with Automake. See also under AC_C_PROTOTYPES below.
If using the gnu C compiler, set shell variable GCC to ‘yes’. If output variable CFLAGS
was not already set, set it to ‘-g -O2’ for the gnu C compiler (‘-O2’ on systems where
GCC does not accept ‘-g’), or ‘-g’ for other compilers.

[Macro]AC PROG CC C O
If the C compiler does not accept the ‘-c’ and ‘-o’ options simultaneously, define
NO_MINUS_C_MINUS_O. This macro actually tests both the compiler found by AC_
PROG_CC, and, if different, the first cc in the path. The test fails if one fails. This
macro was created for gnu Make to choose the default C compilation rule.

[Macro]AC PROG CPP
Set output variable CPP to a command that runs the C preprocessor. If ‘$CC -E’
doesn’t work, ‘/lib/cpp’ is used. It is only portable to run CPP on files with a ‘.c’
extension.
Some preprocessors don’t indicate missing include files by the error status. For such
preprocessors an internal variable is set that causes other macros to check the standard
error from the preprocessor and consider the test failed if any warnings have been
reported. For most preprocessors, though, warnings do not cause include-file tests to
fail unless AC_PROG_CPP_WERROR is also specified.

[Macro]AC PROG CPP WERROR
This acts like AC_PROG_CPP, except it treats warnings from the preprocessor as errors
even if the preprocessor exit status indicates success. This is useful for avoiding
headers that generate mandatory warnings, such as deprecation notices.

Chapter 5: Existing Tests 61

The following macros check for C compiler or machine architecture features. To check
for characteristics not listed here, use AC_COMPILE_IFELSE (see Section 6.4 [Running the
Compiler], page 85) or AC_RUN_IFELSE (see Section 6.6 [Run Time], page 86).

[Macro]AC C BACKSLASH A
Define ‘HAVE_C_BACKSLASH_A’ to 1 if the C compiler understands ‘\a’.

[Macro]AC C BIGENDIAN ([action-if-true], [action-if-false], [action-if-unknown])
If words are stored with the most significant byte first (like Motorola and SPARC
CPUs), execute action-if-true. If words are stored with the least significant byte first
(like Intel and VAX CPUs), execute action-if-false.

This macro runs a test-case if endianness cannot be determined from the system
header files. When cross-compiling, the test-case is not run but grep’ed for some
magic values. action-if-unknown is executed if the latter case fails to determine the
byte sex of the host system.

The default for action-if-true is to define ‘WORDS_BIGENDIAN’. The default for action-
if-false is to do nothing. And finally, the default for action-if-unknown is to abort
configure and tell the installer which variable he should preset to bypass this test.

[Macro]AC C CONST
If the C compiler does not fully support the ansi C qualifier const, define const
to be empty. Some C compilers that do not define __STDC__ do support const;
some compilers that define __STDC__ do not completely support const. Programs
can simply use const as if every C compiler supported it; for those that don’t, the
‘Makefile’ or configuration header file will define it as empty.

Occasionally installers use a C++ compiler to compile C code, typically because they
lack a C compiler. This causes problems with const, because C and C++ treat const
differently. For example:

const int foo;

is valid in C but not in C++. These differences unfortunately cannot be papered over
by defining const to be empty.

If autoconf detects this situation, it leaves const alone, as this generally yields
better results in practice. However, using a C++ compiler to compile C code is not
recommended or supported, and installers who run into trouble in this area should
get a C compiler like GCC to compile their C code.

[Macro]AC C RESTRICT
If the C compiler recognizes the restrict keyword, don’t do anything. If it recog-
nizes only a variant spelling (__restrict, __restrict__, or _Restrict), then define
restrict to that. Otherwise, define restrict to be empty. Thus, programs may
simply use restrict as if every C compiler supported it; for those that do not, the
‘Makefile’ or configuration header defines it away.

Although support in C++ for the restrict keyword is not required, several C++
compilers do accept the keyword. This macro works for them, too.

62 Autoconf

[Macro]AC C VOLATILE
If the C compiler does not understand the keyword volatile, define volatile to be
empty. Programs can simply use volatile as if every C compiler supported it; for
those that do not, the ‘Makefile’ or configuration header will define it as empty.
If the correctness of your program depends on the semantics of volatile, simply
defining it to be empty does, in a sense, break your code. However, given that the
compiler does not support volatile, you are at its mercy anyway. At least your
program will compile, when it wouldn’t before.
In general, the volatile keyword is a feature of ansi C, so you might expect that
volatile is available only when __STDC__ is defined. However, Ultrix 4.3’s native
compiler does support volatile, but does not define __STDC__.

[Macro]AC C INLINE
If the C compiler supports the keyword inline, do nothing. Otherwise define inline
to __inline__ or __inline if it accepts one of those, otherwise define inline to be
empty.

[Macro]AC C CHAR UNSIGNED
If the C type char is unsigned, define __CHAR_UNSIGNED__, unless the C compiler
predefines it.

[Macro]AC C LONG DOUBLE
If the C compiler supports a working long double type with more range or precision
than the double type, define HAVE_LONG_DOUBLE.

[Macro]AC C STRINGIZE
If the C preprocessor supports the stringizing operator, define HAVE_STRINGIZE. The
stringizing operator is ‘#’ and is found in macros such as this:

#define x(y) #y

[Macro]AC C PROTOTYPES
If function prototypes are understood by the compiler (as determined by AC_PROG_
CC), define PROTOTYPES and __PROTOTYPES. In the case the compiler does not handle
prototypes, you should use ansi2knr, which comes with the Automake distribution,
to unprotoize function definitions. For function prototypes, you should first define
PARAMS:

#ifndef PARAMS
if PROTOTYPES
define PARAMS(protos) protos
else /* no PROTOTYPES */
define PARAMS(protos) ()
endif /* no PROTOTYPES */
#endif

then use it this way:
size_t my_strlen PARAMS ((const char *));

This macro also defines __PROTOTYPES; this is for the benefit of header files that cannot
use macros that infringe on user name space.

Chapter 5: Existing Tests 63

[Macro]AC PROG GCC TRADITIONAL
Add ‘-traditional’ to output variable CC if using the gnu C compiler and ioctl
does not work properly without ‘-traditional’. That usually happens when the
fixed header files have not been installed on an old system. Since recent versions of
the gnu C compiler fix the header files automatically when installed, this is becoming
a less prevalent problem.

5.10.4 C++ Compiler Characteristics

[Macro]AC PROG CXX ([compiler-search-list])
Determine a C++ compiler to use. Check if the environment variable CXX or CCC (in
that order) is set; if so, then set output variable CXX to its value.

Otherwise, if the macro is invoked without an argument, then search for a C++ com-
piler under the likely names (first g++ and c++ then other names). If none of those
checks succeed, then as a last resort set CXX to g++.

This macro may, however, be invoked with an optional first argument which, if spec-
ified, must be a space separated list of C++ compilers to search for. This just gives
the user an opportunity to specify an alternative search list for the C++ compiler. For
example, if you didn’t like the default order, then you could invoke AC_PROG_CXX like
this:

AC_PROG_CXX(cl KCC CC cxx cc++ xlC aCC c++ g++ egcs gcc)

If using the gnu C++ compiler, set shell variable GXX to ‘yes’. If output variable
CXXFLAGS was not already set, set it to ‘-g -O2’ for the gnu C++ compiler (‘-O2’ on
systems where G++ does not accept ‘-g’), or ‘-g’ for other compilers.

[Macro]AC PROG CXXCPP
Set output variable CXXCPP to a command that runs the C++ preprocessor. If ‘$CXX
-E’ doesn’t work, ‘/lib/cpp’ is used. It is only portable to run CXXCPP on files with
a ‘.c’, ‘.C’, or ‘.cc’ extension.

Some preprocessors don’t indicate missing include files by the error status. For such
preprocessors an internal variable is set that causes other macros to check the standard
error from the preprocessor and consider the test failed if any warnings have been
reported. However, it is not known whether such broken preprocessors exist for C++.

5.11 Compiling and preprocessing Fortran

The Autoconf Fortran support is divided into two categories: legacy Fortran 77 macros
(F77), and modern Fortran macros (FC). The former are intended for traditional Fortran
77 code, and have output variables like F77, FFLAGS, and FLIBS. The latter are for newer
programs that can (or must) compile under the newer Fortran standards, and have output
variables like FC, FCFLAGS, and FCLIBS.

All of the F77 macros have a FC counterpart, and they are documented together below.
The opposite is not true, however, and in particular the support for preprocessable Fortran
is based on the FC interface alone.

The first block of macros (see Section 5.11.1 [Fortran Compiler], page 64) is concerned
with working out how to call the Fortran compiler, determine which flags are required

64 Autoconf

to match given file extensions, how to indicate free-form and fixed-form code, and how
to integrate Fortran and C modules together. The macros in this block communicate by
defining environment variables such as FCFLAGS, which are substituted into your Makefiles.

A second block of macros (see Section 5.11.2 [Fortran Features], page 70) discovers
various properties of the selected compiler, such as its support for intrinsics, BOZ constants,
and various useful and common extensions. The macros in this latter block communicate
via AC_DEFINE, so that while they might appear in compiler command lines, they will more
often be defined in a preprocessable header file such as config.h. This is useful, of course,
only if your compiler suite can support preprocessable Fortran, either within the compiler
or as a separate step. For more discussion about this, and a description of the relevant
macro, see Section 5.11.3 [Preprocessing Fortran], page 72.

A third block of macros (see Section 5.11.3 [Preprocessing Fortran], page 72) is concerned
with using a cpp-style preprocessor on Fortran code.

In the simplest case where you have a Fortran project using only Fortran 77 code, where
the source files all have the file extension .f, and you do not require any preprocessing, the
‘configure.ac’ need include only AC_PROG_FC, after which the output variable FC will be
set to the name of the compiler found.

In the general case where you have a Fortran project which includes both Fortran 77
and Fortran 90 code, some of which is preprocessed, the ‘configure.ac’ should include

AC_PROG_FC
AC_PROG_FPP
dnl Use one of the following for each required combination of
dnl source extension and source format.
AC_FC_FIXEDFORM(f)
AC_FC_FREEFORM(f90)
AC_FPP_FIXEDFORM(F)
AC_FPP_FREEFORM(F90)

See the documentation for the individual macros for usage details.

5.11.1 Fortran Compiler Characteristics

[Macro]AC PROG F77 ([compiler-search-list])
Determine a Fortran 77 compiler to use. If F77 is not already set in the environment,
then check for g77 and f77, and then some other names. Set the output variable F77
to the name of the compiler found.
This macro may, however, be invoked with an optional first argument which, if spec-
ified, must be a space separated list of Fortran 77 compilers to search for. This just
gives the user an opportunity to specify an alternative search list for the Fortran 77
compiler. For example, if you didn’t like the default order, then you could invoke
AC_PROG_F77 like this:

AC_PROG_F77(fl32 f77 fort77 xlf g77 f90 xlf90)

If using g77 (the gnu Fortran 77 compiler), then AC_PROG_F77 will set the shell
variable G77 to ‘yes’. If the output variable FFLAGS was not already set in the
environment, then set it to ‘-g -02’ for g77 (or ‘-O2’ where g77 does not accept ‘-g’).
Otherwise, set FFLAGS to ‘-g’ for all other Fortran 77 compilers.

Chapter 5: Existing Tests 65

[Macro]AC PROG FC ([compiler-search-list], [dialect])
Determine a Fortran compiler to use. If FC is not already set in the environment,
then dialect is a hint to indicate what Fortran dialect to search for; the default is
to search for the newest available dialect. Set the output variable FC to the name of
the compiler found.
By default, newer dialects are preferred over older dialects, but if dialect is specified
then older dialects are preferred starting with the specified dialect. dialect can
currently be one of Fortran 77, Fortran 90, or Fortran 95. However, this is only a
hint of which compiler name to prefer (e.g. f90 or f95), and no attempt is made
to guarantee that a particular language standard is actually supported. Thus, it is
preferable that you avoid the dialect option, and use AC_PROG_FC only for code
compatible with the latest Fortran standard.
This macro may, alternatively, be invoked with an optional first argument which, if
specified, must be a space separated list of Fortran compilers to search for, just as in
AC_PROG_F77.
If the output variable FCFLAGS was not already set in the environment, then set it
to ‘-g -02’ for GNU g77 (or ‘-O2’ where g77 does not accept ‘-g’). Otherwise, set
FCFLAGS to ‘-g’ for all other Fortran compilers.
Also, in case it’s not obvious, this macro can be called only once: we presume that
multiple Fortran variants can be handled by a compiler which can handle the most
recent one. If this is not the case – either you need to give special flags to enable and
disable the language features you use in different modules, or in the extreme case use
different compilers for different files – you’re going to have to do something clever.

[Macro]AC PROG F77 C O
[Macro]AC PROG FC C O

Test if the Fortran compiler accepts the options ‘-c’ and ‘-o’ simultaneously, and
define F77_NO_MINUS_C_MINUS_O or FC_NO_MINUS_C_MINUS_O, respectively, if it does
not.

The following macros check for Fortran compiler characteristics. To check for char-
acteristics not listed here, use AC_COMPILE_IFELSE (see Section 6.4 [Running the Com-
piler], page 85) or AC_RUN_IFELSE (see Section 6.6 [Run Time], page 86), making sure to
first set the current language to Fortran 77 or Fortran via AC_LANG(Fortran 77) or AC_
LANG(Fortran) (see Section 6.1 [Language Choice], page 79).

[Macro]AC F77 LIBRARY LDFLAGS
[Macro]AC FC LIBRARY LDFLAGS

Determine the linker flags (e.g., ‘-L’ and ‘-l’) for the Fortran intrinsic and run-time
libraries that are required to successfully link a Fortran program or shared library.
The output variable FLIBS or FCLIBS is set to these flags (which should be include
after LIBS when linking).
This macro is intended to be used in those situations when it is necessary to mix,
e.g., C++ and Fortran source code in a single program or shared library (see section
“Mixing Fortran 77 With C and C++” in gnu Automake).
For example, if object files from a C++ and Fortran compiler must be linked together,
then the C++ compiler/linker must be used for linking (since special C++-ish things

66 Autoconf

need to happen at link time like calling global constructors, instantiating templates,
enabling exception support, etc.).
However, the Fortran intrinsic and run-time libraries must be linked in as well, but the
C++ compiler/linker doesn’t know by default how to add these Fortran 77 libraries.
Hence, this macro was created to determine these Fortran libraries.
The macros AC_F77_DUMMY_MAIN/AC_FC_DUMMY_MAIN or AC_F77_MAIN/AC_FC_MAIN
will probably also be necessary to link C/C++ with Fortran; see below.

[Macro]AC F77 DUMMY MAIN ([action-if-found], [action-if-not-found])
[Macro]AC FC DUMMY MAIN ([action-if-found], [action-if-not-found])

With many compilers, the Fortran libraries detected by AC_F77_LIBRARY_LDFLAGS or
AC_FC_LIBRARY_LDFLAGS provide their own main entry function that initializes things
like Fortran I/O, and which then calls a user-provided entry function named (say)
MAIN__ to run the user’s program. The AC_F77_DUMMY_MAIN/AC_FC_DUMMY_MAIN or
AC_F77_MAIN/AC_FC_MAIN macro figures out how to deal with this interaction.
When using Fortran for purely numerical functions (no I/O, etc.) often one prefers
to provide one’s own main and skip the Fortran library initializations. In this case,
however, one may still need to provide a dummy MAIN__ routine in order to prevent
linking errors on some systems. AC_F77_DUMMY_MAIN or AC_FC_DUMMY_MAIN detects
whether any such routine is required for linking, and what its name is; the shell vari-
able F77_DUMMY_MAIN or FC_DUMMY_MAIN holds this name, unknown when no solution
was found, and none when no such dummy main is needed.
By default, action-if-found defines F77_DUMMY_MAIN or FC_DUMMY_MAIN to the name
of this routine (e.g., MAIN__) if it is required. [action-if-not-found] defaults to exiting
with an error.
In order to link with Fortran routines, the user’s C/C++ program should then include
the following code to define the dummy main if it is needed:

#ifdef F77_DUMMY_MAIN
ifdef __cplusplus

extern "C"
endif

int F77_DUMMY_MAIN() { return 1; }
#endif

Note that this macro is called automatically from AC_F77_WRAPPERS or AC_FC_
WRAPPERS; there is generally no need to call it explicitly unless one wants to change
the default actions.
In fact, although you can skip the Fortran library initialisations in some cases (and
doing so with g77 for example, you lose only getarg functionality), you cannot do
this in general, and usually cannot do this with Fortran 9x compilers, if you want
the program not to crash. This means that you either have to use AC_FC_MAIN
and have the Fortran library’s main function call your alternative entry point, or
else use your own main function and do the compiler-specific runtime startup and
shutdown within that function, by hand. Since the latter strategy rather misses the
point of autoconfing your code, this will have to wait until autoconf adds support for
discovering such startup/shutdown functionality (are you volunteering?).
(Replace F77 with FC for Fortran instead of Fortran 77.)

Chapter 5: Existing Tests 67

[Macro]AC F77 MAIN
[Macro]AC FC MAIN

As discussed above, many Fortran libraries allow you to provide an entry point called
(say) MAIN__ instead of the usual main, which is then called by a main function in
the Fortran libraries that initializes things like Fortran I/O. The AC_FC_MAIN macro
detects whether it is possible to utilize such an alternate main function, and defines
FC_MAIN to the name of the function. (If no alternate main function name is found,
FC_MAIN is simply defined to main.)

Thus, when calling Fortran routines from C that perform things like I/O, one should
use this macro and name the "main" function FC_MAIN instead of main.

If this macro discovers that the main function name is in fact simply main, then the
macro additionally defines FC_MAIN_IS_MAIN to be 1. This is so that you can tell the
difference between the situation where the program’s actual entry point is somewhere
else, in a Fortran runtime’s main function, and the situation where the current func-
tion is the program’s actual entry point, and you may have to do something more
complicated. As noted above, in the description of AC_FC_DUMMY_MAIN, there is no
clear strategy for this latter situation, but at least you can reliably detect that you
are in trouble in this case, which is progress of a sort.

Replace FC with F77 for the Fortran 77 versions of these names.

[Macro]AC F77 WRAPPERS
[Macro]AC FC WRAPPERS

Defines C macros F77_FUNC(name,NAME)/FC_FUNC(name,NAME) and F77_FUNC_
(name,NAME)/FC_FUNC_(name,NAME) to properly mangle the names of C/C++
identifiers, and identifiers with underscores, respectively, so that they match the
name-mangling scheme used by the Fortran compiler.

Fortran is case-insensitive, and in order to achieve this the Fortran compiler converts
all identifiers into a canonical case and format. To call a Fortran subroutine from C or
to write a C function that is callable from Fortran, the C program must explicitly use
identifiers in the format expected by the Fortran compiler. In order to do this, one
simply wraps all C identifiers in one of the macros provided by AC_F77_WRAPPERS or
AC_FC_WRAPPERS. For example, suppose you have the following Fortran 77 subroutine:

subroutine foobar(x,y)
double precision x, y
y = 3.14159 * x
return
end

You would then declare its prototype in C or C++ as:

#define FOOBAR_F77 F77_FUNC(foobar,FOOBAR)
#ifdef __cplusplus
extern "C" /* prevent C++ name mangling */
#endif
void FOOBAR_F77(double *x, double *y);

Note that we pass both the lowercase and uppercase versions of the function name to
F77_FUNC so that it can select the right one. Note also that all parameters to Fortran

68 Autoconf

77 routines are passed as pointers (see section “Mixing Fortran 77 With C and C++”
in gnu Automake).
(Replace F77 with FC for Fortran instead of Fortran 77.)
Although Autoconf tries to be intelligent about detecting the name-mangling scheme
of the Fortran compiler, there may be Fortran compilers that it doesn’t support
yet. In this case, the above code will generate a compile-time error, but some other
behavior (e.g., disabling Fortran-related features) can be induced by checking whether
the F77_FUNC/FC_FUNC macro is defined.
Now, to call that routine from a C program, we would do something like:

{
double x = 2.7183, y;
FOOBAR_F77(&x, &y);

}

If the Fortran identifier contains an underscore (e.g., foo_bar), you should use F77_
FUNC_/FC_FUNC_ instead of F77_FUNC/FC_FUNC (with the same arguments). This is
because some Fortran compilers mangle names differently if they contain an under-
score.

[Macro]AC F77 FUNC (name, [shellvar])
[Macro]AC FC FUNC (name, [shellvar])

Given an identifier name, set the shell variable shellvar to hold the mangled version
name according to the rules of the Fortran linker (see also AC_F77_WRAPPERS or AC_
FC_WRAPPERS). shellvar is optional; if it is not supplied, the shell variable will be
simply name. The purpose of this macro is to give the caller a way to access the name-
mangling information other than through the C preprocessor as above, for example,
to call Fortran routines from some language other than C/C++.

The following macros handle the complications of dealing with the multiple Fortran vari-
ants which a compiler might support. There are multiple versions of the Fortran language
standard. We are concerned here with Fortran 77, Fortran 90 and Fortran 95 (let’s not think
any more about Fortran 66, please, and postpone thought about Fortran 2003). Although
in principle, as with all ISO standards, only the most recent version of a standard is The
Standard, in practice multiple versions are used in any large project. Fortran compilers
usually determine the language variant to use depending on the file extension, but some
accept only a limited set of extensions and require compiler flags to switch between variants.

Fortran 90 and 95 introduced ‘free-form’ source code, as an alternative to the ‘fixed-
form’ of previous standards, and compilers usually require a flag to switch this on. Some
compilers (for example g77) permit free-form source code even in Fortran 77 code, though
this is blessed by no standard, is non-portable, and is probably a bad idea.

The AC_FC_(FREE|FIXED)FORM macros have corresponding FPP macros, described in
Section 5.11.3 [Preprocessing Fortran], page 72.

Yes, this is complicated, but it is the consequence of dealing with what are effectively
several different sub-languages of Fortran.

[Macro]AC FC FIXEDFORM (srcext, [action-if-success], [action-if-failure])
Look for compiler flags to make the Fortran compiler (FC) accept fixed-format source
code, in files with a source extension of srcext (omitting any dot), and puts any

http://j3-fortran.org

Chapter 5: Existing Tests 69

necessary flags in FCFLAGS_fixed_srcext. Call [action-if-success] (defaults to nothing)
if it is successful, in the sense that it can compile fixed-format code using the given
extension, and [action-if-failure] (defaults to failing with an error message) if not.

[Macro]AC FC FREEFORM (srcext, [action-if-success], [action-if-failure])
[Macro]AC FC FREEFORM

Look for compiler flags to make the Fortran compiler (FC) accept free-format source
code in files with a source extension of srcext (no dot), and puts any necessary flags in
FCFLAGS_free_srcext . The default actions are the same as for AC_FC_FIXEDFORM.
A previous released version of this macro had the form AC_FC_FREEFORM([action-if-
success], [action-if-failure]), omitting the srcext argument; it communicated its results
by modifying FCFLAGS. It also had an interaction with the AC_FC_SRCEXT macro. To
support a limited backward compatibility, if this macro is called in the second form
with no arguments, then it will default srcext to f90 and append any necessary flags
to FCFLAGS rather than FCFLAGS_free_f90. This usage is deprecated. The related
macros AC_FC_FIXEDFORM, AC_FPP_FREEFORM and AC_FPP_FIXEDFORM do not have
this feature.
This macro is most important if you are using the default ‘.f’ extension, since many
compilers interpret this extension as indicating fixed-format source unless an addi-
tional flag is supplied.

[Macro]AC FC SRCEXT (ext, [action-if-success], [action-if-failure])
The AC_FC_SRCEXT macro is now deprecated: use AC_(FC|FPP)_(FIXED|FREE)FORM
instead.
By default, the FC macros perform their tests using a ‘.f’ extension for source-code
files. Some compilers, however, only enable newer language features for appropriately
named files, e.g. Fortran 90 features only for ‘.f90’ files. On the other hand, some
other compilers expect all source files to end in ‘.f’ and require special flags to support
other filename extensions. The AC_FC_SRCEXT macro deals with both of these issues.
The AC_FC_SRCEXT tries to get the FC compiler to accept files ending with the exten-
sion .ext (i.e. ext does not contain the dot). If any special compiler flags are needed
for this, it stores them in the output variable FCFLAGS_ext. This extension and these
flags are then used for all subsequent FC tests (until AC_FC_SRCEXT is called again).
For example, you would use AC_FC_SRCEXT(f90) to employ the ‘.f90’ extension in
future tests, and it would set a FCFLAGS_f90 output variable with any extra flags
that are needed to compile such files.
The FCFLAGS_ext can not be simply absorbed into FCFLAGS, for two reasons based
on the limitations of some compilers. First, only one FCFLAGS_ext can be used at a
time, so files with different extensions must be compiled separately. Second, FCFLAGS_
ext must appear immediately before the source-code filename when compiling. So,
continuing the example above, you might compile a ‘foo.f90’ file in your Makefile
with the command:

foo.o: foo.f90
$(FC) -c $(FCFLAGS) $(FCFLAGS_f90) foo.f90

If AC_FC_SRCEXT succeeds in compiling files with the ext extension, it calls [action-
if-success] (defaults to nothing). If it fails, and cannot find a way to make the FC

70 Autoconf

compiler accept such files, it calls [action-if-failure] (defaults to exiting with an error
message).

5.11.2 Fortran features and extensions supported

The second block of macros is concerned with features and extensions which are or are not
supported by a particular Fortran compiler.

Not all Fortran compilers are equal. Firstly, although the Fortran 77 standard is widely
and fully supported, there are important compilers which do not (yet) support all fea-
tures of the newer Fortran 90 and 95 standards. Secondly, and more importantly, there
is a significant set of common extensions to Fortran, many of which originated with VAX
Fortran, and many of which are useful enough to justify their use, even though they are
non-standard. These semi-standard extensions tend to be broadly supported, but not quite
broadly supported enough that you can reasonably use them in a portable program without
checking that support first.

The following macros AC_DEFINE their results, so that they are generally most useful
when used in conjunction with a config.h file; they thus require preprocessing support,
for which see Section 5.11.3 [Preprocessing Fortran], page 72.

[Macro]AC FC CHECK HEADERS ([include-file]. . .)
This is the Fortran analogue of AC_CHECK_HEADERS, though it only takes the first
argument, giving the list of include files to check; we are talking here about files
included through the Fortran include statement, not preprocessor files included
through #include. For each include file, defines HAVE_include-file (uppercased)
if the include file is found. Respects the current value of FCFLAGS (as opposed to
CFLAGS).

[Macro]AC FC CHECK INTRINSICS (intrinsic-function. . .)
This is like AC_CHECK_FUNCS, but instead determine the intrinsics available to the For-
tran compiler. For each intrinsic in the (whitespace-separated and case-insensitive) ar-
gument list, define HAVE_INTRINSIC_intrinsic-function (uppercased) if it is avail-
able. For example, ‘AC_FC_CHECK_INTRINSICS(sin)’ would define HAVE_INTRINSIC_
SIN if the sin intrinsic function were available (there are probably rather few Fortrans
which don’t have this function).

The macro works for both intrinsic functions and intrinsic subroutines.

[Macro]AC FC HAVE PERCENTVAL
Test whether the Fortran compiler ($FC) has the common VAX %VAL extension. If
so, the preprocessor variable HAVE_PERCENTVAL is defined to 1.

[Macro]AC FC HAVE PERCENTLOC
Test whether the Fortran compiler ($FC) has the common VAX %LOC extension. If
so, the preprocessor variable HAVE_PERCENTLOC is defined to 1.

[Macro]AC FC HAVE BOZ
[Macro]AC FC HAVE TYPELESS BOZ
[Macro]AC FC HAVE OLD TYPELESS BOZ

Test whether the Fortran compiler ($FC) supports BOZ constants in various styles.

Chapter 5: Existing Tests 71

Fortran 95 BOZ constants are integer constants written in the format B’xxx’, O’xxx’
and Z’xxx’. This should be true of all Fortran 95, and later, compilers.
Some Fortran 95 compilers additionally support typeless BOZ constants, written in
the format X’xxx’, which allow the initialisation of any type of variable to a specific
bit pattern. Old-style typeless BOZ constants, as supported by VAX Fortran and
g77, are written instead in the format ’xxx’X.
Depending on the syntaxes supported, these macros define HAVE_BOZ,
HAVE_TYPELESS_BOZ or HAVE_OLD_TYPELESS_BOZ, respectively, to be 1.

[Macro]AC FC HAVE VOLATILE
Test whether the Fortran compiler ($FC) supports the VOLATILE statement. VOLATILE
is used to stop the optimisation of a variable, so that it can be modified outside of
the program itself. If supported the preprocessor variable HAVE_VOLATILE is defined
to be 1.

[Macro]AC FC LITERAL BACKSLASH
Check whether the compiler regards the backslash character as an escape character.
The Standard doesn’t say anything about this, but many Unix Fortran compilers
interpret ‘\n’, for example, as a newline, and ‘\\’ as a single backslash.
Test the behaviour of the currently selected compiler, and define FC_LITERAL_
BACKSLASH to 1 if backslashes are treated literally – that is if ‘\\’ is interpreted as a
pair of backslashes and thus that ‘\n’ is interpreted as two characters rather than
one.

[Macro]AC FC MOD PATH FLAG
Check which flag is necessary to alter the compiler’s search path for module files.
This obviously requires that the compiler has some notion of module files as separate
from object files and some sensible method of altering its search path. This will
therefore not work on early Cray F90 compilers, or on v5 (and 6?) of ‘ifc’.

[Macro]AC FC OPEN SPECIFIERS (specifier . . .)
The Fortran OPEN statement is a rich source of portability problems, since there are
numerous common extensions, consisting of extra specifiers, several of which are useful
when they are available.
For each of the specifiers in the (whitespace-separated) argument list, define HAVE_
FC_OPEN_mungedspecifier if the specifier may be given as argument to the OPEN
statement. The mungedspecifier is the specifier argument converted to uppercase
and with all characters outside [a-zA-Z0-9_] deleted. Note that this may include
‘specifiers’ such as access=’append’ and [access=’sequential’,recl=1] (note the
quoting, here, to protect the comma) to check combinations of specifiers. In the latter
case, for example, if the given combination of specifiers were permissable, the macro
would define the variable HAVE_FC_OPEN_ACCESSSEQUENTIALRECL1. You may not
include a space in the ‘specifier’, even quoted. Each argument must be a maximum
of 65 characters in length (to abide by Fortran 77 line-length limits).

[Macro]AC FC RECL UNIT
When opening a file for direct access, you must specify the record length with the OPEN
specifier RECL; however in the case of unformatted direct access files, the units of this

72 Autoconf

specifier are unspecified (that is, they are compiler dependent and undocumented),
and may be bytes, words or some other unit. This macro determines the units and
defines FC_RECL_UNIT to contain the number of bytes (1, 2, 4, 8, . . .) in the processor’s
unit of measurement.
Note that unformatted files are not themselves portable, and should only be used as
either temporary files, or as precalculated or cached data files which will be read by
a program or library compiled with the same Fortran processor. Making use of this
information is probably a bad idea, but if for some reason you decide you just have
to know, then this macro at least allows you to write your code in a portable way.

5.11.3 Preprocessing Fortran

It is both possible and useful to use Fortran which has cpp-style directives within it. Some
Fortran compilers, such as g77, can process these directives internally, and so need no
separate preprocessing stage; in other cases, the code must be compiled indirectly, with a
preprocessor producing pure Fortran code which is only in a subsequent step passed to the
compiler.

Because of the syntactical differences in the underlying languages, it is not always pos-
sible to do this processing using the cpp program, and you may need help from a separate
Fortran-specific preprocessor. A cpp preprocessor cannot handle Fortran in principle be-
cause it does not know about Fortran line-length limits, and handles comments differently,
but in practice most cpp programs will cope with Fortran well enough, if you use only
#if, #define and #include, and are at least cautious about #define substitutions. The
defaults in the AC_PROG_FPP are suitably conservative, and at a pinch could probably be
satisfied by a fairly simple preprocessing script.

The AC_PROG_FPP macro, combined with the corresponding support in Automake (start-
ing with version XXX), will work out how to compile Fortran source containing such direc-
tives.

[Macro]AC PROG FPP ([feature-list])
[feature-list] is a space-separated list of features that the Fortran preprocessor must
have for the code to compile. See below for details. It is up to the package maintainer
to properly set these requirements.
You should also call the macro ‘AC_PROG_FC’ before you call this macro.
We presume that there is no preprocessing dependence on the language variant, so
that a preprocessor will handle free-form F9x as happily as fixed-form F77.

[Macro]AC FPP FIXEDFORM (srcext, [action-if-success], [action-if-failure])
Look for compiler flags to make the Fortran compiler (FC) accept and preprocess
fixed-format source code, with a source extension of srcext (no dot), and puts any
necessary flags in FPPFLAGS_fixed_srcext. The defaults are as with the function
AC_FC_FREEFORM.

[Macro]AC FPP FREEFORM (srcext, [action-if-success], [action-if-failure])
Look for compiler flags to make the Fortran compiler (FC) accept and preprocess
free-format source code, with a source extension of srcext (no dot), and puts any
necessary flags in FPPFLAGS_free_srcext. The defaults are as with the function AC_
FC_FREEFORM.

Chapter 5: Existing Tests 73

These latter two macros are mostly applicable only when using direct compilation. How-
ever in either case the macro also sets FPP_PREPROCESS_EXT and FPP_COMPILE_EXT, based
on srcext. The parameter srcext can be either EXT or EXT1:ext2 ; in the first case, the pre-
processor extension is EXT , and the compile extension ext (ie, the preprocessor extension,
lowercased); in the second, the preprocessor extension is EXT1 and the compile extension
ext2 . If you have to give these macros multiple times, then it is the last pair of extensions
which are substituted for the variables by AC_PROG_FPP.

There is no formal standard for Fortran preprocessor directives, and so you introduce
an element of non-portability into your code when you use them. However they can (para-
doxically) help make your code more portable by allowing you to use useful and common
extensions (such as the READONLY qualifier on the OPEN statement) without having the code
break on those few compilers which support nothing beyond the formal standard.

Different preprocessors support different subsets of the range of possibilities. If your
code requires only a very basic set of features — such as #if...#endif and nothing more
— then you can make use of a relatively primitive preprocessor, perhaps even one as simple
as a script. It is for this reason that this macro, unusually for Autoconf macros, allows you
to specify a set of needed features, and the macro will find a preprocessor which not only
exists and runs, but has at least these features available.1

The AC_PROG_FPP macro will fall back on cpp if no more specific preprocessor can be
found. This will usually work, but because Fortran and C have such different syntaxes,
there will be a few cases where the cpp command becomes quite legitimately confused. For
example, cpp preprocessors will not know that they should be worried about lines that
are longer than 72 characters after substitution of #defines. You can probably do most of
what you need with just #if...#endif, support for which requires only a very rudimentary
preprocesser.

The features supported in the argument to AC_PROG_FPP are as follows:

‘include’ Correctly process #include directives and the command-line option ‘-I’.

‘define’ Correctly process option ‘-D’.

‘substitute’
Substitute macros in Fortran code (some preprocessors touch only lines starting
with ‘#’).

‘wrap’ Wrap lines that become too long through macro substitution. fpp is probably
the only preprocessor that does this. Without this, you can run into trouble
if your macro substitutions cause code lines to move beyond Fortran 77’s 72-
character limit.

‘cstyle’ Require a preprocessor which can pass through C-style comments, /* ... */,
and add to FPPFLAGS any flags required to make this happen (this would be
the ‘-C’ option in cpp).

‘CSTYLE’ Require a preprocessor which does suppress C-style comments. Since this is
usually the default with preprocessors (since they imitate cpp to a greater or

1 There is no formal standard for Fortran preprocessors, but Sun have produced a preprocessor fpp, which
is available for download at http://www.netlib.org/fortran/; this comes with a free-ish but not quite
open-source licence. The documentation within that distribution is, in effect, a useful specification of a
Fortran preprocessor syntax.

74 Autoconf

lesser extent), there is no flag to switch this behaviour on – including this feature
simply means that you wish to discard any preprocessor which does not have
this property. You will typically only have C-style comments if you have some
complicated preprocessor magic that needs to be explained; this feature is not
an excuse to start using C-style comments in the body of your Fortran.

‘cxxstyle’
Require a preprocessor which passes through C++-style comments, of the form
// Since this is the string-concatenation operator in Fortran, you most
emphatically do need this property.

‘CXXSTYLE’
Require a preprocessor which discards C++-style comments. You don’t want
this, and this option is here only for completeness and symmetry.

Features can be deselected, if the feature is not needed, by prepending ‘no’; for example
‘nodefine’.

The default for the feature list is ‘[include define nosubstitute nowrap nocstyle
noCSTYLE cxxstyle noCXXSTYLE]’, and feature requirements corresponding to the defaults
may be omitted. The default behaviour requests a preprocessor which preserves Fortran’s
// string concatenation operator and sets no requirements concerning C-style comments.
If you don’t use C-style comments, you probably have no reason to use, or even know
about, any of these four features; if you do decide to use them, then you should request the
‘CSTYLE’ feature.

The default set of features requests a preprocessor which allows you to use the ‘-I’ and
‘-D’ flags on the command line, and use the preprocessor directives #include, #define and
#if(def)...#endif within your Fortran.

Note that ‘wrap’ implies ‘substitute’, and ‘CSTYLE’ and ‘cstyle’ cannot be requested
at the same time. The macro adjusts this automatically.

The macro works out if the Fortran compiler discovered by macro ‘AC_PROG_FC’ has the
requested set of features. If so, it arranges for the compilation to be done ‘directly’; if not,
it arranges for ‘indirect’ compilation, where the preprocessable Fortran code is converted
to pure Fortran code and only subsequently passed to the Fortran compiler.

The AC_PROG_FPP macro sets and substitutes the following variables. The items in this
list are noted as being valid for ‘[direct]’, ‘[indirect]’ or ‘[both]’ modes. In the first two cases,
the variable has a useful value only in the given mode, and an unspecified, and therefore
unpredictable, value in the other; in the last, it has a value in both modes.

‘FPP’ [indirect]
In ‘indirect’ mode, this is set to the name of a suitable preprocessor. In ‘direct’
mode, this may or may not be set – you should not rely on any particular value.

‘FPP_COMPILE_EXT’ [both]
This contains the file extension which the Fortran compiler will accept as con-
taining source not to be preprocessed. It is most typically f (the default), but
could be different if set by a call to AC_FPP_(FIXED|FREE)FORM.

Chapter 5: Existing Tests 75

‘FPP_PREPROCESS_EXT’ [both]
The partner of @FPP_COMPILE_EXT@, containing the file extension which is taken
to indicate Fortran source to be preprocessed. The default is F, but could be
different if set by a call to AC_FPP_(FIXED|FREE)FORM.

‘FPP_MAKE_FLAGS’ [direct]
This is used to include CPP/FPP related flags into the compiler call if we
compile directly.

‘FPP_OUTPUT’ [both]
This is used to redirect fpp output to the .f file in those cases where FPP writes
to stdout rather than to a file. It is defined as either "" or ">$@".

‘FPPDIRECT_TRUE’ and ‘FPPDIRECT_FALSE’ [both]
If the macro decides that we must use ‘direct’ mode, then it sets @FPPDIRECT_
TRUE@ to be blank, and @FPPDIRECT_FALSE@ to be #, or vice versa if we are
to use ‘indirect’ mode. These provide the mechanism for responding to the
appropriate mode in a ‘Makefile.in’ (or any other context where the mode
matters).

These may be used within a Makefile.in as follows:
@FPPDIRECT_TRUE@.@FPP_PREPROCESS_EXT@.o:
@FPPDIRECT_TRUE@ $(PPFCCOMPILE) -c -o $@ $<
@FPPDIRECT_FALSE@.@FPP_PREPROCESS_EXT@.@FPP_COMPILE_EXT:
@FPPDIRECT_FALSE@ $(FPP) $(DEFS) $(DEFAULT_INCLUDES) \
@FPPDIRECT_FALSE@ $(INCLUDES) $(FPPFLAGS) $(AM_CPPFLAGS) \
@FPPDIRECT_FALSE@ $(CPPFLAGS) $< @FPP_OUTPUT@

If you use automake, then you may possibly recognise that as an automake conditional
(which is predeclared, so you do not need to include AM_CONDITIONAL(FPPDIRECT, test)
in your configure.ac), which might be used more straightforwardly in your ‘Makefile.am’
as follows:

if FPPDIRECT
.@FPP_PREPROCESS_EXT@.o:

$(PPFCCOMPILE) -c -o $@ $<
else !FPPDIRECT
.@FPP_PREPROCESS_EXT@.@FPP_COMPILE_EXT:

$(FPP) $(DEFS) ... $< @FPP_OUTPUT@
endif !FPPDIRECT

Note: There would seem to be a problem here with the (default) use of .F as the extension
for preprocessed files. On case-insensitive filesystems such as HFS+, as used on MacOS X,
‘foo.F’ and ‘foo.f’ are the same file. This means that indirect compilation would lose
badly, since converting ‘foo.F’ to ‘foo.f’ would clobber the original. This is probably not
a problem in practice, since the compilers (g77, gfortran, nag, and xlf) actually likely to be
used on OS X – which is a recent platform, and thus with only recent Fortrans on it – can
all do direct compilation of preprocessable Fortran. Just in case, the AC_PROG_FPP checks
whether we are in this fatal situation, and collapses noisily if necessary.

Note: FPP_OUTPUT is set to either "" or ">$@". The latter is OK in an implicit rule, but
will potentially lose in an explicit rule, since POSIX does not require that $@ is defined in

76 Autoconf

such a rule, and there are still a few makes which do not define it in that context. As with
the previous remark, however, this is probably more a theoretical problem than a practical
one.

The macro depends on both ‘FC’ and ‘CPP’, because we may possibly need to fall back
on cpp for preprocessing.

5.12 System Services

The following macros check for operating system services or capabilities.

[Macro]AC PATH X
Try to locate the X Window System include files and libraries. If the user gave
the command line options ‘--x-includes=dir ’ and ‘--x-libraries=dir ’, use those
directories. If either or both were not given, get the missing values by running xmkmf
on a trivial ‘Imakefile’ and examining the ‘Makefile’ that it produces. If that fails
(such as if xmkmf is not present), look for the files in several directories where they
often reside. If either method is successful, set the shell variables x_includes and
x_libraries to their locations, unless they are in directories the compiler searches
by default.
If both methods fail, or the user gave the command line option ‘--without-x’, set
the shell variable no_x to ‘yes’; otherwise set it to the empty string.

[Macro]AC PATH XTRA
An enhanced version of AC_PATH_X. It adds the C compiler flags that X needs to
output variable X_CFLAGS, and the X linker flags to X_LIBS. Define X_DISPLAY_
MISSING if X is not available.
This macro also checks for special libraries that some systems need in order to compile
X programs. It adds any that the system needs to output variable X_EXTRA_LIBS.
And it checks for special X11R6 libraries that need to be linked with before ‘-lX11’,
and adds any found to the output variable X_PRE_LIBS.

[Macro]AC SYS INTERPRETER
Check whether the system supports starting scripts with a line of the form ‘#!
/bin/csh’ to select the interpreter to use for the script. After running this macro,
shell code in ‘configure.ac’ can check the shell variable interpval; it will be set to
‘yes’ if the system supports ‘#!’, ‘no’ if not.

[Macro]AC SYS LARGEFILE
Arrange for large-file support2. On some hosts, one must use special compiler options
to build programs that can access large files. Append any such options to the output
variable CC. Define _FILE_OFFSET_BITS and _LARGE_FILES if necessary.
Large-file support can be disabled by configuring with the ‘--disable-largefile’
option.
If you use this macro, check that your program works even when off_t is longer than
long, since this is common when large-file support is enabled. For example, it is not
correct to print an arbitrary off_t value X with printf ("%ld", (long) X).

2 large-file support, http://www.unix-systems.org/version2/whatsnew/lfs20mar.html.

Chapter 5: Existing Tests 77

The LFS introduced the fseeko and ftello functions to replace their C counterparts
fseek and ftell that do not use off_t. Take care to use AC_FUNC_FSEEKO to make
their prototypes available when using them and large-file support is enabled.

[Macro]AC SYS LONG FILE NAMES
If the system supports file names longer than 14 characters, define HAVE_LONG_FILE_
NAMES.

[Macro]AC SYS POSIX TERMIOS
Check to see if the POSIX termios headers and functions are available on the system.
If so, set the shell variable ac_cv_sys_posix_termios to ‘yes’. If not, set the variable
to ‘no’.

5.13 UNIX Variants

The following macros check for certain operating systems that need special treatment for
some programs, due to exceptional oddities in their header files or libraries. These macros
are warts; they will be replaced by a more systematic approach, based on the functions they
make available or the environments they provide.

[Macro]AC AIX
If on aix, define _ALL_SOURCE. Allows the use of some bsd functions. Should be
called before any macros that run the C compiler.

[Macro]AC GNU SOURCE
If using the gnu C library, define _GNU_SOURCE. Allows the use of some gnu functions.
Should be called before any macros that run the C compiler.

[Macro]AC ISC POSIX
For interactive unix (isc), add ‘-lcposix’ to output variable LIBS if necessary
for posix facilities. Call this after AC_PROG_CC and before any other macros that use
posix interfaces. interactive unix is no longer sold, and Sun says that they will
drop support for it on 2006-07-23, so this macro is becoming obsolescent.

[Macro]AC MINIX
If on Minix, define _MINIX and _POSIX_SOURCE and define _POSIX_1_SOURCE to be 2.
This allows the use of posix facilities. Should be called before any macros that run
the C compiler.

78 Autoconf

Chapter 6: Writing Tests 79

6 Writing Tests

If the existing feature tests don’t do something you need, you have to write new ones. These
macros are the building blocks. They provide ways for other macros to check whether various
kinds of features are available and report the results.

This chapter contains some suggestions and some of the reasons why the existing tests
are written the way they are. You can also learn a lot about how to write Autoconf tests
by looking at the existing ones. If something goes wrong in one or more of the Autoconf
tests, this information can help you understand the assumptions behind them, which might
help you figure out how to best solve the problem.

These macros check the output of the compiler system of the current language (see
Section 6.1 [Language Choice], page 79). They do not cache the results of their tests for
future use (see Section 7.3 [Caching Results], page 91), because they don’t know enough
about the information they are checking for to generate a cache variable name. They also
do not print any messages, for the same reason. The checks for particular kinds of features
call these macros and do cache their results and print messages about what they’re checking
for.

When you write a feature test that could be applicable to more than one software
package, the best thing to do is encapsulate it in a new macro. See Chapter 9 [Writing
Autoconf Macros], page 111, for how to do that.

6.1 Language Choice

Autoconf-generated configure scripts check for the C compiler and its features by default.
Packages that use other programming languages (maybe more than one, e.g., C and C++)
need to test features of the compilers for the respective languages. The following macros
determine which programming language is used in the subsequent tests in ‘configure.ac’.

[Macro]AC LANG (language)
Do compilation tests using the compiler, preprocessor, and file extensions for the
specified language.

Supported languages are:

‘C’ Do compilation tests using CC and CPP and use extension ‘.c’ for test
programs. Use compilation flags: CPPFLAGS with CPP, and both CPPFLAGS
and CFLAGS with CC.

‘C++’ Do compilation tests using CXX and CXXCPP and use extension ‘.C’ for
test programs. Use compilation flags: CPPFLAGS with CXXPP, and both
CPPFLAGS and CXXFLAGS with CXX.

‘Fortran 77’
Do compilation tests using F77 and use extension ‘.f’ for test programs.
Use compilation flags: FFLAGS.

‘Fortran’ Do compilation tests using FC and use extension ‘.f’ (or whatever has
been set by AC_FC_SRCEXT) for test programs. Use compilation flags:
FCFLAGS.

80 Autoconf

[Macro]AC LANG PUSH (language)
Remember the current language (as set by AC_LANG) on a stack, and then select the
language. Use this macro and AC_LANG_POP in macros that need to temporarily switch
to a particular language.

[Macro]AC LANG POP ([language])
Select the language that is saved on the top of the stack, as set by AC_LANG_PUSH,
and remove it from the stack.

If given, language specifies the language we just quit. It is a good idea to specify it
when it’s known (which should be the case. . .), since Autoconf will detect inconsis-
tencies.

AC_LANG_PUSH(Fortran 77)
Perform some tests on Fortran 77.
...
AC_LANG_POP(Fortran 77)

[Macro]AC LANG ASSERT (language)
Check statically that the current language is language. You should use this in your
language specific macros to avoid that they be called with an inappropriate language.

This macro runs only at autoconf time, and incurs no cost at configure time. Sadly
enough and because Autoconf is a two layer language1, the macros AC_LANG_PUSH/AC_
LANG_POP cannot be “optimizing”, therefore as much as possible you ought to avoid
using them to wrap your code, rather, require from the user to run the macro with
a correct current language, and check it with AC_LANG_ASSERT. And anyway, that
may help the user understand she is running a Fortran macro while expecting a result
about her Fortran 77 compiler...

[Macro]AC REQUIRE CPP
Ensure that whichever preprocessor would currently be used for tests has been found.
Calls AC_REQUIRE (see Section 9.4.1 [Prerequisite Macros], page 113) with an argu-
ment of either AC_PROG_CPP or AC_PROG_CXXCPP, depending on which language is
current.

6.2 Writing Test Programs

Autoconf tests follow is common scheme: feeding some program with some input, and most
of the time, feeding a compiler with some source file. This section is dedicated to these
source samples.

6.2.1 Guidelines for Test Programs

The most important rule to follow when writing testing samples is:
Look for realism.

This motto means that testing samples must be written with the same strictness as real
programs are written. In particular, you should avoid “shortcuts” and simplifications.

1 Because M4 is not aware of Sh code, especially conditionals, some optimizations that look nice statically
may produce incorrect results at runtime.

Chapter 6: Writing Tests 81

Don’t just play with the preprocessor if you want to prepare a compilation. For instance,
using cpp to check if a header is functional might let your configure accept a header which
will cause some compiler error. Do not hesitate checking header with other headers included
before, especially required headers.

Make sure the symbols you use are properly defined, i.e., refrain for simply declaring a
function yourself instead of including the proper header.

Test programs should not write anything to the standard output. They should return
0 if the test succeeds, nonzero otherwise, so that success can be distinguished easily from
a core dump or other failure; segmentation violations and other failures produce a nonzero
exit status. Test programs should exit, not return, from main, because on some systems
(old Suns, at least) the argument to return in main is ignored.

Test programs can use #if or #ifdef to check the values of preprocessor macros de-
fined by tests that have already run. For example, if you call AC_HEADER_STDC, then later
on in ‘configure.ac’ you can have a test program that includes an ansi C header file
conditionally:

#if STDC_HEADERS
include <stdlib.h>
#endif

If a test program needs to use or create a data file, give it a name that starts with
‘conftest’, such as ‘conftest.data’. The configure script cleans up by running ‘rm -rf
conftest*’ after running test programs and if the script is interrupted.

6.2.2 Test Functions

Function declarations in test programs should have a prototype conditionalized for C++. In
practice, though, test programs rarely need functions that take arguments.

#ifdef __cplusplus
foo (int i)
#else
foo (i) int i;
#endif

Functions that test programs declare should also be conditionalized for C++, which
requires ‘extern "C"’ prototypes. Make sure to not include any header files containing
clashing prototypes.

#ifdef __cplusplus
extern "C" void *malloc (size_t);
#else
void *malloc ();
#endif

If a test program calls a function with invalid parameters (just to see whether it exists),
organize the program to ensure that it never invokes that function. You can do this by
calling it in another function that is never invoked. You can’t do it by putting it after a
call to exit, because GCC version 2 knows that exit never returns and optimizes out any
code that follows it in the same block.

If you include any header files, be sure to call the functions relevant to them with the
correct number of arguments, even if they are just 0, to avoid compilation errors due to pro-

82 Autoconf

totypes. GCC version 2 has internal prototypes for several functions that it automatically
inlines; for example, memcpy. To avoid errors when checking for them, either pass them the
correct number of arguments or redeclare them with a different return type (such as char).

6.2.3 Generating Sources

Autoconf provides a set of macros that can be used to generate test source files. They
are written to be language generic, i.e., they actually depend on the current language (see
Section 6.1 [Language Choice], page 79) to “format” the output properly.

[Macro]AC LANG CONFTEST (source)
Save the source text in the current test source file: ‘conftest.extension ’ where the
extension depends on the current language.
Note that the source is evaluated exactly once, like regular Autoconf macro argu-
ments, and therefore (i) you may pass a macro invocation, (ii) if not, be sure to
double quote if needed.

[Macro]AC LANG SOURCE (source)
Expands into the source, with the definition of all the AC_DEFINE performed so far.

For instance executing (observe the double quotation!):
AC_INIT(Autoconf Documentation, 2.106, bug-autoconf@gnu.org)
AC_DEFINE([HELLO_WORLD], ["Hello, World\n"])
AC_LANG_CONFTEST(

[AC_LANG_SOURCE([[const char hw[] = "Hello, World\n";]])])
gcc -E -dD conftest.c -o -

results in:
1 "conftest.c"
1169 "configure"

1 "confdefs.h" 1

#define PACKAGE_NAME "Autoconf Documentation"
#define PACKAGE_TARNAME "autoconf-documentation"
#define PACKAGE_VERSION "2.106"
#define PACKAGE_STRING "Autoconf Documentation 2.106"
#define PACKAGE_BUGREPORT "bug-autoconf@gnu.org"
#define HELLO_WORLD "Hello, World\n"
1170 "configure" 2

const char hw[] = "Hello, World\n";

[Macro]AC LANG PROGRAM (prologue, body)
Expands into a source file which consists of the prologue, and then body as body of
the main function (e.g., main in C). Since it uses AC_LANG_SOURCE, the feature of the
latter are available.

For instance:

Chapter 6: Writing Tests 83

AC_INIT(Autoconf Documentation, 2.106, bug-autoconf@gnu.org)
AC_DEFINE([HELLO_WORLD], ["Hello, World\n"])
AC_LANG_CONFTEST(
[AC_LANG_PROGRAM([[const char hw[] = "Hello, World\n";]],

[[fputs (hw, stdout);]])])
gcc -E -dD conftest.c -o -

results in:

1 "conftest.c"
1169 "configure"

1 "confdefs.h" 1

#define PACKAGE_NAME "Autoconf Documentation"
#define PACKAGE_TARNAME "autoconf-documentation"
#define PACKAGE_VERSION "2.106"
#define PACKAGE_STRING "Autoconf Documentation 2.106"
#define PACKAGE_BUGREPORT "bug-autoconf@gnu.org"
#define HELLO_WORLD "Hello, World\n"
1170 "configure" 2

const char hw[] = "Hello, World\n";
int
main ()
{
fputs (hw, stdout);
;
return 0;

}

[Macro]AC LANG CALL (prologue, function)
Expands into a source file which consists of the prologue, and then a call to the
function as body of the main function (e.g., main in C). Since it uses AC_LANG_
PROGRAMS, the feature of the latter are available.

This function will probably be replaced in the future by a version which would enable
specifying the arguments. The use of this macro is not encouraged, as it violates
strongly the typing system.

[Macro]AC LANG FUNC LINK TRY (function)
Expands into a source file which consists of a pseudo use of the function as body of
the main function (e.g., main in C): a simple (function pointer) assignment. Since it
uses AC_LANG_PROGRAMS, the feature of the latter are available.

As AC_LANG_CALL, this macro is documented only for completeness. It is considered
to be severely broken, and in the future will be removed in favor of actual function
calls (with properly typed arguments).

84 Autoconf

6.3 Running the Preprocessor

Sometimes one might need to run the preprocessor on some source file. Usually it is a bad
idea, as you typically need to compile your project, not merely run the preprocessor on
it; therefore you certainly want to run the compiler, not the preprocessor. Resist to the
temptation of following the easiest path.

Nevertheless, if you need to run the preprocessor, then use AC_PREPROC_IFELSE.

[Macro]AC PREPROC IFELSE (input, [action-if-true], [action-if-false])
Run the preprocessor of the current language (see Section 6.1 [Language Choice],
page 79) on the input, run the shell commands action-if-true on success, action-if-
false otherwise. The input can be made by AC_LANG_PROGRAM and friends.
This macro uses CPPFLAGS, but not CFLAGS, because ‘-g’, ‘-O’, etc. are not valid
options to many C preprocessors.
It is customary to report unexpected failures with AC_MSG_FAILURE.

For instance:
AC_INIT(Autoconf Documentation, 2.106, bug-autoconf@gnu.org)
AC_DEFINE([HELLO_WORLD], ["Hello, World\n"])
AC_PREPROC_IFELSE(

[AC_LANG_PROGRAM([[const char hw[] = "Hello, World\n";]],
[[fputs (hw, stdout);]])],

[AC_MSG_RESULT([OK])],
[AC_MSG_FAILURE([unexpected preprocessor failure])])

results in:
checking for gcc... gcc
checking for C compiler default output... a.out
checking whether the C compiler works... yes
checking whether we are cross compiling... no
checking for suffix of executables...
checking for suffix of object files... o
checking whether we are using the GNU C compiler... yes
checking whether gcc accepts -g... yes
checking for gcc option to accept ANSI C... none needed
checking how to run the C preprocessor... gcc -E
OK

The macro AC_TRY_CPP (see Section 15.4 [Obsolete Macros], page 175) used to play the
role of AC_PREPROC_IFELSE, but double quotes its argument, making it impossible to use it
to elaborate sources. You are encouraged to get rid of your old use of the macro AC_TRY_CPP
in favor of AC_PREPROC_IFELSE, but, in the first place, are you sure you need to run the
preprocessor and not the compiler?

[Macro]AC EGREP HEADER (pattern, header-file, action-if-found,
[action-if-not-found])

If the output of running the preprocessor on the system header file header-file matches
the extended regular expression pattern, execute shell commands action-if-found, oth-
erwise execute action-if-not-found.

Chapter 6: Writing Tests 85

[Macro]AC EGREP CPP (pattern, program, [action-if-found], [action-if-not-found])
program is the text of a C or C++ program, on which shell variable, back quote, and
backslash substitutions are performed. If the output of running the preprocessor on
program matches the extended regular expression pattern, execute shell commands
action-if-found, otherwise execute action-if-not-found.

6.4 Running the Compiler

To check for a syntax feature of the current language’s (see Section 6.1 [Language Choice],
page 79) compiler, such as whether it recognizes a certain keyword, or simply to try some
library feature, use AC_COMPILE_IFELSE to try to compile a small program that uses that
feature.

[Macro]AC COMPILE IFELSE (input, [action-if-found], [action-if-not-found])
Run the compiler and compilation flags of the current language (see Section 6.1 [Lan-
guage Choice], page 79) on the input, run the shell commands action-if-true on suc-
cess, action-if-false otherwise. The input can be made by AC_LANG_PROGRAM and
friends.

It is customary to report unexpected failures with AC_MSG_FAILURE. This macro does
not try to link; use AC_LINK_IFELSE if you need to do that (see Section 6.5 [Running
the Linker], page 85).

6.5 Running the Linker

To check for a library, a function, or a global variable, Autoconf configure scripts try to
compile and link a small program that uses it. This is unlike Metaconfig, which by default
uses nm or ar on the C library to try to figure out which functions are available. Trying
to link with the function is usually a more reliable approach because it avoids dealing with
the variations in the options and output formats of nm and ar and in the location of the
standard libraries. It also allows configuring for cross-compilation or checking a function’s
run-time behavior if needed. On the other hand, it can be slower than scanning the libraries
once, but accuracy is more important than speed.

AC_LINK_IFELSE is used to compile test programs to test for functions and global vari-
ables. It is also used by AC_CHECK_LIB to check for libraries (see Section 5.4 [Libraries],
page 38), by adding the library being checked for to LIBS temporarily and trying to link a
small program.

[Macro]AC LINK IFELSE (input, [action-if-found], [action-if-not-found])
Run the compiler (and compilation flags) and the linker of the current language
(see Section 6.1 [Language Choice], page 79) on the input, run the shell commands
action-if-true on success, action-if-false otherwise. The input can be made by AC_
LANG_PROGRAM and friends.

LDFLAGS and LIBS are used for linking, in addition to the current compilation flags.

It is customary to report unexpected failures with AC_MSG_FAILURE. This macro
does not try to execute the program; use AC_RUN_IFELSE if you need to do that (see
Section 6.6 [Run Time], page 86).

86 Autoconf

6.6 Checking Run Time Behavior

Sometimes you need to find out how a system performs at run time, such as whether a
given function has a certain capability or bug. If you can, make such checks when your
program runs instead of when it is configured. You can check for things like the machine’s
endianness when your program initializes itself.

If you really need to test for a run-time behavior while configuring, you can write a test
program to determine the result, and compile and run it using AC_RUN_IFELSE. Avoid run-
ning test programs if possible, because this prevents people from configuring your package
for cross-compiling.

[Macro]AC RUN IFELSE (input, [action-if-found], [action-if-not-found],
[action-if-cross-compiling])

If program compiles and links successfully and returns an exit status of 0 when exe-
cuted, run shell commands action-if-true. Otherwise, run shell commands action-if-
false.

The input can be made by AC_LANG_PROGRAM and friends. LDFLAGS and LIBS are
used for linking, in addition to the compilation flags of the current language (see
Section 6.1 [Language Choice], page 79).

If the compiler being used does not produce executables that run on the system
where configure is being run, then the test program is not run. If the optional
shell commands action-if-cross-compiling are given, they are run instead. Otherwise,
configure prints an error message and exits.

In the action-if-false section, the exit status of the program is available in the shell
variable ‘$?’, but be very careful to limit yourself to positive values smaller than 127;
bigger values should be saved into a file by the program. Note also that you have
simply no guarantee that this exit status is issued by the program, or by the failure
of its compilation. In other words, use this feature if sadist only, it was reestablished
because the Autoconf maintainers grew tired of receiving “bug reports”.

It is customary to report unexpected failures with AC_MSG_FAILURE.

Try to provide a pessimistic default value to use when cross-compiling makes run-time
tests impossible. You do this by passing the optional last argument to AC_RUN_IFELSE.
autoconf prints a warning message when creating configure each time it encounters a call
to AC_RUN_IFELSE with no action-if-cross-compiling argument given. You may ignore the
warning, though users will not be able to configure your package for cross-compiling. A few
of the macros distributed with Autoconf produce this warning message.

To configure for cross-compiling you can also choose a value for those parameters based
on the canonical system name (see Chapter 11 [Manual Configuration], page 157). Alter-
natively, set up a test results cache file with the correct values for the host system (see
Section 7.3 [Caching Results], page 91).

To provide a default for calls of AC_RUN_IFELSE that are embedded in other macros,
including a few of the ones that come with Autoconf, you can test whether the shell variable
cross_compiling is set to ‘yes’, and then use an alternate method to get the results instead
of calling the macros.

Chapter 6: Writing Tests 87

6.7 Systemology

This section aims at presenting some systems and pointers to documentation. It may help
you addressing particular problems reported by users.

The Rosetta Stone for Unix2 contains a lot of interesting crossed information on various
Unices.

Darwin Darwin is also known as Mac OS X. Beware that the file system can be case-
preserving, but case insensitive. This can cause nasty problems, since for in-
stance the installation attempt for a package having an ‘INSTALL’ file can result
in ‘make install’ report that nothing was to be done!

That’s all dependent on whether the file system is a UFS (case sensitive) or
HFS+ (case preserving). By default Apple wants you to install the OS on
HFS+. Unfortunately, there are some pieces of software which really need to be
built on UFS. We may want to rebuild Darwin to have both UFS and HFS+
available (and put the /local/build tree on the UFS).

qnx 4.25 qnx is a realtime operating system running on Intel architecture meant to
be scalable from the small embedded systems to the hundred processor super-
computer. It claims to be posix certified. More information is available on the
qnx home page3, including the qnx man pages4.

Tru64 The documentation of several versions of Tru645 is available in different formats.

Unix version 7
Documentation is available in the V7 Manual6.

6.8 Multiple Cases

Some operations are accomplished in several possible ways, depending on the unix variant.
Checking for them essentially requires a “case statement”. Autoconf does not directly
provide one; however, it is easy to simulate by using a shell variable to keep track of
whether a way to perform the operation has been found yet.

Here is an example that uses the shell variable fstype to keep track of whether the
remaining cases need to be checked.

2 Rosetta Stone for Unix, http://bhami.com/rosetta.html.
3 qnx home page, www.qnx.com.
4 qnx man pages, http://support.qnx.com/support/docs/qnx4/.
5 documentation of several versions of Tru64, http://www.tru64unix.compaq.com/docs/base_

doc/DOCUMENTATION/.
6 V7 Manual, http://plan9.bell-labs.com/7thEdMan/index.html.

88 Autoconf

AC_MSG_CHECKING([how to get file system type])
fstype=no
The order of these tests is important.
AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[#include <sys/statvfs.h>
#include <sys/fstyp.h>]])],

[AC_DEFINE(FSTYPE_STATVFS) fstype=SVR4])
if test $fstype = no; then
AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[#include <sys/statfs.h>

#include <sys/fstyp.h>]])],
[AC_DEFINE(FSTYPE_USG_STATFS) fstype=SVR3])

fi
if test $fstype = no; then
AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[#include <sys/statfs.h>

#include <sys/vmount.h>]])]),
[AC_DEFINE(FSTYPE_AIX_STATFS) fstype=AIX])

fi
(more cases omitted here)
AC_MSG_RESULT([$fstype])

Chapter 7: Results of Tests 89

7 Results of Tests

Once configure has determined whether a feature exists, what can it do to record that
information? There are four sorts of things it can do: define a C preprocessor symbol, set
a variable in the output files, save the result in a cache file for future configure runs, and
print a message letting the user know the result of the test.

7.1 Defining C Preprocessor Symbols

A common action to take in response to a feature test is to define a C preprocessor symbol in-
dicating the results of the test. That is done by calling AC_DEFINE or AC_DEFINE_UNQUOTED.

By default, AC_OUTPUT places the symbols defined by these macros into the output
variable DEFS, which contains an option ‘-Dsymbol=value ’ for each symbol defined. Unlike
in Autoconf version 1, there is no variable DEFS defined while configure is running. To
check whether Autoconf macros have already defined a certain C preprocessor symbol, test
the value of the appropriate cache variable, as in this example:

AC_CHECK_FUNC(vprintf, [AC_DEFINE(HAVE_VPRINTF)])
if test "$ac_cv_func_vprintf" != yes; then
AC_CHECK_FUNC(_doprnt, [AC_DEFINE(HAVE_DOPRNT)])

fi

If AC_CONFIG_HEADERS has been called, then instead of creating DEFS, AC_OUTPUT creates
a header file by substituting the correct values into #define statements in a template file.
See Section 4.8 [Configuration Headers], page 26, for more information about this kind of
output.

[Macro]AC DEFINE (variable, value, [description])
[Macro]AC DEFINE (variable)

Define the C preprocessor variable variable to value (verbatim). value should not
contain literal newlines, and if you are not using AC_CONFIG_HEADERS it should not
contain any ‘#’ characters, as make tends to eat them. To use a shell variable (which
you need to do in order to define a value containing the M4 quote characters ‘[’ or
‘]’), use AC_DEFINE_UNQUOTED instead. description is only useful if you are using AC_
CONFIG_HEADERS. In this case, description is put into the generated ‘config.h.in’
as the comment before the macro define. The following example defines the C pre-
processor variable EQUATION to be the string constant ‘"$a > $b"’:

AC_DEFINE(EQUATION, "$a > $b")

If neither value nor description are given, then value defaults to 1 instead of to the
empty string. This is for backwards compatibility with older versions of Autoconf,
but this usage is obsolescent and may be withdrawn in future versions of Autoconf.

[Macro]AC DEFINE UNQUOTED (variable, value, [description])
[Macro]AC DEFINE UNQUOTED (variable)

Like AC_DEFINE, but three shell expansions are performed—once—on variable and
value: variable expansion (‘$’), command substitution (‘‘’), and backslash escaping
(‘\’). Single and double quote characters in the value have no special meaning. Use
this macro instead of AC_DEFINE when variable or value is a shell variable. Examples:

90 Autoconf

AC_DEFINE_UNQUOTED(config_machfile, "$machfile")
AC_DEFINE_UNQUOTED(GETGROUPS_T, $ac_cv_type_getgroups)
AC_DEFINE_UNQUOTED($ac_tr_hdr)

Due to a syntactical bizarreness of the Bourne shell, do not use semicolons to separate
AC_DEFINE or AC_DEFINE_UNQUOTED calls from other macro calls or shell code; that can
cause syntax errors in the resulting configure script. Use either spaces or newlines. That
is, do this:

AC_CHECK_HEADER(elf.h, [AC_DEFINE(SVR4) LIBS="$LIBS -lelf"])

or this:

AC_CHECK_HEADER(elf.h,
[AC_DEFINE(SVR4)
LIBS="$LIBS -lelf"])

instead of this:

AC_CHECK_HEADER(elf.h, [AC_DEFINE(SVR4); LIBS="$LIBS -lelf"])

7.2 Setting Output Variables

Another way to record the results of tests is to set output variables, which are shell variables
whose values are substituted into files that configure outputs. The two macros below
create new output variables. See Section 4.7.1 [Preset Output Variables], page 20, for a list
of output variables that are always available.

[Macro]AC SUBST (variable, [value])
Create an output variable from a shell variable. Make AC_OUTPUT substitute the
variable variable into output files (typically one or more ‘Makefile’s). This means
that AC_OUTPUT will replace instances of ‘@variable@’ in input files with the value
that the shell variable variable has when AC_OUTPUT is called. This value of variable
should not contain literal newlines.

If value is given, in addition assign it to variable.

[Macro]AC SUBST FILE (variable)
Another way to create an output variable from a shell variable. Make AC_OUTPUT
insert (without substitutions) the contents of the file named by shell variable variable
into output files. This means that AC_OUTPUT will replace instances of ‘@variable@’
in output files (such as ‘Makefile.in’) with the contents of the file that the shell
variable variable names when AC_OUTPUT is called. Set the variable to ‘/dev/null’
for cases that do not have a file to insert.

This macro is useful for inserting ‘Makefile’ fragments containing special dependen-
cies or other make directives for particular host or target types into ‘Makefile’s. For
example, ‘configure.ac’ could contain:

AC_SUBST_FILE(host_frag)
host_frag=$srcdir/conf/sun4.mh

and then a ‘Makefile.in’ could contain:

@host_frag@

Chapter 7: Results of Tests 91

Running configure in varying environments can be extremely dangerous. If for instance
the user runs ‘CC=bizarre-cc ./configure’, then the cache, ‘config.h’, and many other
output files will depend upon bizarre-cc being the C compiler. If for some reason the user
runs ./configure again, or if it is run via ‘./config.status --recheck’, (See Section 4.7.4
[Automatic Remaking], page 25, and see Chapter 14 [config.status Invocation], page 171),
then the configuration can be inconsistent, composed of results depending upon two different
compilers.

Environment variables that affect this situation, such as ‘CC’ above, are called precious
variables, and can be declared as such by AC_ARG_VAR.

[Macro]AC ARG VAR (variable, description)
Declare variable is a precious variable, and include its description in the variable
section of ‘./configure --help’.

Being precious means that

− variable is AC_SUBST’d.
− The value of variable when configure was launched is saved in the cache,

including if it was not specified on the command line but via the environ-
ment. Indeed, while configure can notice the definition of CC in ‘./configure
CC=bizarre-cc’, it is impossible to notice it in ‘CC=bizarre-cc ./configure’,
which, unfortunately, is what most users do.
We emphasize that it is the initial value of variable which is saved, not that found
during the execution of configure. Indeed, specifying ‘./configure FOO=foo’
and letting ‘./configure’ guess that FOO is foo can be two very different runs.

− variable is checked for consistency between two configure runs. For instance:
$./configure --silent --config-cache

$ CC=cc ./configure --silent --config-cache

configure: error: ‘CC’ was not set in the previous run
configure: error: changes in the environment can compromise \
the build
configure: error: run ‘make distclean’ and/or \
‘rm config.cache’ and start over

and similarly if the variable is unset, or if its content is changed.
− variable is kept during automatic reconfiguration (see Chapter 14 [config.status

Invocation], page 171) as if it had been passed as a command line argument,
including when no cache is used:

$ CC=/usr/bin/cc ./configure undeclared_var=raboof --silent

$./config.status --recheck

running /bin/sh ./configure undeclared_var=raboof --silent \
CC=/usr/bin/cc --no-create --no-recursion

7.3 Caching Results

To avoid checking for the same features repeatedly in various configure scripts (or in
repeated runs of one script), configure can optionally save the results of many checks in a
cache file (see Section 7.3.2 [Cache Files], page 93). If a configure script runs with caching

92 Autoconf

enabled and finds a cache file, it reads the results of previous runs from the cache and avoids
rerunning those checks. As a result, configure can then run much faster than if it had to
perform all of the checks every time.

[Macro]AC CACHE VAL (cache-id, commands-to-set-it)
Ensure that the results of the check identified by cache-id are available. If the results
of the check were in the cache file that was read, and configure was not given the
‘--quiet’ or ‘--silent’ option, print a message saying that the result was cached;
otherwise, run the shell commands commands-to-set-it. If the shell commands are run
to determine the value, the value will be saved in the cache file just before configure
creates its output files. See Section 7.3.1 [Cache Variable Names], page 93, for how
to choose the name of the cache-id variable.
The commands-to-set-it must have no side effects except for setting the variable
cache-id, see below.

[Macro]AC CACHE CHECK (message, cache-id, commands-to-set-it)
A wrapper for AC_CACHE_VAL that takes care of printing the messages. This macro
provides a convenient shorthand for the most common way to use these macros.
It calls AC_MSG_CHECKING for message, then AC_CACHE_VAL with the cache-id and
commands arguments, and AC_MSG_RESULT with cache-id.
The commands-to-set-it must have no side effects except for setting the variable
cache-id, see below.

It is very common to find buggy macros using AC_CACHE_VAL or AC_CACHE_CHECK, be-
cause people are tempted to call AC_DEFINE in the commands-to-set-it. Instead, the code
that follows the call to AC_CACHE_VAL should call AC_DEFINE, by examining the value of
the cache variable. For instance, the following macro is broken:

AC_DEFUN([AC_SHELL_TRUE],
[AC_CACHE_CHECK([whether true(1) works], [ac_cv_shell_true_works],

[ac_cv_shell_true_works=no
true && ac_cv_shell_true_works=yes
if test $ac_cv_shell_true_works = yes; then
AC_DEFINE([TRUE_WORKS], 1

[Define if ‘true(1)’ works properly.])
fi])

])

This fails if the cache is enabled: the second time this macro is run, TRUE_WORKS will not
be defined. The proper implementation is:

AC_DEFUN([AC_SHELL_TRUE],
[AC_CACHE_CHECK([whether true(1) works], [ac_cv_shell_true_works],

[ac_cv_shell_true_works=no
true && ac_cv_shell_true_works=yes])

if test $ac_cv_shell_true_works = yes; then
AC_DEFINE([TRUE_WORKS], 1

[Define if ‘true(1)’ works properly.])
fi
])

Chapter 7: Results of Tests 93

Also, commands-to-set-it should not print any messages, for example with AC_MSG_
CHECKING; do that before calling AC_CACHE_VAL, so the messages are printed regardless of
whether the results of the check are retrieved from the cache or determined by running the
shell commands.

7.3.1 Cache Variable Names

The names of cache variables should have the following format:

package-prefix_cv_value-type_specific-value_[additional-options]

for example, ‘ac_cv_header_stat_broken’ or ‘ac_cv_prog_gcc_traditional’. The parts
of the variable name are:

package-prefix
An abbreviation for your package or organization; the same prefix you begin
local Autoconf macros with, except lowercase by convention. For cache values
used by the distributed Autoconf macros, this value is ‘ac’.

cv Indicates that this shell variable is a cache value. This string must be present
in the variable name, including the leading underscore.

value-type A convention for classifying cache values, to produce a rational naming system.
The values used in Autoconf are listed in Section 9.2 [Macro Names], page 111.

specific-value
Which member of the class of cache values this test applies to. For example,
which function (‘alloca’), program (‘gcc’), or output variable (‘INSTALL’).

additional-options
Any particular behavior of the specific member that this test applies to. For
example, ‘broken’ or ‘set’. This part of the name may be omitted if it does
not apply.

The values assigned to cache variables may not contain newlines. Usually, their values
will be Boolean (‘yes’ or ‘no’) or the names of files or functions; so this is not an important
restriction.

7.3.2 Cache Files

A cache file is a shell script that caches the results of configure tests run on one system so
they can be shared between configure scripts and configure runs. It is not useful on other
systems. If its contents are invalid for some reason, the user may delete or edit it.

By default, configure uses no cache file (technically, it uses ‘--cache-file=/dev/null’),
to avoid problems caused by accidental use of stale cache files.

To enable caching, configure accepts ‘--config-cache’ (or ‘-C’) to cache results in the
file ‘config.cache’. Alternatively, ‘--cache-file=file ’ specifies that file be the cache file.
The cache file is created if it does not exist already. When configure calls configure scripts
in subdirectories, it uses the ‘--cache-file’ argument so that they share the same cache.
See Section 4.11 [Subdirectories], page 31, for information on configuring subdirectories
with the AC_CONFIG_SUBDIRS macro.

94 Autoconf

‘config.status’ only pays attention to the cache file if it is given the ‘--recheck’
option, which makes it rerun configure.

It is wrong to try to distribute cache files for particular system types. There is too
much room for error in doing that, and too much administrative overhead in maintaining
them. For any features that can’t be guessed automatically, use the standard method of the
canonical system type and linking files (see Chapter 11 [Manual Configuration], page 157).

The site initialization script can specify a site-wide cache file to use, instead of the
usual per-program cache. In this case, the cache file will gradually accumulate information
whenever someone runs a new configure script. (Running configure merges the new
cache results with the existing cache file.) This may cause problems, however, if the system
configuration (e.g., the installed libraries or compilers) changes and the stale cache file is
not deleted.

7.3.3 Cache Checkpointing

If your configure script, or a macro called from ‘configure.ac’, happens to abort the
configure process, it may be useful to checkpoint the cache a few times at key points using
AC_CACHE_SAVE. Doing so will reduce the amount of time it takes to re-run the configure
script with (hopefully) the error that caused the previous abort corrected.

[Macro]AC CACHE LOAD
Loads values from existing cache file, or creates a new cache file if a cache file is not
found. Called automatically from AC_INIT.

[Macro]AC CACHE SAVE
Flushes all cached values to the cache file. Called automatically from AC_OUTPUT, but
it can be quite useful to call AC_CACHE_SAVE at key points in ‘configure.ac’.

For instance:
. . . AC INIT, etc. . . .
Checks for programs.
AC_PROG_CC
AC_PROG_GCC_TRADITIONAL
. . . more program checks . . .
AC_CACHE_SAVE

Checks for libraries.
AC_CHECK_LIB(nsl, gethostbyname)
AC_CHECK_LIB(socket, connect)
. . . more lib checks . . .
AC_CACHE_SAVE

Might abort...
AM_PATH_GTK(1.0.2,, [AC_MSG_ERROR([GTK not in path])])
AM_PATH_GTKMM(0.9.5,, [AC_MSG_ERROR([GTK not in path])])
. . . AC OUTPUT, etc. . . .

7.4 Printing Messages

configure scripts need to give users running them several kinds of information. The fol-
lowing macros print messages in ways appropriate for each kind. The arguments to all of

Chapter 7: Results of Tests 95

them get enclosed in shell double quotes, so the shell performs variable and back-quote
substitution on them.

These macros are all wrappers around the echo shell command. configure scripts
should rarely need to run echo directly to print messages for the user. Using these macros
makes it easy to change how and when each kind of message is printed; such changes need
only be made to the macro definitions and all of the callers will change automatically.

To diagnose static issues, i.e., when autoconf is run, see Section 9.3 [Reporting Mes-
sages], page 112.

[Macro]AC MSG CHECKING (feature-description)
Notify the user that configure is checking for a particular feature. This macro
prints a message that starts with ‘checking ’ and ends with ‘...’ and no newline.
It must be followed by a call to AC_MSG_RESULT to print the result of the check and
the newline. The feature-description should be something like ‘whether the Fortran
compiler accepts C++ comments’ or ‘for c89’.

This macro prints nothing if configure is run with the ‘--quiet’ or ‘--silent’
option.

[Macro]AC MSG RESULT (result-description)
Notify the user of the results of a check. result-description is almost always the value
of the cache variable for the check, typically ‘yes’, ‘no’, or a file name. This macro
should follow a call to AC_MSG_CHECKING, and the result-description should be the
completion of the message printed by the call to AC_MSG_CHECKING.

This macro prints nothing if configure is run with the ‘--quiet’ or ‘--silent’
option.

[Macro]AC MSG NOTICE (message)
Deliver the message to the user. It is useful mainly to print a general description of
the overall purpose of a group of feature checks, e.g.,

AC_MSG_NOTICE([checking if stack overflow is detectable])

This macro prints nothing if configure is run with the ‘--quiet’ or ‘--silent’
option.

[Macro]AC MSG ERROR (error-description, [exit-status])
Notify the user of an error that prevents configure from completing. This macro
prints an error message to the standard error output and exits configure with exit-
status (1 by default). error-description should be something like ‘invalid value
$HOME for \$HOME’.

The error-description should start with a lower-case letter, and “cannot” is preferred
to “can’t”.

[Macro]AC MSG FAILURE (error-description, [exit-status])
This AC_MSG_ERROR wrapper notifies the user of an error that prevents configure
from completing and that additional details are provided in ‘config.log’. This is
typically used when abnormal results are found during a compilation.

96 Autoconf

[Macro]AC MSG WARN (problem-description)
Notify the configure user of a possible problem. This macro prints the message
to the standard error output; configure continues running afterward, so macros
that call AC_MSG_WARN should provide a default (back-up) behavior for the situations
they warn about. problem-description should be something like ‘ln -s seems to make
hard links’.

Chapter 8: Programming in M4 97

8 Programming in M4

Autoconf is written on top of two layers: M4sugar, which provides convenient macros
for pure M4 programming, and M4sh, which provides macros dedicated to shell script
generation.

As of this version of Autoconf, these two layers are still experimental, and their interface
might change in the future. As a matter of fact, anything that is not documented must not
be used.

8.1 M4 Quotation

The most common problem with existing macros is an improper quotation. This section,
which users of Autoconf can skip, but which macro writers must read, first justifies the
quotation scheme that was chosen for Autoconf and then ends with a rule of thumb. Un-
derstanding the former helps one to follow the latter.

8.1.1 Active Characters

To fully understand where proper quotation is important, you first need to know what
the special characters are in Autoconf: ‘#’ introduces a comment inside which no macro
expansion is performed, ‘,’ separates arguments, ‘[’ and ‘]’ are the quotes themselves, and
finally ‘(’ and ‘)’ (which M4 tries to match by pairs).

In order to understand the delicate case of macro calls, we first have to present some
obvious failures. Below they are “obvious-ified”, but when you find them in real life, they
are usually in disguise.

Comments, introduced by a hash and running up to the newline, are opaque tokens to
the top level: active characters are turned off, and there is no macro expansion:

define([def], ine)
⇒# define([def], ine)

Each time there can be a macro expansion, there is a quotation expansion, i.e., one level
of quotes is stripped:

int tab[10];
⇒int tab10;
[int tab[10];]
⇒int tab[10];

Without this in mind, the reader will try hopelessly to use her macro array:

define([array], [int tab[10];])
array
⇒int tab10;
[array]
⇒array

How can you correctly output the intended results1?

1 Using defn.

98 Autoconf

8.1.2 One Macro Call

Let’s proceed on the interaction between active characters and macros with this small macro,
which just returns its first argument:

define([car], [$1])

The two pairs of quotes above are not part of the arguments of define; rather, they are
understood by the top level when it tries to find the arguments of define. Therefore, it is
equivalent to write:

define(car, $1)

But, while it is acceptable for a ‘configure.ac’ to avoid unnecessary quotes, it is bad
practice for Autoconf macros which must both be more robust and also advocate perfect
style.

At the top level, there are only two possibilities: either you quote or you don’t:

car(foo, bar, baz)
⇒foo
[car(foo, bar, baz)]
⇒car(foo, bar, baz)

Let’s pay attention to the special characters:

car(#)
error EOF in argument list

The closing parenthesis is hidden in the comment; with a hypothetical quoting, the top
level understood it this way:

car([#)]

Proper quotation, of course, fixes the problem:

car([#])
⇒#

The reader will easily understand the following examples:

car(foo, bar)
⇒foo
car([foo, bar])
⇒foo, bar
car((foo, bar))
⇒(foo, bar)
car([(foo], [bar)])
⇒(foo
car([], [])
⇒
car([[]], [[]])
⇒[]

With this in mind, we can explore the cases where macros invoke macros. . . .

8.1.3 Quotation and Nested Macros

The examples below use the following macros:

Chapter 8: Programming in M4 99

define([car], [$1])
define([active], [ACT, IVE])
define([array], [int tab[10]])

Each additional embedded macro call introduces other possible interesting quotations:
car(active)
⇒ACT
car([active])
⇒ACT, IVE
car([[active]])
⇒active

In the first case, the top level looks for the arguments of car, and finds ‘active’. Because
M4 evaluates its arguments before applying the macro, ‘active’ is expanded, which results
in:

car(ACT, IVE)
⇒ACT

In the second case, the top level gives ‘active’ as first and only argument of car, which
results in:

active
⇒ACT, IVE

i.e., the argument is evaluated after the macro that invokes it. In the third case, car receives
‘[active]’, which results in:

[active]
⇒active

exactly as we already saw above.
The example above, applied to a more realistic example, gives:

car(int tab[10];)
⇒int tab10;
car([int tab[10];])
⇒int tab10;
car([[int tab[10];]])
⇒int tab[10];

Huh? The first case is easily understood, but why is the second wrong, and the third right?
To understand that, you must know that after M4 expands a macro, the resulting text is
immediately subjected to macro expansion and quote removal. This means that the quote
removal occurs twice—first before the argument is passed to the car macro, and second
after the car macro expands to the first argument.

As the author of the Autoconf macro car, you then consider it to be incorrect that your
users have to double-quote the arguments of car, so you “fix” your macro. Let’s call it qar
for quoted car:

define([qar], [[$1]])

and check that qar is properly fixed:
qar([int tab[10];])
⇒int tab[10];

100 Autoconf

Ahhh! That’s much better.

But note what you’ve done: now that the arguments are literal strings, if the user wants
to use the results of expansions as arguments, she has to use an unquoted macro call:

qar(active)
⇒ACT

where she wanted to reproduce what she used to do with car:

car([active])
⇒ACT, IVE

Worse yet: she wants to use a macro that produces a set of cpp macros:

define([my_includes], [#include <stdio.h>])
car([my_includes])
⇒#include <stdio.h>
qar(my_includes)
error EOF in argument list

This macro, qar, because it double quotes its arguments, forces its users to leave their
macro calls unquoted, which is dangerous. Commas and other active symbols are interpreted
by M4 before they are given to the macro, often not in the way the users expect. Also,
because qar behaves differently from the other macros, it’s an exception that should be
avoided in Autoconf.

8.1.4 changequote is Evil

The temptation is often high to bypass proper quotation, in particular when it’s late at
night. Then, many experienced Autoconf hackers finally surrender to the dark side of the
force and use the ultimate weapon: changequote.

The M4 builtin changequote belongs to a set of primitives that allow one to adjust the
syntax of the language to adjust it to one’s needs. For instance, by default M4 uses ‘‘’ and
‘’’ as quotes, but in the context of shell programming (and actually of most programming
languages), that’s about the worst choice one can make: because of strings and back-quoted
expressions in shell code (such as ‘’this’’ and ‘‘that‘’), because of literal characters in
usual programming languages (as in ‘’0’’), there are many unbalanced ‘‘’ and ‘’’. Proper
M4 quotation then becomes a nightmare, if not impossible. In order to make M4 useful in
such a context, its designers have equipped it with changequote, which makes it possible
to choose another pair of quotes. M4sugar, M4sh, Autoconf, and Autotest all have chosen
to use ‘[’ and ‘]’. Not especially because they are unlikely characters, but because they are
characters unlikely to be unbalanced.

There are other magic primitives, such as changecom to specify what syntactic forms
are comments (it is common to see ‘changecom(<!--, -->)’ when M4 is used to produce
HTML pages), changeword and changesyntax to change other syntactic details (such as
the character to denote the n-th argument, ‘$’ by default, the parenthesis around arguments
etc.).

These primitives are really meant to make M4 more useful for specific domains: they
should be considered like command line options: ‘--quotes’, ‘--comments’, ‘--words’, and
--syntax. Nevertheless, they are implemented as M4 builtins, as it makes M4 libraries self
contained (no need for additional options).

Chapter 8: Programming in M4 101

There lies the problem. . . .

The problem is that it is then tempting to use them in the middle of an M4 script, as
opposed to its initialization. This, if not carefully thought out, can lead to disastrous effects:
you are changing the language in the middle of the execution. Changing and restoring the
syntax is often not enough: if you happened to invoke macros in between, these macros will
be lost, as the current syntax will probably not be the one they were implemented with.

8.1.5 Quadrigraphs

When writing an Autoconf macro you may occasionally need to generate special characters
that are difficult to express with the standard Autoconf quoting rules. For example, you
may need to output the regular expression ‘[^[]’, which matches any character other than
‘[’. This expression contains unbalanced brackets so it cannot be put easily into an M4
macro.

You can work around this problem by using one of the following quadrigraphs:

‘@<:@’ ‘[’

‘@:>@’ ‘]’

‘@S|@’ ‘$’

‘@%:@’ ‘#’

‘@&t@’ Expands to nothing.

Quadrigraphs are replaced at a late stage of the translation process, after m4 is run, so
they do not get in the way of M4 quoting. For example, the string ‘^@<:@’, independently
of its quotation, will appear as ‘^[’ in the output.

The empty quadrigraph can be used:
− to mark trailing spaces explicitly

Trailing spaces are smashed by autom4te. This is a feature.
− to produce other quadrigraphs

For instance ‘@<@&t@:@’ produces ‘@<:@’.
− to escape occurrences of forbidden patterns

For instance you might want to mention AC_FOO in a comment, while still being sure
that autom4te will still catch unexpanded ‘AC_*’. Then write ‘AC@&t@_FOO’.

The name ‘@&t@’ was suggested by Paul Eggert:
I should give some credit to the ‘@&t@’ pun. The ‘&’ is my own invention, but
the ‘t’ came from the source code of the algol68c compiler, written by Steve
Bourne (of Bourne shell fame), and which used ‘mt’ to denote the empty string.
In C, it would have looked like something like:

char const mt[] = "";

but of course the source code was written in Algol 68.
I don’t know where he got ‘mt’ from: it could have been his own invention, and
I suppose it could have been a common pun around the Cambridge University
computer lab at the time.

102 Autoconf

8.1.6 Quotation Rule Of Thumb

To conclude, the quotation rule of thumb is:
One pair of quotes per pair of parentheses.

Never over-quote, never under-quote, in particular in the definition of macros. In the
few places where the macros need to use brackets (usually in C program text or regular
expressions), properly quote the arguments!

It is common to read Autoconf programs with snippets like:

AC_TRY_LINK(
changequote(<<, >>)dnl
<<#include <time.h>
#ifndef tzname /* For SGI. */
extern char *tzname[]; /* RS6000 and others reject char **tzname. */
#endif>>,
changequote([,])dnl
[atoi (*tzname);], ac_cv_var_tzname=yes, ac_cv_var_tzname=no)

which is incredibly useless since AC_TRY_LINK is already double quoting, so you just need:

AC_TRY_LINK(
[#include <time.h>
#ifndef tzname /* For SGI. */
extern char *tzname[]; /* RS6000 and others reject char **tzname. */
#endif],

[atoi (*tzname);],
[ac_cv_var_tzname=yes],
[ac_cv_var_tzname=no])

The M4-fluent reader will note that these two examples are rigorously equivalent, since M4
swallows both the ‘changequote(<<, >>)’ and ‘<<’ ‘>>’ when it collects the arguments:
these quotes are not part of the arguments!

Simplified, the example above is just doing this:

changequote(<<, >>)dnl
<<[]>>
changequote([,])dnl

instead of simply:

[[]]

With macros that do not double quote their arguments (which is the rule), double-quote
the (risky) literals:

AC_LINK_IFELSE([AC_LANG_PROGRAM(
[[#include <time.h>
#ifndef tzname /* For SGI. */
extern char *tzname[]; /* RS6000 and others reject char **tzname. */
#endif]],

[atoi (*tzname);])],
[ac_cv_var_tzname=yes],
[ac_cv_var_tzname=no])

Chapter 8: Programming in M4 103

See Section 8.1.5 [Quadrigraphs], page 101, for what to do if you run into a hopeless
case where quoting does not suffice.

When you create a configure script using newly written macros, examine it carefully
to check whether you need to add more quotes in your macros. If one or more words have
disappeared in the M4 output, you need more quotes. When in doubt, quote.

However, it’s also possible to put on too many layers of quotes. If this happens, the
resulting configure script will contain unexpanded macros. The autoconf program checks
for this problem by doing ‘grep AC_ configure’.

8.2 Using autom4te

The Autoconf suite, including M4sugar, M4sh, and Autotest, in addition to Autoconf per
se, heavily rely on M4. All these different uses revealed common needs factored into a layer
over m4: autom4te2.

autom4te is a preprocessor that is like m4. It supports M4 extensions designed for use
in tools like Autoconf.

8.2.1 Invoking autom4te

The command line arguments are modeled after M4’s:

autom4te options files

where the files are directly passed to m4. In addition to the regular expansion, it handles
the replacement of the quadrigraphs (see Section 8.1.5 [Quadrigraphs], page 101), and of
‘__oline__’, the current line in the output. It supports an extended syntax for the files:

‘file.m4f’
This file is an M4 frozen file. Note that all the previous files are ignored. See
the option ‘--melt’ for the rationale.

‘file?’ If found in the library path, the file is included for expansion, otherwise it is
ignored instead of triggering a failure.

Of course, it supports the Autoconf common subset of options:

‘--help’
‘-h’ Print a summary of the command line options and exit.

‘--version’
‘-V’ Print the version number of Autoconf and exit.

‘--verbose’
‘-v’ Report processing steps.

‘--debug’
‘-d’ Don’t remove the temporary files and be even more verbose.

‘--include=dir ’
‘-I dir ’ Also look for input files in dir. Multiple invocations accumulate.

2 Yet another great name from Lars J. Aas.

104 Autoconf

‘--output=file ’
‘-o file ’ Save output (script or trace) to file. The file ‘-’ stands for the standard output.

As an extension of m4, it includes the following options:

‘--warnings=category ’
‘-W category ’

Report the warnings related to category (which can actually be a comma
separated list). See Section 9.3 [Reporting Messages], page 112, macro AC_
DIAGNOSE, for a comprehensive list of categories. Special values include:

‘all’ report all the warnings

‘none’ report none

‘error’ treats warnings as errors

‘no-category ’
disable warnings falling into category

Warnings about ‘syntax’ are enabled by default, and the environment vari-
able WARNINGS, a comma separated list of categories, is honored. autom4te -W
category will actually behave as if you had run:

autom4te --warnings=syntax,$WARNINGS,category

If you want to disable autom4te’s defaults and WARNINGS, but (for
example) enable the warnings about obsolete constructs, you would use ‘-W
none,obsolete’.
autom4te displays a back trace for errors, but not for warnings; if you want
them, just pass ‘-W error’. For instance, on this ‘configure.ac’:

AC_DEFUN([INNER],
[AC_RUN_IFELSE([AC_LANG_PROGRAM([exit (0)])])])

AC_DEFUN([OUTER],
[INNER])

AC_INIT
OUTER

you get:
$ autom4te -l autoconf -Wcross

configure.ac:8: warning: AC_RUN_IFELSE called without default \
to allow cross compiling
$ autom4te -l autoconf -Wcross,error -f

configure.ac:8: error: AC_RUN_IFELSE called without default \
to allow cross compiling
acgeneral.m4:3044: AC_RUN_IFELSE is expanded from...
configure.ac:2: INNER is expanded from...
configure.ac:5: OUTER is expanded from...
configure.ac:8: the top level

Chapter 8: Programming in M4 105

‘--melt’
‘-m’ Do not use frozen files. Any argument file.m4f will be replaced with file.m4.

This helps tracing the macros which are executed only when the files are frozen,
typically m4_define. For instance, running:

autom4te --melt 1.m4 2.m4f 3.m4 4.m4f input.m4

is roughly equivalent to running:
m4 1.m4 2.m4 3.m4 4.m4 input.m4

while
autom4te 1.m4 2.m4f 3.m4 4.m4f input.m4

is equivalent to:
m4 --reload-state=4.m4f input.m4

‘--freeze’
‘-f’ Produce a frozen state file. autom4te freezing is stricter than M4’s: it must pro-

duce no warnings, and no output other than empty lines (a line with whitespace
is not empty) and comments (starting with ‘#’). Please, note that contrary to
m4, this options takes no argument:

autom4te 1.m4 2.m4 3.m4 --freeze --output=3.m4f

corresponds to
m4 1.m4 2.m4 3.m4 --freeze-state=3.m4f

‘--mode=octal-mode ’
‘-m octal-mode ’

Set the mode of the non-traces output to octal-mode; by default ‘0666’.

As another additional feature over m4, autom4te caches its results. gnu M4 is able to
produce a regular output and traces at the same time. Traces are heavily used in the gnu
Build System: autoheader uses them to build ‘config.h.in’, autoreconf to determine
what gnu Build System components are used, automake to “parse” ‘configure.ac’ etc.
To save the long runs of m4, traces are cached while performing regular expansion, and
conversely. This cache is (actually, the caches are) stored in the directory ‘autom4te.cache’.
It can safely be removed at any moment (especially if for some reason autom4te considers
it is trashed).

‘--cache=directory ’
‘-C directory ’

Specify the name of the directory where the result should be cached. Passing
an empty value disables caching. Be sure to pass a relative path name, as for
the time being, global caches are not supported.

‘--no-cache’
Don’t cache the results.

‘--force’
‘-f’ If a cache is used, consider it obsolete (but update it anyway).

Because traces are so important to the gnu Build System, autom4te provides high level
tracing features as compared to M4, and helps exploiting the cache:

106 Autoconf

‘--trace=macro[:format]’
‘-t macro[:format]’

Trace the invocations of macro according to the format. Multiple ‘--trace’
arguments can be used to list several macros. Multiple ‘--trace’ arguments
for a single macro are not cumulative; instead, you should just make format as
long as needed.
The format is a regular string, with newlines if desired, and several special
escape codes. It defaults to ‘$f:$l:$n:$%’. It can use the following special
escapes:

‘$$’ The character ‘$’.

‘$f’ The filename from which macro is called.

‘$l’ The line number from which macro is called.

‘$d’ The depth of the macro call. This is an M4 technical detail that
you probably don’t want to know about.

‘$n’ The name of the macro.

‘$num ’ The numth argument of the call to macro.

‘$@’
‘$sep@’
‘${separator}@’

All the arguments passed to macro, separated by the character sep
or the string separator (‘,’ by default). Each argument is quoted,
i.e., enclosed in a pair of square brackets.

‘$*’
‘$sep*’
‘${separator}*’

As above, but the arguments are not quoted.

‘$%’
‘$sep%’
‘${separator}%’

As above, but the arguments are not quoted, all new line characters
in the arguments are smashed, and the default separator is ‘:’.
The escape ‘$%’ produces single-line trace outputs (unless you put
newlines in the ‘separator’), while ‘$@’ and ‘$*’ do not.

See Section 3.4 [autoconf Invocation], page 10, for examples of trace uses.

‘--preselect=macro ’
‘-p macro ’

Cache the traces of macro, but do not enable traces. This is especially impor-
tant to save CPU cycles in the future. For instance, when invoked, autoconf
preselects all the macros that autoheader, automake, autoreconf etc. will
trace, so that running m4 is not needed to trace them: the cache suffices. This
results in a huge speed-up.

Chapter 8: Programming in M4 107

Finally, autom4te introduces the concept of Autom4te libraries. They consists in a
powerful yet extremely simple feature: sets of combined command line arguments:

‘--language=language ’
‘-l =language ’

Use the language Autom4te library. Current languages include:

M4sugar create M4sugar output.

M4sh create M4sh executable shell scripts.

Autotest create Autotest executable test suites.

Autoconf create Autoconf executable configure scripts.

Autoconf-without-aclocal-m4
create Autoconf executable configure scripts without reading
‘aclocal.m4’.

‘--prepend-include=dir ’
‘-B dir ’ Prepend directory dir to the search path. This is used to include the language-

specific files before any third-party macros.

As an example, if Autoconf is installed in its default location, ‘/usr/local’,
running ‘autom4te -l m4sugar foo.m4’ is strictly equivalent to running ‘autom4te
--prepend-include /usr/local/share/autoconf m4sugar/m4sugar.m4f --warnings
syntax foo.m4’. Recursive expansion applies: running ‘autom4te -l m4sh foo.m4’
is the same as ‘autom4te --language M4sugar m4sugar/m4sh.m4f foo.m4’, i.e.,
‘autom4te --prepend-include /usr/local/share/autoconf m4sugar/m4sugar.m4f
m4sugar/m4sh.m4f --mode 777 foo.m4’. The definition of the languages is stored in
‘autom4te.cfg’.

8.2.2 Customizing autom4te

One can customize autom4te via ‘~/.autom4te.cfg’ (i.e., as found in the user home
directory), and ‘./.autom4te.cfg’ (i.e., as found in the directory from which autom4te
is run). The order is first reading ‘autom4te.cfg’, then ‘~/.autom4te.cfg’, then
‘./.autom4te.cfg’, and finally the command line arguments.

In these text files, comments are introduced with #, and empty lines are ignored. Cus-
tomization is performed on a per-language basis, wrapped in between a ‘begin-language:
"language"’, ‘end-language: "language"’ pair.

Customizing a language stands for appending options (see Section 8.2.1 [autom4te In-
vocation], page 103) to the current definition of the language. Options, and more generally
arguments, are introduced by ‘args: arguments ’. You may use the traditional shell syntax
to quote the arguments.

As an example, to disable Autoconf caches (‘autom4te.cache’) globally, include the
following lines in ‘~/.autom4te.cfg’:

User Preferences.

108 Autoconf

begin-language: "Autoconf"
args: --no-cache
end-language: "Autoconf"

8.3 Programming in M4sugar

M4 by itself provides only a small, but sufficient, set of all-purpose macros. M4sugar
introduces additional generic macros. Its name was coined by Lars J. Aas: “Readability
And Greater Understanding Stands 4 M4sugar”.

8.3.1 Redefined M4 Macros

With a few exceptions, all the M4 native macros are moved in the ‘m4_’ pseudo-namespace,
e.g., M4sugar renames define as m4_define etc.

Some M4 macros are redefined, and are slightly incompatible with their native equivalent.

[Macro]dnl
This macro kept its original name: no m4_dnl is defined.

[Macro]m4 defn (macro)
Contrary to the M4 builtin, this macro fails if macro is not defined. See m4_undefine.

[Macro]m4 exit (exit-status)
This macro corresponds to m4exit.

[Macro]m4 if (comment)
[Macro]m4 if (string-1, string-2, equal, [not-equal])
[Macro]m4 if (string-1, string-2, equal, . . .)

This macro corresponds to ifelse.

[Macro]m4 undefine (macro)
Contrary to the M4 builtin, this macro fails if macro is not defined. Use

m4_ifdef([macro], [m4_undefine([macro])])

to recover the behavior of the builtin.

[Macro]m4 bpatsubst (string, regexp, [replacement])
This macro corresponds to patsubst. The name m4_patsubst is kept for future
versions of M4sh, on top of gnu M4 which will provide extended regular expression
syntax via epatsubst.

[Macro]m4 popdef (macro)
Contrary to the M4 builtin, this macro fails if macro is not defined. See m4_undefine.

[Macro]m4 bregexp (string, regexp, [replacement])
This macro corresponds to regexp. The name m4_regexp is kept for future versions
of M4sh, on top of gnu M4 which will provide extended regular expression syntax
via eregexp.

[Macro]m4 wrap (text)
This macro corresponds to m4wrap.
You are encouraged to end text with ‘[]’, so that there are no risks that two consec-
utive invocations of m4_wrap result in an unexpected pasting of tokens, as in

Chapter 8: Programming in M4 109

m4_define([foo], [Foo])
m4_define([bar], [Bar])
m4_define([foobar], [FOOBAR])
m4_wrap([bar])
m4_wrap([foo])
⇒FOOBAR

8.3.2 Evaluation Macros

The following macros give some control over the order of the evaluation by adding or
removing levels of quotes. They are meant for hard-core M4 programmers.

[Macro]m4 dquote (arg1, . . .)
Return the arguments as a quoted list of quoted arguments.

[Macro]m4 quote (arg1, . . .)
Return the arguments as a single entity, i.e., wrap them into a pair of quotes.

The following example aims at emphasizing the difference between (i), not using these
macros, (ii), using m4_quote, and (iii), using m4_dquote.

$ cat example.m4

Overquote, so that quotes are visible.
m4_define([show], [$[]1 = [$1], $[]@ = [$@]])
m4_divert(0)dnl
show(a, b)
show(m4_quote(a, b))
show(m4_dquote(a, b))
$ autom4te -l m4sugar example.m4

$1 = a, $@ = [a],[b]
$1 = a,b, $@ = [a,b]
$1 = [a],[b], $@ = [[a],[b]]

8.3.3 Forbidden Patterns

M4sugar provides a means to define suspicious patterns, patterns describing tokens which
should not be found in the output. For instance, if an Autoconf ‘configure’ script includes
tokens such as ‘AC_DEFINE’, or ‘dnl’, then most probably something went wrong (typically
a macro was not evaluated because of overquotation).

M4sugar forbids all the tokens matching ‘^m4_’ and ‘^dnl$’.

[Macro]m4 pattern forbid (pattern)
Declare that no token matching pattern must be found in the output. Comments
are not checked; this can be a problem if, for instance, you have some macro left
unexpanded after an ‘#include’. No consensus is currently found in the Autoconf
community, as some people consider it should be valid to name macros in comments
(which doesn’t makes sense to the author of this documentation, as ‘#’-comments
should document the output, not the input, documented by ‘dnl’ comments).

Of course, you might encounter exceptions to these generic rules, for instance you might
have to refer to ‘$m4_flags’.

110 Autoconf

[Macro]m4 pattern allow (pattern)
Any token matching pattern is allowed, including if it matches an m4_pattern_forbid
pattern.

8.4 Programming in M4sh

M4sh, pronounced “mash”, is aiming at producing portable Bourne shell scripts. This name
was coined by Lars J. Aas, who notes that, according to the Webster’s Revised Unabridged
Dictionary (1913):

Mash \Mash\, n. [Akin to G. meisch, maisch, meische, maische, mash, wash,
and prob. to AS. miscian to mix. See “Mix”.]
1. A mass of mixed ingredients reduced to a soft pulpy state by beating or

pressure. . . .
2. A mixture of meal or bran and water fed to animals.
3. A mess; trouble. [Obs.] –Beau. & Fl.

For the time being, it is not mature enough to be widely used.
M4sh provides portable alternatives for some common shell constructs that unfortunately

are not portable in practice.

[Macro]AS DIRNAME (pathname)
Return the directory portion of pathname, using the algorithm required by posix.
See Section 10.10 [Limitations of Usual Tools], page 139, for more details about what
this returns and why it is more portable than the dirname command.

[Macro]AS IF (test, [RUN-IF-TRUE], [RUN-IF-FALSE])
Run shell code TEST. If TEST exits with a zero status then run shell code RUN-
IF-TRUE, else run shell code RUN-IF-FALSE, with simplifications if either RUN-IF-
TRUE or RUN-IF-FALSE is empty.

[Macro]AS MKDIR P (filename)
Make the directory filename, including intervening directories as necessary. This is
equivalent to ‘mkdir -p filename ’, except that it is portable to older versions of
mkdir that lack support for the ‘-p’ option.

[Macro]AS SET CATFILE (var, dir, file)
Set the shell variable var to dir/file, but optimizing the common cases (dir or file is
‘.’, file is absolute etc.).

Chapter 9: Writing Autoconf Macros 111

9 Writing Autoconf Macros

When you write a feature test that could be applicable to more than one software package,
the best thing to do is encapsulate it in a new macro. Here are some instructions and
guidelines for writing Autoconf macros.

9.1 Macro Definitions

Autoconf macros are defined using the AC_DEFUN macro, which is similar to the M4 builtin
m4_define macro. In addition to defining a macro, AC_DEFUN adds to it some code that
is used to constrain the order in which macros are called (see Section 9.4.1 [Prerequisite
Macros], page 113).

An Autoconf macro definition looks like this:
AC_DEFUN(macro-name, macro-body)

You can refer to any arguments passed to the macro as ‘$1’, ‘$2’, etc. See section “How
to define new macros” in gnu m4, for more complete information on writing M4 macros.

Be sure to properly quote both the macro-body and the macro-name to avoid any
problems if the macro happens to have been previously defined.

Each macro should have a header comment that gives its prototype, and a brief descrip-
tion. When arguments have default values, display them in the prototype. For example:

AC_MSG_ERROR(ERROR, [EXIT-STATUS = 1])

m4_define([AC_MSG_ERROR],
[{ _AC_ECHO([configure: error: $1], 2); exit m4_default([$2], 1); }])

Comments about the macro should be left in the header comment. Most other comments
will make their way into ‘configure’, so just keep using ‘#’ to introduce comments.

If you have some very special comments about pure M4 code, comments that make no
sense in ‘configure’ and in the header comment, then use the builtin dnl: it causes M4 to
discard the text through the next newline.

Keep in mind that dnl is rarely needed to introduce comments; dnl is more useful to
get rid of the newlines following macros that produce no output, such as AC_REQUIRE.

9.2 Macro Names

All of the Autoconf macros have all-uppercase names starting with ‘AC_’ to prevent them
from accidentally conflicting with other text. All shell variables that they use for internal
purposes have mostly-lowercase names starting with ‘ac_’. To ensure that your macros
don’t conflict with present or future Autoconf macros, you should prefix your own macro
names and any shell variables they use with some other sequence. Possibilities include your
initials, or an abbreviation for the name of your organization or software package.

Most of the Autoconf macros’ names follow a structured naming convention that indi-
cates the kind of feature check by the name. The macro names consist of several words,
separated by underscores, going from most general to most specific. The names of their
cache variables use the same convention (see Section 7.3.1 [Cache Variable Names], page 93,
for more information on them).

112 Autoconf

The first word of the name after ‘AC_’ usually tells the category of the feature being
tested. Here are the categories used in Autoconf for specific test macros, the kind of macro
that you are more likely to write. They are also used for cache variables, in all-lowercase.
Use them where applicable; where they’re not, invent your own categories.

C C language builtin features.

DECL Declarations of C variables in header files.

FUNC Functions in libraries.

GROUP unix group owners of files.

HEADER Header files.

LIB C libraries.

PATH The full path names to files, including programs.

PROG The base names of programs.

MEMBER Members of aggregates.

SYS Operating system features.

TYPE C builtin or declared types.

VAR C variables in libraries.

After the category comes the name of the particular feature being tested. Any further
words in the macro name indicate particular aspects of the feature. For example, AC_FUNC_
UTIME_NULL checks the behavior of the utime function when called with a NULL pointer.

An internal macro should have a name that starts with an underscore; Autoconf internals
should therefore start with ‘_AC_’. Additionally, a macro that is an internal subroutine of
another macro should have a name that starts with an underscore and the name of that
other macro, followed by one or more words saying what the internal macro does. For
example, AC_PATH_X has internal macros _AC_PATH_X_XMKMF and _AC_PATH_X_DIRECT.

9.3 Reporting Messages

When macros statically diagnose abnormal situations, benign or fatal, they should report
them using these macros. For dynamic issues, i.e., when configure is run, see Section 7.4
[Printing Messages], page 94.

[Macro]AC DIAGNOSE (category, message)
Report message as a warning (or as an error if requested by the user) if warnings of
the category are turned on. You are encouraged to use standard categories, which
currently include:

‘all’ messages that don’t fall into one of the following categories. Use of an
empty category is equivalent.

‘cross’ related to cross compilation issues.

‘obsolete’
use of an obsolete construct.

‘syntax’ dubious syntactic constructs, incorrectly ordered macro calls.

Chapter 9: Writing Autoconf Macros 113

[Macro]AC WARNING (message)
Equivalent to ‘AC_DIAGNOSE([syntax], message)’, but you are strongly encouraged
to use a finer grained category.

[Macro]AC FATAL (message)
Report a severe error message, and have autoconf die.

When the user runs ‘autoconf -W error’, warnings from AC_DIAGNOSE and AC_WARNING
are reported as error, see Section 3.4 [autoconf Invocation], page 10.

9.4 Dependencies Between Macros

Some Autoconf macros depend on other macros having been called first in order to work
correctly. Autoconf provides a way to ensure that certain macros are called if needed and a
way to warn the user if macros are called in an order that might cause incorrect operation.

9.4.1 Prerequisite Macros

A macro that you write might need to use values that have previously been computed by
other macros. For example, AC_DECL_YYTEXT examines the output of flex or lex, so it
depends on AC_PROG_LEX having been called first to set the shell variable LEX.

Rather than forcing the user of the macros to keep track of the dependencies between
them, you can use the AC_REQUIRE macro to do it automatically. AC_REQUIRE can ensure
that a macro is only called if it is needed, and only called once.

[Macro]AC REQUIRE (macro-name)
If the M4 macro macro-name has not already been called, call it (without any ar-
guments). Make sure to quote macro-name with square brackets. macro-name must
have been defined using AC_DEFUN or else contain a call to AC_PROVIDE to indicate
that it has been called.
AC_REQUIRE must be used inside an AC_DEFUN’d macro; it must not be called from
the top level.

AC_REQUIRE is often misunderstood. It really implements dependencies between macros
in the sense that if one macro depends upon another, the latter will be expanded before the
body of the former. In particular, ‘AC_REQUIRE(FOO)’ is not replaced with the body of FOO.
For instance, this definition of macros:

AC_DEFUN([TRAVOLTA],
[test "$body_temperature_in_celsius" -gt "38" &&
dance_floor=occupied])

AC_DEFUN([NEWTON_JOHN],
[test "$hair_style" = "curly" &&
dance_floor=occupied])

AC_DEFUN([RESERVE_DANCE_FLOOR],
[if date | grep ’^Sat.*pm’ >/dev/null 2>&1; then
AC_REQUIRE([TRAVOLTA])
AC_REQUIRE([NEWTON_JOHN])

fi])

with this ‘configure.ac’

114 Autoconf

AC_INIT
RESERVE_DANCE_FLOOR
if test "$dance_floor" = occupied; then
AC_MSG_ERROR([cannot pick up here, let’s move])

fi

will not leave you with a better chance to meet a kindred soul at other times than Saturday
night since it expands into:

test "$body_temperature_in_Celsius" -gt "38" &&
dance_floor=occupied

test "$hair_style" = "curly" &&
dance_floor=occupied

fi
if date | grep ’^Sat.*pm’ >/dev/null 2>&1; then

fi

This behavior was chosen on purpose: (i) it prevents messages in required macros from
interrupting the messages in the requiring macros; (ii) it avoids bad surprises when shell
conditionals are used, as in:

if ...; then
AC_REQUIRE([SOME_CHECK])

fi
...
SOME_CHECK

You are encouraged to put all AC_REQUIREs at the beginning of a macro. You can use
dnl to avoid the empty lines they leave.

9.4.2 Suggested Ordering

Some macros should be run before another macro if both are called, but neither requires
that the other be called. For example, a macro that changes the behavior of the C compiler
should be called before any macros that run the C compiler. Many of these dependencies
are noted in the documentation.

Autoconf provides the AC_BEFORE macro to warn users when macros with this kind of
dependency appear out of order in a ‘configure.ac’ file. The warning occurs when creating
configure from ‘configure.ac’, not when running configure.

For example, AC_PROG_CPP checks whether the C compiler can run the C preprocessor
when given the ‘-E’ option. It should therefore be called after any macros that change
which C compiler is being used, such as AC_PROG_CC. So AC_PROG_CC contains:

AC_BEFORE([$0], [AC_PROG_CPP])dnl

This warns the user if a call to AC_PROG_CPP has already occurred when AC_PROG_CC is
called.

[Macro]AC BEFORE (this-macro-name, called-macro-name)
Make M4 print a warning message to the standard error output if called-macro-name
has already been called. this-macro-name should be the name of the macro that

Chapter 9: Writing Autoconf Macros 115

is calling AC_BEFORE. The macro called-macro-name must have been defined using
AC_DEFUN or else contain a call to AC_PROVIDE to indicate that it has been called.

9.5 Obsoleting Macros

Configuration and portability technology has evolved over the years. Often better ways of
solving a particular problem are developed, or ad-hoc approaches are systematized. This
process has occurred in many parts of Autoconf. One result is that some of the macros
are now considered obsolete; they still work, but are no longer considered the best thing to
do, hence they should be replaced with more modern macros. Ideally, autoupdate should
replace the old macro calls with their modern implementation.

Autoconf provides a simple means to obsolete a macro.

[Macro]AU DEFUN (old-macro, implementation, [message])
Define old-macro as implementation. The only difference with AC_DEFUN is that the
user will be warned that old-macro is now obsolete.
If she then uses autoupdate, the call to old-macro will be replaced by the modern
implementation. The additional message is then printed.

9.6 Coding Style

The Autoconf macros follow a strict coding style. You are encouraged to follow this style,
especially if you intend to distribute your macro, either by contributing it to Autoconf itself,
or via other means.

The first requirement is to pay great attention to the quotation. For more details, see
Section 3.1.2 [Autoconf Language], page 7, and Section 8.1 [M4 Quotation], page 97.

Do not try to invent new interfaces. It is likely that there is a macro in Autoconf
that resembles the macro you are defining: try to stick to this existing interface (order of
arguments, default values, etc.). We are conscious that some of these interfaces are not
perfect; nevertheless, when harmless, homogeneity should be preferred over creativity.

Be careful about clashes both between M4 symbols and between shell variables.
If you stick to the suggested M4 naming scheme (see Section 9.2 [Macro Names],

page 111), you are unlikely to generate conflicts. Nevertheless, when you need to set a
special value, avoid using a regular macro name; rather, use an “impossible” name. For
instance, up to version 2.13, the macro AC_SUBST used to remember what symbols were
already defined by setting AC_SUBST_symbol , which is a regular macro name. But since
there is a macro named AC_SUBST_FILE, it was just impossible to ‘AC_SUBST(FILE)’! In
this case, AC_SUBST(symbol) or _AC_SUBST(symbol) should have been used (yes, with
the parentheses). . . or better yet, high-level macros such as AC_EXPAND_ONCE.

No Autoconf macro should ever enter the user-variable name space; i.e., except for the
variables that are the actual result of running the macro, all shell variables should start
with ac_. In addition, small macros or any macro that is likely to be embedded in other
macros should be careful not to use obvious names.

Do not use dnl to introduce comments: most of the comments you are likely to write
are either header comments which are not output anyway, or comments that should make
their way into ‘configure’. There are exceptional cases where you do want to comment
special M4 constructs, in which case dnl is right, but keep in mind that it is unlikely.

116 Autoconf

M4 ignores the leading spaces before each argument, use this feature to indent in such
a way that arguments are (more or less) aligned with the opening parenthesis of the macro
being called. For instance, instead of

AC_CACHE_CHECK(for EMX OS/2 environment,
ac_cv_emxos2,
[AC_COMPILE_IFELSE([AC_LANG_PROGRAM(, [return __EMX__;])],
[ac_cv_emxos2=yes], [ac_cv_emxos2=no])])

write
AC_CACHE_CHECK([for EMX OS/2 environment], [ac_cv_emxos2],
[AC_COMPILE_IFELSE([AC_LANG_PROGRAM([], [return __EMX__;])],

[ac_cv_emxos2=yes],
[ac_cv_emxos2=no])])

or even
AC_CACHE_CHECK([for EMX OS/2 environment],

[ac_cv_emxos2],
[AC_COMPILE_IFELSE([AC_LANG_PROGRAM([],

[return __EMX__;])],
[ac_cv_emxos2=yes],
[ac_cv_emxos2=no])])

When using AC_RUN_IFELSE or any macro that cannot work when cross-compiling, pro-
vide a pessimistic value (typically ‘no’).

Feel free to use various tricks to prevent auxiliary tools, such as syntax-highlighting
editors, from behaving improperly. For instance, instead of:

m4_bpatsubst([$1], [$"])

use
m4_bpatsubst([$1], [$""])

so that Emacsen do not open an endless “string” at the first quote. For the same reasons,
avoid:

test $[#] != 0

and use:
test $[@%:@] != 0

Otherwise, the closing bracket would be hidden inside a ‘#’-comment, breaking the bracket-
matching highlighting from Emacsen. Note the preferred style to escape from M4: ‘$[1]’,
‘$[@]’, etc. Do not escape when it is unnecessary. Common examples of useless quotation
are ‘[$]$1’ (write ‘$$1’), ‘[$]var’ (use ‘$var’), etc. If you add portability issues to the
picture, you’ll prefer ‘${1+"$[@]"}’ to ‘"[$]@"’, and you’ll prefer do something better than
hacking Autoconf :-).

When using sed, don’t use ‘-e’ except for indenting purpose. With the s command, the
preferred separator is ‘/’ unless ‘/’ itself is used in the command, in which case you should
use ‘,’.

See Section 9.1 [Macro Definitions], page 111, for details on how to define a macro.
If a macro doesn’t use AC_REQUIRE and it is expected to never be the object of an AC_
REQUIRE directive, then use m4_define. In case of doubt, use AC_DEFUN. All the AC_REQUIRE
statements should be at the beginning of the macro, dnl’ed.

Chapter 9: Writing Autoconf Macros 117

You should not rely on the number of arguments: instead of checking whether an argu-
ment is missing, test that it is not empty. It provides both a simpler and a more predictable
interface to the user, and saves room for further arguments.

Unless the macro is short, try to leave the closing ‘])’ at the beginning of a line, followed
by a comment that repeats the name of the macro being defined. This introduces an
additional newline in configure; normally, that is not a problem, but if you want to remove
it you can use ‘[]dnl’ on the last line. You can similarly use ‘[]dnl’ after a macro call to
remove its newline. ‘[]dnl’ is recommended instead of ‘dnl’ to ensure that M4 does not
interpret the ‘dnl’ as being attached to the preceding text or macro output. For example,
instead of:

AC_DEFUN([AC_PATH_X],
[AC_MSG_CHECKING([for X])
AC_REQUIRE_CPP()
. . .omitted. . .
AC_MSG_RESULT([libraries $x_libraries, headers $x_includes])

fi])

you would write:
AC_DEFUN([AC_PATH_X],
[AC_REQUIRE_CPP()[]dnl
AC_MSG_CHECKING([for X])
. . .omitted. . .
AC_MSG_RESULT([libraries $x_libraries, headers $x_includes])

fi[]dnl
])# AC_PATH_X

If the macro is long, try to split it into logical chunks. Typically, macros that check for
a bug in a function and prepare its AC_LIBOBJ replacement should have an auxiliary macro
to perform this setup. Do not hesitate to introduce auxiliary macros to factor your code.

In order to highlight the recommended coding style, here is a macro written the old way:
dnl Check for EMX on OS/2.
dnl _AC_EMXOS2
AC_DEFUN(_AC_EMXOS2,
[AC_CACHE_CHECK(for EMX OS/2 environment, ac_cv_emxos2,
[AC_COMPILE_IFELSE([AC_LANG_PROGRAM(, return __EMX__;)],
ac_cv_emxos2=yes, ac_cv_emxos2=no)])
test "$ac_cv_emxos2" = yes && EMXOS2=yes])

and the new way:
_AC_EMXOS2

Check for EMX on OS/2.
m4_define([_AC_EMXOS2],
[AC_CACHE_CHECK([for EMX OS/2 environment], [ac_cv_emxos2],
[AC_COMPILE_IFELSE([AC_LANG_PROGRAM([], [return __EMX__;])],

[ac_cv_emxos2=yes],
[ac_cv_emxos2=no])])

test "$ac_cv_emxos2" = yes && EMXOS2=yes[]dnl

118 Autoconf

])# _AC_EMXOS2

Chapter 10: Portable Shell Programming 119

10 Portable Shell Programming

When writing your own checks, there are some shell-script programming techniques you
should avoid in order to make your code portable. The Bourne shell and upward-compatible
shells like the Korn shell and Bash have evolved over the years, but to prevent trouble, do not
take advantage of features that were added after unix version 7, circa 1977 (see Section 6.7
[Systemology], page 87).

You should not use shell functions, aliases, negated character classes, or other features
that are not found in all Bourne-compatible shells; restrict yourself to the lowest common
denominator. Even unset is not supported by all shells! Also, include a space after the
exclamation point in interpreter specifications, like this:

#! /usr/bin/perl

If you omit the space before the path, then 4.2bsd based systems (such as DYNIX) will
ignore the line, because they interpret ‘#! /’ as a 4-byte magic number. Some old systems
have quite small limits on the length of the ‘#!’ line too, for instance 32 bytes (not including
the newline) on SunOS 4.

The set of external programs you should run in a configure script is fairly small. See
section “Utilities in Makefiles” in gnu Coding Standards, for the list. This restriction allows
users to start out with a fairly small set of programs and build the rest, avoiding too many
interdependencies between packages.

Some of these external utilities have a portable subset of features; see Section 10.10
[Limitations of Usual Tools], page 139.

There are other sources of documentation about shells. See for instance the Shell FAQs1.

10.1 Shellology

There are several families of shells, most prominently the Bourne family and the C shell
family which are deeply incompatible. If you want to write portable shell scripts, avoid
members of the C shell family. The the Shell difference FAQ2 includes a small history of
Unix shells, and a comparison between several of them.

Below we describe some of the members of the Bourne shell family.

Ash ash is often used on gnu/Linux and bsd systems as a light-weight Bourne-
compatible shell. Ash 0.2 has some bugs that are fixed in the 0.3.x series, but
portable shell scripts should work around them, since version 0.2 is still shipped
with many gnu/Linux distributions.
To be compatible with Ash 0.2:
− don’t use ‘$?’ after expanding empty or unset variables:

foo=
false
$foo
echo "Don’t use it: $?"

− don’t use command substitution within variable expansion:

1 the Shell FAQs, http://www.faqs.org/faqs/unix-faq/shell/.
2 the Shell difference FAQ, http://www.faqs.org/faqs/unix-faq/shell/shell-differences/.

120 Autoconf

cat ${FOO=‘bar‘}

− beware that single builtin substitutions are not performed by a subshell,
hence their effect applies to the current shell! See Section 10.5 [Shell Sub-
stitutions], page 124, item “Command Substitution”.

Bash To detect whether you are running bash, test if BASH_VERSION is set. To disable
its extensions and require posix compatibility, run ‘set -o posix’. See section
“Bash posix Mode” in The gnu Bash Reference Manual, for details.

Bash 2.05 and later
Versions 2.05 and later of bash use a different format for the output of the set
builtin, designed to make evaluating its output easier. However, this output
is not compatible with earlier versions of bash (or with many other shells,
probably). So if you use bash 2.05 or higher to execute configure, you’ll need
to use bash 2.05 for all other build tasks as well.

Ksh The Korn shell is compatible with the Bourne family and it mostly conforms
to posix. It has two major variants commonly called ‘ksh88’ and ‘ksh93’,
named after the years of initial release. It is usually called ksh, but So-
laris systems have three variants: /usr/bin/ksh is ‘ksh88’, /usr/xpg4/bin/sh
is a posix-compliant variant of ‘ksh88’, and /usr/dt/bin/dtksh is ‘ksh93’.
/usr/bin/ksh is standard on Solaris; the other variants are parts of optional
packages. There is no extra charge for these packages, but they are not part
of a minimal OS install and therefore some installations may not have it. A
public-domain clone of the Korn shell called ‘pdksh’ is also widely available: it
has most of the ‘ksh88’ features along with a few of its own.

Zsh To detect whether you are running zsh, test if ZSH_VERSION is set. By default
zsh is not compatible with the Bourne shell: you have to run ‘emulate sh’ and
set NULLCMD to ‘:’. See section “Compatibility” in The Z Shell Manual, for
details.

Zsh 3.0.8 is the native /bin/sh on Mac OS X 10.0.3.

The following discussion between Russ Allbery and Robert Lipe is worth reading:

Russ Allbery:

The gnu assumption that /bin/sh is the one and only shell leads to a perma-
nent deadlock. Vendors don’t want to break users’ existing shell scripts, and
there are some corner cases in the Bourne shell that are not completely com-
patible with a posix shell. Thus, vendors who have taken this route will never
(OK. . .“never say never”) replace the Bourne shell (as /bin/sh) with a posix
shell.

Robert Lipe:

This is exactly the problem. While most (at least most System V’s) do have
a Bourne shell that accepts shell functions most vendor /bin/sh programs are
not the posix shell.

So while most modern systems do have a shell somewhere that meets the posix
standard, the challenge is to find it.

Chapter 10: Portable Shell Programming 121

10.2 Here-Documents

Don’t rely on ‘\’ being preserved just because it has no special meaning together with the
next symbol. In the native /bin/sh on Openbsd 2.7 ‘\"’ expands to ‘"’ in here-documents
with unquoted delimiter. As a general rule, if ‘\\’ expands to ‘\’ use ‘\\’ to get ‘\’.

With Openbsd 2.7’s /bin/sh

$ cat <<EOF
> \" \\

> EOF

" \

and with Bash:

bash-2.04$ cat <<EOF
> \" \\

> EOF

\" \

Many older shells (including the Bourne shell) implement here-documents inefficiently.
And some shells mishandle large here-documents: for example, Solaris 8 dtksh, which is
derived from ksh M-12/28/93d, mishandles variable expansion that occurs on 1024-byte
buffer boundaries within a here-document. Users can generally fix these problems by using
a faster or more reliable shell, e.g., by using the command ‘bash ./configure’ rather than
plain ‘./configure’.

Some shells can be extremely inefficient when there are a lot of here-documents inside a
single statement. For instance if your ‘configure.ac’ includes something like:

if <cross_compiling>; then
assume this and that

else
check this
check that
check something else
...
on and on forever
...

fi

A shell parses the whole if/fi construct, creating temporary files for each here document
in it. Some shells create links for such here-documents on every fork, so that the clean-up
code they had installed correctly removes them. It is creating the links that can take the
shell forever.

Moving the tests out of the if/fi, or creating multiple if/fi constructs, would improve
the performance significantly. Anyway, this kind of construct is not exactly the typical use
of Autoconf. In fact, it’s even not recommended, because M4 macros can’t look into shell
conditionals, so we may fail to expand a macro when it was expanded before in a conditional
path, and the condition turned out to be false at run-time, and we end up not executing
the macro at all.

122 Autoconf

10.3 File Descriptors

Some file descriptors shall not be used, since some systems, admittedly arcane, use them
for special purpose:

3 — some systems may open it to ‘/dev/tty’.
4 — used on the Kubota Titan.

Don’t redirect the same file descriptor several times, as you are doomed to failure under
Ultrix.

ULTRIX V4.4 (Rev. 69) System #31: Thu Aug 10 19:42:23 GMT 1995
UWS V4.4 (Rev. 11)
$ eval ’echo matter >fullness’ >void
illegal io
$ eval ’(echo matter >fullness)’ >void
illegal io
$ (eval ’(echo matter >fullness)’) >void
Ambiguous output redirect.

In each case the expected result is of course ‘fullness’ containing ‘matter’ and ‘void’
being empty.

Don’t try to redirect the standard error of a command substitution: it must be done
inside the command substitution: when running ‘: ‘cd /zorglub‘ 2>/dev/null’ expect
the error message to escape, while ‘: ‘cd /zorglub 2>/dev/null‘’ works properly.

It is worth noting that Zsh (but not Ash nor Bash) makes it possible in assignments
though: ‘foo=‘cd /zorglub‘ 2>/dev/null’.

Most shells, if not all (including Bash, Zsh, Ash), output traces on stderr, even for sub-
shells. This might result in undesirable content if you meant to capture the standard-error
output of the inner command:

$ ash -x -c ’(eval "echo foo >&2") 2>stderr’
$ cat stderr

+ eval echo foo >&2
+ echo foo
foo
$ bash -x -c ’(eval "echo foo >&2") 2>stderr’
$ cat stderr

+ eval ’echo foo >&2’
++ echo foo
foo
$ zsh -x -c ’(eval "echo foo >&2") 2>stderr’
Traces on startup files deleted here.

$ cat stderr

+zsh:1> eval echo foo >&2
+zsh:1> echo foo
foo

You’ll appreciate the various levels of detail. . . .

One workaround is to grep out uninteresting lines, hoping not to remove good ones. . . .

Chapter 10: Portable Shell Programming 123

Don’t try to move/delete open files, such as in ‘exec >foo; mv foo bar’; see Section 10.9
[Limitations of Builtins], page 132, mv for more details.

10.4 File System Conventions

While autoconf and friends will usually be run on some Unix variety, it can and will be used
on other systems, most notably dos variants. This impacts several assumptions regarding
file and path names.
For example, the following code:

case $foo_dir in
/*) # Absolute

;;
*)

foo_dir=$dots$foo_dir ;;
esac

will fail to properly detect absolute paths on those systems, because they can use a drivespec,
and will usually use a backslash as directory separator. The canonical way to check for
absolute paths is:

case $foo_dir in
[\\/]* | ?:[\\/]*) # Absolute

;;
*)

foo_dir=$dots$foo_dir ;;
esac

Make sure you quote the brackets if appropriate and keep the backslash as first character
(see Section 10.9 [Limitations of Builtins], page 132).

Also, because the colon is used as part of a drivespec, these systems don’t use it as path
separator. When creating or accessing paths, use the PATH_SEPARATOR output variable
instead. configure sets this to the appropriate value (‘:’ or ‘;’) when it starts up.

File names need extra care as well. While dos-based environments that are Unixy
enough to run autoconf (such as DJGPP) will usually be able to handle long file names
properly, there are still limitations that can seriously break packages. Several of these issues
can be easily detected by the doschk3 package.

A short overview follows; problems are marked with sfn/lfn to indicate where they
apply: sfn means the issues are only relevant to plain dos, not to dos boxes under Windows,
while lfn identifies problems that exist even under Windows.

No multiple dots (sfn)
dos cannot handle multiple dots in filenames. This is an especially important
thing to remember when building a portable configure script, as autoconf uses
a .in suffix for template files.
This is perfectly OK on Unices:

AC_CONFIG_HEADERS([config.h])
AC_CONFIG_FILES([source.c foo.bar])

3 doschk, ftp://ftp.gnu.org/gnu/non-gnu/doschk/doschk-1.1.tar.gz.

124 Autoconf

AC_OUTPUT

but it causes problems on dos, as it requires ‘config.h.in’, ‘source.c.in’ and
‘foo.bar.in’. To make your package more portable to dos-based environments,
you should use this instead:

AC_CONFIG_HEADERS([config.h:config.hin])
AC_CONFIG_FILES([source.c:source.cin foo.bar:foobar.in])
AC_OUTPUT

No leading dot (sfn)
dos cannot handle filenames that start with a dot. This is usually not a very
important issue for autoconf.

Case insensitivity (lfn)
dos is case insensitive, so you cannot, for example, have both a file called
‘INSTALL’ and a directory called ‘install’. This also affects make; if there’s
a file called ‘INSTALL’ in the directory, ‘make install’ will do nothing (unless
the ‘install’ target is marked as PHONY).

The 8+3 limit (sfn)
Because the dos file system only stores the first 8 characters of the filename
and the first 3 of the extension, those must be unique. That means that
‘foobar-part1.c’, ‘foobar-part2.c’ and ‘foobar-prettybird.c’ all resolve
to the same filename (‘FOOBAR-P.C’). The same goes for ‘foo.bar’ and
‘foo.bartender’.
Note: This is not usually a problem under Windows, as it uses numeric tails
in the short version of filenames to make them unique. However, a registry
setting can turn this behavior off. While this makes it possible to share file
trees containing long file names between sfn and lfn environments, it also
means the above problem applies there as well.

Invalid characters
Some characters are invalid in dos filenames, and should therefore be avoided.
In a lfn environment, these are ‘/’, ‘\’, ‘?’, ‘*’, ‘:’, ‘<’, ‘>’, ‘|’ and ‘"’. In a
sfn environment, other characters are also invalid. These include ‘+’, ‘,’, ‘[’
and ‘]’.

10.5 Shell Substitutions

Contrary to a persistent urban legend, the Bourne shell does not systematically split vari-
ables and back-quoted expressions, in particular on the right-hand side of assignments and
in the argument of case. For instance, the following code:

case "$given_srcdir" in
.) top_srcdir="‘echo "$dots" | sed ’s,/$,,’‘"
*) top_srcdir="$dots$given_srcdir" ;;
esac

is more readable when written as:
case $given_srcdir in
.) top_srcdir=‘echo "$dots" | sed ’s,/$,,’‘

Chapter 10: Portable Shell Programming 125

*) top_srcdir=$dots$given_srcdir ;;
esac

and in fact it is even more portable: in the first case of the first attempt, the computation
of top_srcdir is not portable, since not all shells properly understand "‘..."..."...‘".
Worse yet, not all shells understand "‘...\"...\"...‘" the same way. There is just no
portable way to use double-quoted strings inside double-quoted back-quoted expressions
(pfew!).

$@ One of the most famous shell-portability issues is related to ‘"$@"’. When there
are no positional arguments, posix says that ‘"$@"’ is supposed to be equivalent
to nothing, but the original Unix Version 7 Bourne shell treated it as equivalent
to ‘""’ instead, and this behavior survives in later implementations like Digital
Unix 5.0.
The traditional way to work around this portability problem is to use
‘${1+"$@"}’. Unfortunately this method does not work with Zsh (3.x and
4.x), which is used on Mac OS X. When emulating the Bourne shell, Zsh
performs word splitting on ‘${1+"$@"}’:

zsh $ emulate sh

zsh $ for i in "$@"; do echo $i; done

Hello World
!
zsh $ for i in ${1+"$@"}; do echo $i; done

Hello
World
!

Zsh handles plain ‘"$@"’ properly, but we can’t use plain ‘"$@"’ because of the
portability problems mentioned above. One workaround relies on Zsh’s “global
aliases” to convert ‘${1+"$@"}’ into ‘"$@"’ by itself:

test "${ZSH_VERSION+set}" = set && alias -g ’${1+"$@"}’=’"$@"’

A more conservative workaround is to avoid ‘"$@"’ if it is possible that there
may be no positional arguments. For example, instead of:

cat conftest.c "$@"

you can use this instead:
case $# in
0) cat conftest.c;;
*) cat conftest.c "$@";;
esac

${var:-value}
Old bsd shells, including the Ultrix sh, don’t accept the colon for any shell
substitution, and complain and die.

${var=literal}
Be sure to quote:

: ${var=’Some words’}

otherwise some shells, such as on Digital Unix V 5.0, will die because of a “bad
substitution”.

126 Autoconf

Solaris’ /bin/sh has a frightening bug in its interpretation of this. Imagine
you need set a variable to a string containing ‘}’. This ‘}’ character confuses
Solaris’ /bin/sh when the affected variable was already set. This bug can be
exercised by running:

$ unset foo

$ foo=${foo=’}’}
$ echo $foo
}
$ foo=${foo=’}’ # no error; this hints to what the bug is

$ echo $foo
}
$ foo=${foo=’}’}
$ echo $foo
}}
^ ugh!

It seems that ‘}’ is interpreted as matching ‘${’, even though it is enclosed in
single quotes. The problem doesn’t happen using double quotes.

${var=expanded-value}
On Ultrix, running

default="yu,yaa"
: ${var="$default"}

will set var to ‘M-yM-uM-,M-yM-aM-a’, i.e., the 8th bit of each char will be set.
You won’t observe the phenomenon using a simple ‘echo $var’ since apparently
the shell resets the 8th bit when it expands $var. Here are two means to make
this shell confess its sins:

$ cat -v <<EOF
$var
EOF

and
$ set | grep ’^var=’ | cat -v

One classic incarnation of this bug is:
default="a b c"
: ${list="$default"}
for c in $list; do
echo $c

done

You’ll get ‘a b c’ on a single line. Why? Because there are no spaces in ‘$list’:
there are ‘M- ’, i.e., spaces with the 8th bit set, hence no IFS splitting is per-
formed!!!
One piece of good news is that Ultrix works fine with ‘: ${list=$default}’;
i.e., if you don’t quote. The bad news is then that qnx 4.25 then sets list to
the last item of default!
The portable way out consists in using a double assignment, to switch the 8th
bit twice on Ultrix:

Chapter 10: Portable Shell Programming 127

list=${list="$default"}

. . .but beware of the ‘}’ bug from Solaris (see above). For safety, use:
test "${var+set}" = set || var={value}

‘commands‘
While in general it makes no sense, do not substitute a single builtin with side
effects, becauase Ash 0.2, trying to optimize, does not fork a subshell to perform
the command.
For instance, if you wanted to check that cd is silent, do not use ‘test -z "‘cd
/‘"’ because the following can happen:

$ pwd

/tmp
$ test -z "‘cd /‘" && pwd

/

The result of ‘foo=‘exit 1‘’ is left as an exercise to the reader.

$(commands)
This construct is meant to replace ‘‘commands‘’; they can be nested while this
is impossible to do portably with back quotes. Unfortunately it is not yet widely
supported. Most notably, even recent releases of Solaris don’t support it:

$ showrev -c /bin/sh | grep version

Command version: SunOS 5.8 Generic 109324-02 February 2001
$ echo $(echo blah)

syntax error: ‘(’ unexpected

nor does irix 6.5’s Bourne shell:
$ uname -a

IRIX firebird-image 6.5 07151432 IP22
$ echo $(echo blah)

$(echo blah)

If you do use ‘$(commands)’, make sure that the commands do not start with
a parenthesis, as that would cause confusion with a different notation ‘$((ex-
pression))’ that in modern shells is an arithmetic expression not a command.
To avoid the confusion, insert a space between the two opening parentheses.

10.6 Assignments

When setting several variables in a row, be aware that the order of the evaluation is un-
defined. For instance ‘foo=1 foo=2; echo $foo’ gives ‘1’ with sh on Solaris, but ‘2’ with
Bash. You must use ‘;’ to enforce the order: ‘foo=1; foo=2; echo $foo’.

Don’t rely on the following to find ‘subdir/program’:
PATH=subdir$PATH_SEPARATOR$PATH program

as this does not work with Zsh 3.0.6. Use something like this instead:
(PATH=subdir$PATH_SEPARATOR$PATH; export PATH; exec program)

Don’t rely on the exit status of an assignment: Ash 0.2 does not change the status and
propagates that of the last statement:

128 Autoconf

$ false || foo=bar; echo $?
1
$ false || foo=‘:‘; echo $?
0

and to make things even worse, qnx 4.25 just sets the exit status to 0 in any case:
$ foo=‘exit 1‘; echo $?
0

To assign default values, follow this algorithm:
1. If the default value is a literal and does not contain any closing brace, use:

: ${var=’my literal’}

2. If the default value contains no closing brace, has to be expanded, and the variable
being initialized will never be IFS-split (i.e., it’s not a list), then use:

: ${var="$default"}

3. If the default value contains no closing brace, has to be expanded, and the variable
being initialized will be IFS-split (i.e., it’s a list), then use:

var=${var="$default"}

4. If the default value contains a closing brace, then use:
test "${var+set}" = set || var=’${indirection}’

In most cases ‘var=${var="$default"}’ is fine, but in case of doubt, just use the
latter. See Section 10.5 [Shell Substitutions], page 124, items ‘${var:-value}’ and
‘${var=value}’ for the rationale.

10.7 Parentheses in Shell Scripts

Beware of two opening parentheses in a row, as some shell implementations mishandle them.
For example, ‘pdksh’ 5.2.14 misparses the following code:

if ((true) || false); then
echo ok

fi

To work around this problem, insert a space between the two opening parentheses. There
is a similar problem and workaround with ‘$((’; see Section 10.5 [Shell Substitutions],
page 124.

posix requires support for case patterns with opening parentheses like this:
case $filename in
(*.c) echo "C source code";;
esac

but the (in this example is not portable to many older Bourne shell implementations. It
can be omitted safely.

10.8 Special Shell Variables

Some shell variables should not be used, since they can have a deep influence on the behavior
of the shell. In order to recover a sane behavior from the shell, some variables should be
unset, but unset is not portable (see Section 10.9 [Limitations of Builtins], page 132) and
a fallback value is needed. We list these values below.

Chapter 10: Portable Shell Programming 129

CDPATH When this variable is set it specifies a list of directories to search when invoking
cd with a relative filename. posix 1003.1-2001 says that if a nonempty directory
name from CDPATH is used successfully, cd prints the resulting absolute filename.
Unfortunately this output can break idioms like ‘abs=‘cd src && pwd‘’ because
abs receives the path twice. Also, many shells do not conform to this part of
posix; for example, zsh prints the result only if a directory name other than
‘.’ was chosen from CDPATH.
In practice the shells that have this problem also support unset, so you can
work around the problem as follows:

(unset CDPATH) >/dev/null 2>&1 && unset CDPATH

Autoconf-generated scripts automatically unset CDPATH if possible, so you need
not worry about this problem in those scripts.

IFS Don’t set the first character of IFS to backslash. Indeed, Bourne shells use
the first character (backslash) when joining the components in ‘"$@"’ and some
shells then re-interpret (!) the backslash escapes, so you can end up with
backspace and other strange characters.
The proper value for IFS (in regular code, not when performing splits) is
‘〈SPC〉〈TAB〉〈RET〉’. The first character is especially important, as it is used to
join the arguments in ‘@*’.

LANG
LC_ALL
LC_COLLATE
LC_CTYPE
LC_MESSAGES
LC_MONETARY
LC_NUMERIC
LC_TIME

Autoconf-generated scripts normally set all these variables to ‘C’ because so
much configuration code assumes the C locale and posix requires that locale
environment variables be set to ‘C’ if the C locale is desired. However, some
older, nonstandard systems (notably sco) break if locale environment variables
are set to ‘C’, so when running on these systems Autoconf-generated scripts
unset the variables instead.

LANGUAGE

LANGUAGE is not specified by posix, but it is a gnu extension that overrides
LC_ALL in some cases, so Autoconf-generated scripts set it too.

LC_ADDRESS
LC_IDENTIFICATION
LC_MEASUREMENT
LC_NAME
LC_PAPER
LC_TELEPHONE

These locale environment variables are gnu extensions. They are treated like
their posix brethren (LC_COLLATE, etc.) as described above.

130 Autoconf

LINENO Most modern shells provide the current line number in LINENO. Its value is
the line number of the beginning of the current command. Autoconf attempts
to execute configure with a modern shell. If no such shell is available, it
attempts to implement LINENO with a Sed prepass that replaces each instance
of the string $LINENO (not followed by an alphanumeric character) with the
line’s number.

You should not rely on LINENO within eval, as the behavior differs in practice.
Also, the possibility of the Sed prepass means that you should not rely on
$LINENO when quoted, when in here-documents, or when in long commands
that cross line boundaries. Subshells should be OK, though. In the following
example, lines 1, 6, and 9 are portable, but the other instances of LINENO are
not:

$ cat lineno

echo 1. $LINENO
cat <<EOF
3. $LINENO
4. $LINENO
EOF
(echo 6. $LINENO)
eval ’echo 7. $LINENO’
echo 8. ’$LINENO’
echo 9. $LINENO ’
10.’ $LINENO

$ bash-2.05 lineno

1. 1
3. 2
4. 2
6. 6
7. 1
8. $LINENO
9. 9
10. 9

$ zsh-3.0.6 lineno

1. 1
3. 2
4. 2
6. 6
7. 7
8. $LINENO
9. 9
10. 9

Chapter 10: Portable Shell Programming 131

$ pdksh-5.2.14 lineno

1. 1
3. 2
4. 2
6. 6
7. 0
8. $LINENO
9. 9
10. 9

$ sed ’=’ <lineno |
> sed ’

> N

> s,$,-,
> : loop

> s,^\([0-9]*\)\(.*\)[$]LINENO\([^a-zA-Z0-9_]\),\1\2\1\3,
> t loop

> s,-$,,
> s,^[0-9]*\n,,
> ’ |
> sh

1. 1
3. 3
4. 4
6. 6
7. 7
8. 8
9. 9
10. 10

NULLCMD When executing the command ‘>foo’, zsh executes ‘$NULLCMD >foo’. The
Bourne shell considers NULLCMD to be ‘:’, while zsh, even in Bourne shell com-
patibility mode, sets NULLCMD to ‘cat’. If you forgot to set NULLCMD, your script
might be suspended waiting for data on its standard input.

ENV
MAIL
MAILPATH
PS1
PS2
PS4 These variables should not matter for shell scripts, since they are supposed to

affect only interactive shells. However, at least one shell (the pre-3.0 uwin ksh)
gets confused about whether it is interactive, which means that (for example) a
PS1 with a side effect can unexpectedly modify ‘$?’. To work around this bug,
Autoconf-generated scripts do something like this:

(unset ENV) >/dev/null 2>&1 && unset ENV MAIL MAILPATH
PS1=’$ ’
PS2=’> ’
PS4=’+ ’

132 Autoconf

PWD posix 1003.1-2001 requires that cd and pwd must update the PWD environment
variable to point to the logical path to the current directory, but traditional
shells do not support this. This can cause confusion if one shell instance main-
tains PWD but a subsidiary and different shell does not know about PWD and
executes cd; in this case PWD will point to the wrong directory. Use ‘‘pwd‘’
rather than ‘$PWD’.

status This variable is an alias to ‘$?’ for zsh (at least 3.1.6), hence read-only. Do not
use it.

PATH_SEPARATOR
If it is not set, configure will detect the appropriate path separator for the
build system and set the PATH_SEPARATOR output variable accordingly.
On DJGPP systems, the PATH_SEPARATOR environment variable can be set to
either ‘:’ or ‘;’ to control the path separator bash uses to set up certain en-
vironment variables (such as PATH). Since this only works inside bash, you
want configure to detect the regular dos path separator (‘;’), so it can be
safely substituted in files that may not support ‘;’ as path separator. So it is
recommended to either unset this variable or set it to ‘;’.

RANDOM Many shells provide RANDOM, a variable that returns a different integer each
time it is used. Most of the time, its value does not change when it is not used,
but on irix 6.5 the value changes all the time. This can be observed by using
set.

10.9 Limitations of Shell Builtins

No, no, we are serious: some shells do have limitations! :)
You should always keep in mind that any builtin or command may support options, and

therefore have a very different behavior with arguments starting with a dash. For instance,
the innocent ‘echo "$word"’ can give unexpected results when word starts with a dash. It
is often possible to avoid this problem using ‘echo "x$word"’, taking the ‘x’ into account
later in the pipe.

. Use . only with regular files (use ‘test -f’). Bash 2.03, for instance, chokes on
‘. /dev/null’. Also, remember that . uses PATH if its argument contains no
slashes, so if you want to use . on a file ‘foo’ in the current directory, you must
use ‘. ./foo’.

! You can’t use !; you’ll have to rewrite your code.

break The use of ‘break 2’ etc. is safe.

cd posix 1003.1-2001 requires that cd must support the ‘-L’ (“logical”) and ‘-P’
(“physical”) options, with ‘-L’ being the default. However, traditional shells do
not support these options, and their cd command has the ‘-P’ behavior.
Portable scripts should assume neither option is supported, and should assume
neither behavior is the default. This can be a bit tricky, since the posix default
behavior means that, for example, ‘ls ..’ and ‘cd ..’ may refer to different
directories if the current logical directory is a symbolic link. It is safe to use cd
dir if dir contains no ‘..’ components. Also, Autoconf-generated scripts check

Chapter 10: Portable Shell Programming 133

for this problem when computing variables like ac_top_srcdir (see Section 4.5
[Configuration Actions], page 18), so it is safe to cd to these variables.

Also please see the discussion of the pwd command.

case You don’t need to quote the argument; no splitting is performed.

You don’t need the final ‘;;’, but you should use it.

Because of a bug in its fnmatch, bash fails to properly handle backslashes in
character classes:

bash-2.02$ case /tmp in [/\\]*) echo OK;; esac

bash-2.02$

This is extremely unfortunate, since you are likely to use this code to handle
unix or ms-dos absolute paths. To work around this bug, always put the
backslash first:

bash-2.02$ case ’\TMP’ in [\\/]*) echo OK;; esac

OK
bash-2.02$ case /tmp in [\\/]*) echo OK;; esac

OK

Some shells, such as Ash 0.3.8, are confused by an empty case/esac:

ash-0.3.8 $ case foo in esac;

error Syntax error: ";" unexpected (expecting ")")

Many shells still do not support parenthesized cases, which is a pity for those
of us using tools that rely on balanced parentheses. For instance, Solaris 8’s
Bourne shell:

$ case foo in (foo) echo foo;; esac

error syntax error: ‘(’ unexpected

echo The simple echo is probably the most surprising source of portability troubles.
It is not possible to use ‘echo’ portably unless both options and escape sequences
are omitted. New applications which are not aiming at portability should use
‘printf’ instead of ‘echo’.

Don’t expect any option. See Section 4.7.1 [Preset Output Variables], page 20,
ECHO_N etc. for a means to simulate ‘-n’.

Do not use backslashes in the arguments, as there is no consensus on their
handling. On ‘echo ’\n’ | wc -l’, the sh of Digital Unix 4.0 and mips risc/os
4.52, answer 2, but the Solaris’ sh, Bash, and Zsh (in sh emulation mode) report
1. Please note that the problem is truly echo: all the shells understand ‘’\n’’
as the string composed of a backslash and an ‘n’.

Because of these problems, do not pass a string containing arbitrary characters
to echo. For example, ‘echo "$foo"’ is safe if you know that foo’s value cannot
contain backslashes and cannot start with ‘-’, but otherwise you should use a
here-document like this:

cat <<EOF
$foo
EOF

134 Autoconf

exit The default value of exit is supposed to be $?; unfortunately, some shells, such
as the DJGPP port of Bash 2.04, just perform ‘exit 0’.

bash-2.04$ foo=‘exit 1‘ || echo fail

fail
bash-2.04$ foo=‘(exit 1)‘ || echo fail

fail
bash-2.04$ foo=‘(exit 1); exit‘ || echo fail

bash-2.04$

Using ‘exit $?’ restores the expected behavior.
Some shell scripts, such as those generated by autoconf, use a trap to clean
up before exiting. If the last shell command exited with nonzero status, the
trap also exits with nonzero status so that the invoker can tell that an error
occurred.
Unfortunately, in some shells, such as Solaris 8 sh, an exit trap ignores the exit
command’s argument. In these shells, a trap cannot determine whether it was
invoked by plain exit or by exit 1. Instead of calling exit directly, use the
AC_MSG_ERROR macro that has a workaround for this problem.

export The builtin export dubs a shell variable environment variable. Each update
of exported variables corresponds to an update of the environment variables.
Conversely, each environment variable received by the shell when it is launched
should be imported as a shell variable marked as exported.
Alas, many shells, such as Solaris 2.5, irix 6.3, irix 5.2, aix 4.1.5, and Digital
unix 4.0, forget to export the environment variables they receive. As a result,
two variables coexist: the environment variable and the shell variable. The
following code demonstrates this failure:

#! /bin/sh
echo $FOO
FOO=bar
echo $FOO
exec /bin/sh $0

when run with ‘FOO=foo’ in the environment, these shells will print alternately
‘foo’ and ‘bar’, although it should only print ‘foo’ and then a sequence of
‘bar’s.
Therefore you should export again each environment variable that you update.

false Don’t expect false to exit with status 1: in the native Bourne shell of Solaris
8 it exits with status 255.

for To loop over positional arguments, use:
for arg
do
echo "$arg"

done

You may not leave the do on the same line as for, since some shells improperly
grok:

Chapter 10: Portable Shell Programming 135

for arg; do
echo "$arg"

done

If you want to explicitly refer to the positional arguments, given the ‘$@’ bug
(see Section 10.5 [Shell Substitutions], page 124), use:

for arg in ${1+"$@"}; do
echo "$arg"

done

But keep in mind that Zsh, even in Bourne shell emulation mode, performs
word splitting on ‘${1+"$@"}’; see Section 10.5 [Shell Substitutions], page 124,
item ‘$@’, for more.

if Using ‘!’ is not portable. Instead of:

if ! cmp -s file file.new; then
mv file.new file

fi

use:

if cmp -s file file.new; then :; else
mv file.new file

fi

There are shells that do not reset the exit status from an if:

$ if (exit 42); then true; fi; echo $?
42

whereas a proper shell should have printed ‘0’. This is especially bad in Make-
files since it produces false failures. This is why properly written Makefiles,
such as Automake’s, have such hairy constructs:

if test -f "$file"; then
install "$file" "$dest"

else
:

fi

printf A format string starting with a ‘-’ can cause problems. bash (eg. 2.05b) will
interpret it as an options string and give an error. And ‘--’ to mark the end of
options is not good in the NetBSD Almquist shell (eg. 0.4.6) which will take
that literally as the format string. Putting the ‘-’ in a ‘%c’ or ‘%s’ is probably
the easiest way to avoid doubt,

printf %s -foo

pwd With modern shells, plain pwd outputs a “logical” directory name, some of
whose components may be symbolic links. These directory names are in contrast
to “physical” directory names, whose components are all directories.

posix 1003.1-2001 requires that pwd must support the ‘-L’ (“logical”) and ‘-P’
(“physical”) options, with ‘-L’ being the default. However, traditional shells do
not support these options, and their pwd command has the ‘-P’ behavior.

136 Autoconf

Portable scripts should assume neither option is supported, and should assume
neither behavior is the default. Also, on many hosts ‘/bin/pwd’ is equivalent to
‘pwd -P’, but posix does not require this behavior and portable scripts should
not rely on it.
Typically it’s best to use plain pwd. On modern hosts this outputs logical
directory names, which have the following advantages:
• Logical names are what the user specified.
• Physical names may not be portable from one installation host to another

due to network filesystem gymnastics.
• On modern hosts ‘pwd -P’ may fail due to lack of permissions to some

parent directory, but plain pwd cannot fail for this reason.

Also please see the discussion of the cd command.

set This builtin faces the usual problem with arguments starting with a dash. Mod-
ern shells such as Bash or Zsh understand ‘--’ to specify the end of the options
(any argument after ‘--’ is a parameter, even ‘-x’ for instance), but most shells
simply stop the option processing as soon as a non-option argument is found.
Therefore, use ‘dummy’ or simply ‘x’ to end the option processing, and use shift
to pop it out:

set x $my_list; shift

Some shells have the "opposite" problem of not recognizing all options (e.g.,
‘set -e -x’ assigns ‘-x’ to the command line). It is better to elide these:

set -ex

shift Not only is shifting a bad idea when there is nothing left to shift, but in
addition it is not portable: the shell of mips risc/os 4.52 refuses to do it.

source This command is not portable, as posix does not require it; use . instead.

test The test program is the way to perform many file and string tests. It is often
invoked by the alternate name ‘[’, but using that name in Autoconf code is
asking for trouble since it is an M4 quote character.
If you need to make multiple checks using test, combine them with the shell
operators ‘&&’ and ‘||’ instead of using the test operators ‘-a’ and ‘-o’. On
System V, the precedence of ‘-a’ and ‘-o’ is wrong relative to the unary opera-
tors; consequently, posix does not specify them, so using them is nonportable.
If you combine ‘&&’ and ‘||’ in the same statement, keep in mind that they
have equal precedence.
You may use ‘!’ with test, but not with if: ‘test ! -r foo || exit 1’.

test (files)
To enable configure scripts to support cross-compilation, they shouldn’t do
anything that tests features of the build system instead of the host system.
But occasionally you may find it necessary to check whether some arbitrary file
exists. To do so, use ‘test -f’ or ‘test -r’. Do not use ‘test -x’, because
4.3bsd does not have it. Do not use ‘test -e’ either, because Solaris 2.5 does
not have it. To test for symbolic links on systems that have them, use ‘test

Chapter 10: Portable Shell Programming 137

-h’ rather than ‘test -L’; either form conforms to posix 1003.1-2001, but older
shells like Solaris 8 /bin/sh support only ‘-h’.

test (strings)
Avoid ‘test "string"’, in particular if string might start with a dash, since
test might interpret its argument as an option (e.g., ‘string = "-n"’).
Contrary to a common belief, ‘test -n string ’ and ‘test -z string ’ are
portable. Nevertheless many shells (such as Solaris 2.5, aix 3.2, unicos
10.0.0.6, Digital Unix 4 etc.) have bizarre precedence and may be confused if
string looks like an operator:

$ test -n =

test: argument expected

If there are risks, use ‘test "xstring" = x’ or ‘test "xstring" != x’ instead.
It is common to find variations of the following idiom:

test -n "‘echo $ac_feature | sed ’s/[-a-zA-Z0-9_]//g’‘" &&
action

to take an action when a token matches a given pattern. Such constructs should
always be avoided by using:

echo "$ac_feature" | grep ’[^-a-zA-Z0-9_]’ >/dev/null 2>&1 &&
action

Use case where possible since it is faster, being a shell builtin:
case $ac_feature in
[!-a-zA-Z0-9_]) action;;

esac

Alas, negated character classes are probably not portable, although no shell is
known to not support the posix syntax ‘[!...]’ (when in interactive mode,
zsh is confused by the ‘[!...]’ syntax and looks for an event in its history
because of ‘!’). Many shells do not support the alternative syntax ‘[^...]’
(Solaris, Digital Unix, etc.).
One solution can be:

expr "$ac_feature" : ’.*[^-a-zA-Z0-9_]’ >/dev/null &&
action

or better yet
expr "x$ac_feature" : ’.*[^-a-zA-Z0-9_]’ >/dev/null &&
action

‘expr "Xfoo" : "Xbar"’ is more robust than ‘echo "Xfoo" | grep "^Xbar"’,
because it avoids problems when ‘foo ’ contains backslashes.

trap It is safe to trap at least the signals 1, 2, 13, and 15. You can also trap 0, i.e.,
have the trap run when the script ends (either via an explicit exit, or the end
of the script).
Although posix is not absolutely clear on this point, it is widely admitted that
when entering the trap ‘$?’ should be set to the exit status of the last command
run before the trap. The ambiguity can be summarized as: “when the trap is

138 Autoconf

launched by an exit, what is the last command run: that before exit, or exit
itself?”

Bash considers exit to be the last command, while Zsh and Solaris 8 sh consider
that when the trap is run it is still in the exit, hence it is the previous exit
status that the trap receives:

$ cat trap.sh

trap ’echo $?’ 0
(exit 42); exit 0
$ zsh trap.sh

42
$ bash trap.sh

0

The portable solution is then simple: when you want to ‘exit 42’, run ‘(exit
42); exit 42’, the first exit being used to set the exit status to 42 for Zsh,
and the second to trigger the trap and pass 42 as exit status for Bash.

The shell in Freebsd 4.0 has the following bug: ‘$?’ is reset to 0 by empty lines
if the code is inside trap.

$ trap ’false

echo $?’ 0
$ exit

0

Fortunately, this bug only affects trap.

true Don’t worry: as far as we know true is portable. Nevertheless, it’s not always a
builtin (e.g., Bash 1.x), and the portable shell community tends to prefer using
:. This has a funny side effect: when asked whether false is more portable
than true Alexandre Oliva answered:

In a sense, yes, because if it doesn’t exist, the shell will produce an
exit status of failure, which is correct for false, but not for true.

unset You cannot assume the support of unset. Nevertheless, because it is extremely
useful to disable embarrassing variables such as PS1, you can test for its ex-
istence and use it provided you give a neutralizing value when unset is not
supported:

if (unset FOO) >/dev/null 2>&1; then
unset=unset

else
unset=false

fi
$unset PS1 || PS1=’$ ’

See Section 10.8 [Special Shell Variables], page 128, for some neutralizing values.
Also, see Section 10.9 [Limitations of Builtins], page 132, documentation of
export, for the case of environment variables.

Chapter 10: Portable Shell Programming 139

10.10 Limitations of Usual Tools

The small set of tools you can expect to find on any machine can still include some limita-
tions you should be aware of.

awk Don’t leave white spaces before the parentheses in user functions calls; gnu
awk will reject it:

$ gawk ’function die () { print "Aaaaarg!" }
BEGIN { die () }’

gawk: cmd. line:2: BEGIN { die () }
gawk: cmd. line:2: ^ parse error
$ gawk ’function die () { print "Aaaaarg!" }

BEGIN { die() }’
Aaaaarg!

If you want your program to be deterministic, don’t depend on for on arrays:
$ cat for.awk

END {
arr["foo"] = 1
arr["bar"] = 1
for (i in arr)
print i

}
$ gawk -f for.awk </dev/null
foo
bar
$ nawk -f for.awk </dev/null
bar
foo

Some AWK, such as HPUX 11.0’s native one, have regex engines fragile to inner
anchors:

$ echo xfoo | $AWK ’/foo|^bar/ { print }’
$ echo bar | $AWK ’/foo|^bar/ { print }’
bar
$ echo xfoo | $AWK ’/^bar|foo/ { print }’
xfoo
$ echo bar | $AWK ’/^bar|foo/ { print }’
bar

Either do not depend on such patterns (i.e., use ‘/^(.*foo|bar)/’, or use a
simple test to reject such AWK.

cat Don’t rely on any option. The option ‘-v’, which displays non-printing charac-
ters, seems portable, though.

cc When a compilation such as ‘cc foo.c -o foo’ fails, some compilers (such as
cds on Reliant unix) leave a ‘foo.o’.
HP-UX cc doesn’t accept ‘.S’ files to preprocess and assemble. ‘cc -c foo.S’
will appear to succeed, but in fact does nothing.
The default executable, produced by ‘cc foo.c’, can be

140 Autoconf

• ‘a.out’ — usual Unix convention.

• ‘b.out’ — i960 compilers (including gcc).

• ‘a.exe’ — DJGPP port of gcc.

• ‘a_out.exe’ — GNV cc wrapper for DEC C on OpenVMS.

• ‘foo.exe’ — various MS-DOS compilers.

cmp cmp performs a raw data comparison of two files, while diff compares two text
files. Therefore, if you might compare DOS files, even if only checking whether
two files are different, use diff to avoid spurious differences due to differences
of newline encoding.

cp Traditionally, file timestamps had 1-second resolution, and ‘cp -p’ copied the
timestamps exactly. However, many modern filesystems have timestamps with
1-nanosecond resolution. Unfortunately, ‘cp -p’ implementations truncate
timestamps when copying files, so this can result in the destination file
appearing to be older than the source. The exact amount of truncation
depends on the resolution of the system calls that cp uses; traditionally this
was utime, which has 1-second resolution, but some newer cp implementations
use utimes, which has 1-microsecond resolution. These newer implementations
include GNU coreutils 5.0.91 or later, and Solaris 8 (sparc) patch 109933-02 or
later. Unfortunately as of September 2003 there is still no system call to set
time stamps to the full nanosecond resolution.

SunOS cp does not support ‘-f’, although its mv does. It’s possible to deduce
why mv and cp are different with respect to ‘-f’. mv prompts by default before
overwriting a read-only file. cp does not. Therefore, mv requires a ‘-f’ option,
but cp does not. mv and cp behave differently with respect to read-only files be-
cause the simplest form of cp cannot overwrite a read-only file, but the simplest
form of mv can. This is because cp opens the target for write access, whereas
mv simply calls link (or, in newer systems, rename).

Bob Proulx notes that ‘cp -p’ always tries to copy ownerships. But whether
it actually does copy ownerships or not is a system dependent policy decision
implemented by the kernel. If the kernel allows it then it happens. If the kernel
does not allow it then it does not happen. It is not something cp itself has
control over.

In SysV any user can chown files to any other user, and SysV also had a non-
sticky ‘/tmp’. That undoubtedly derives from the heritage of SysV in a business
environment without hostile users. BSD changed this to be a more secure model
where only root can chown files and a sticky ‘/tmp’ is used. That undoubtedly
derives from the heritage of BSD in a campus environment.

Linux by default follows BSD, but it can be configured to allow chown. HP-UX
as an alternate example follows SysV, but it can be configured to use the modern
security model and disallow chown. Since it is an administrator configurable
parameter you can’t use the name of the kernel as an indicator of the behavior.

date Some versions of date do not recognize special % directives, and unfortunately,
instead of complaining, they just pass them through, and exit with success:

Chapter 10: Portable Shell Programming 141

$ uname -a

OSF1 medusa.sis.pasteur.fr V5.1 732 alpha
$ date "+%s"
%s

diff Option ‘-u’ is nonportable.
Some implementations, such as Tru64’s, fail when comparing to ‘/dev/null’.
Use an empty file instead.

dirname Not all hosts have a working dirname, and you should instead use AS_DIRNAME
(see Section 8.4 [Programming in M4sh], page 110). For example:

dir=‘dirname "$file"‘ # This is not portable.
dir=‘AS_DIRNAME(["$file"])‘ # This is more portable.

This handles a few subtleties in the standard way required by posix. For
example, under UN*X, should ‘dirname //1’ give ‘/’? Paul Eggert answers:

No, under some older flavors of Unix, leading ‘//’ is a special path
name: it refers to a “super-root” and is used to access other ma-
chines’ files. Leading ‘///’, ‘////’, etc. are equivalent to ‘/’; but
leading ‘//’ is special. I think this tradition started with Apollo
Domain/OS, an OS that is still in use on some older hosts.
posix allows but does not require the special treatment for ‘//’.
It says that the behavior of dirname on path names of the form
‘//([^/]+/*)?’ is implementation defined. In these cases, gnu
dirname returns ‘/’, but it’s more portable to return ‘//’ as this
works even on those older flavors of Unix.

egrep posix 1003.1-2001 no longer requires egrep, but many older hosts do not yet
support the posix replacement grep -E. To work around this problem, invoke
AC_PROG_EGREP and then use $EGREP.
The empty alternative is not portable, use ‘?’ instead. For instance with Digital
Unix v5.0:

> printf "foo\n|foo\n" | $EGREP ’^(|foo|bar)$’
|foo
> printf "bar\nbar|\n" | $EGREP ’^(foo|bar|)$’
bar|
> printf "foo\nfoo|\n|bar\nbar\n" | $EGREP ’^(foo||bar)$’
foo
|bar

$EGREP also suffers the limitations of grep.

expr No expr keyword starts with ‘x’, so use ‘expr x"word" : ’xregex’’ to keep
expr from misinterpreting word.
Don’t use length, substr, match and index.

expr (‘|’) You can use ‘|’. Although posix does require that ‘expr ’’’ return the empty
string, it does not specify the result when you ‘|’ together the empty string (or
zero) with the empty string. For example:

142 Autoconf

expr ’’ \| ’’

gnu/Linux and posix.2-1992 return the empty string for this case, but tra-
ditional unix returns ‘0’ (Solaris is one such example). In posix.1-2001, the
specification has been changed to match traditional unix’s behavior (which is
bizarre, but it’s too late to fix this). Please note that the same problem does
arise when the empty string results from a computation, as in:

expr bar : foo \| foo : bar

Avoid this portability problem by avoiding the empty string.

expr (‘:’) Don’t use ‘\?’, ‘\+’ and ‘\|’ in patterns, as they are not supported on Solaris.
The posix standard is ambiguous as to whether ‘expr ’a’ : ’\(b\)’’ outputs
‘0’ or the empty string. In practice, it outputs the empty string on most plat-
forms, but portable scripts should not assume this. For instance, the qnx 4.25
native expr returns ‘0’.
One might think that a way to get a uniform behavior would be to use the
empty string as a default value:

expr a : ’\(b\)’ \| ’’

Unfortunately this behaves exactly as the original expression; see the ‘expr
(‘:’)’ entry for more information.
Older expr implementations (e.g., SunOS 4 expr and Solaris 8 /usr/ucb/expr)
have a silly length limit that causes expr to fail if the matched substring is longer
than 120 bytes. In this case, you might want to fall back on ‘echo|sed’ if expr
fails.
Don’t leave, there is some more!
The qnx 4.25 expr, in addition of preferring ‘0’ to the empty string, has a
funny behavior in its exit status: it’s always 1 when parentheses are used!

$ val=‘expr ’a’ : ’a’‘; echo "$?: $val"
0: 1
$ val=‘expr ’a’ : ’b’‘; echo "$?: $val"
1: 0

$ val=‘expr ’a’ : ’\(a\)’‘; echo "?: $val"
1: a
$ val=‘expr ’a’ : ’\(b\)’‘; echo "?: $val"
1: 0

In practice this can be a big problem if you are ready to catch failures of expr
programs with some other method (such as using sed), since you may get twice
the result. For instance

$ expr ’a’ : ’\(a\)’ || echo ’a’ | sed ’s/^\(a\)$/\1/’

will output ‘a’ on most hosts, but ‘aa’ on qnx 4.25. A simple workaround
consists in testing expr and use a variable set to expr or to false according to
the result.

fgrep posix 1003.1-2001 no longer requires fgrep, but many older hosts do not yet
support the posix replacement grep -F. To work around this problem, invoke
AC_PROG_FGREP and then use $FGREP.

Chapter 10: Portable Shell Programming 143

find The option ‘-maxdepth’ seems to be gnu specific. Tru64 v5.1, Netbsd 1.5 and
Solaris 2.5 find commands do not understand it.
The replacement of ‘{}’ is guaranteed only if the argument is exactly {}, not
if it’s only a part of an argument. For instance on DU, and HP-UX 10.20 and
HP-UX 11:

$ touch foo

$ find . -name foo -exec echo "{}-{}" \;

{}-{}

while gnu find reports ‘./foo-./foo’.

grep Don’t use ‘grep -s’ to suppress output, because ‘grep -s’ on System V does
not suppress output, only error messages. Instead, redirect the standard output
and standard error (in case the file doesn’t exist) of grep to ‘/dev/null’. Check
the exit status of grep to determine whether it found a match.
Don’t use multiple regexps with ‘-e’, as some grep will only honor the last
pattern (e.g., irix 6.5 and Solaris 2.5.1). Anyway, Stardent Vistra SVR4 grep
lacks ‘-e’. . . Instead, use extended regular expressions and alternation.
Don’t rely on ‘-w’, as Irix 6.5.16m’s grep does not support it.

ln Don’t rely on ln having a ‘-f’ option. Symbolic links are not available on old
systems; use ‘$(LN_S)’ as a portable substitute.
For versions of the DJGPP before 2.04, ln emulates soft links to executables by
generating a stub that in turn calls the real program. This feature also works
with nonexistent files like in the Unix spec. So ‘ln -s file link’ will generate
‘link.exe’, which will attempt to call ‘file.exe’ if run. But this feature only
works for executables, so ‘cp -p’ is used instead for these systems. DJGPP
versions 2.04 and later have full symlink support.

ls The portable options are ‘-acdilrtu’. Modern practice is for ‘-l’ to output
both owner and group, but traditional ls omits the group.
Modern practice is for all diagnostics to go to standard error, but traditional
‘ls foo’ prints the message ‘foo not found’ to standard output if ‘foo’ does
not exist. Be careful when writing shell commands like ‘sources=‘ls *.c
2>/dev/null‘’, since with traditional ls this is equivalent to ‘sources="*.c
not found"’ if there are no ‘.c’ files.

mkdir None of mkdir’s options are portable. Instead of ‘mkdir -p filename ’, you
should use use AS_MKDIR_P(filename) (see Section 8.4 [Programming in
M4sh], page 110).

mv The only portable options are ‘-f’ and ‘-i’.
Moving individual files between file systems is portable (it was in V6), but it
is not always atomic: when doing ‘mv new existing’, there’s a critical section
where neither the old nor the new version of ‘existing’ actually exists.
Be aware that moving files from ‘/tmp’ can sometimes cause undesirable (but
perfectly valid) warnings, even if you created these files. On some systems,
creating the file in ‘/tmp’ is setting a guid wheel which you may not be part
of. So the file is copied, and then the chgrp fails:

144 Autoconf

$ touch /tmp/foo

$ mv /tmp/foo .

error mv: ./foo: set owner/group (was: 3830/0): Operation not permitted
$ echo $?
0
$ ls foo

foo

This behavior conforms to posix:
If the duplication of the file characteristics fails for any reason, mv
shall write a diagnostic message to standard error, but this failure
shall not cause mv to modify its exit status.”

Moving directories across mount points is not portable, use cp and rm.
Moving/Deleting open files isn’t portable. The following can’t be done on
DOS/WIN32:

exec > foo
mv foo bar

nor can
exec > foo
rm -f foo

sed Patterns should not include the separator (unless escaped), even as part
of a character class. In conformance with posix, the Cray sed will reject
‘s/[^/]*$//’: use ‘s,[^/]*$,,’.
Sed scripts should not use branch labels longer than 8 characters and should
not contain comments.
Don’t include extra ‘;’, as some sed, such as Netbsd 1.4.2’s, try to interpret
the second as a command:

$ echo a | sed ’s/x/x/;;s/x/x/’

sed: 1: "s/x/x/;;s/x/x/": invalid command code ;

Input should have reasonably long lines, since some sed have an input buffer
limited to 4000 bytes.
Alternation, ‘\|’, is common but posix does not require its support, so it should
be avoided in portable scripts. Solaris 8 sed does not support alternation; e.g.,
‘sed ’/a\|b/d’’ deletes only lines that contain the literal string ‘a|b’.
Anchors (‘^’ and ‘$’) inside groups are not portable.
Nested parenthesization in patterns (e.g., ‘\(\(a*\)b*)\)’) is quite portable
to modern hosts, but is not supported by some older sed implementations like
SVR3.
Of course the option ‘-e’ is portable, but it is not needed. No valid Sed program
can start with a dash, so it does not help disambiguating. Its sole usefulness is
to help enforcing indentation as in:

sed -e instruction-1 \
-e instruction-2

as opposed to

Chapter 10: Portable Shell Programming 145

sed instruction-1;instruction-2

Contrary to yet another urban legend, you may portably use ‘&’ in the replace-
ment part of the s command to mean “what was matched”. All descendants
of Bell Lab’s V7 sed (at least; we don’t have first hand experience with older
seds) have supported it.

posix requires that you must not have any white space between ‘!’ and the
following command. It is OK to have blanks between the address and the ‘!’.
For instance, on Solaris 8:

$ echo "foo" | sed -n ’/bar/ ! p’

error Unrecognized command: /bar/ ! p
$ echo "foo" | sed -n ’/bar/! p’

error Unrecognized command: /bar/! p
$ echo "foo" | sed -n ’/bar/ !p’

foo

sed (‘t’) Some old systems have sed that “forget” to reset their ‘t’ flag when starting
a new cycle. For instance on mips risc/os, and on irix 5.3, if you run the
following sed script (the line numbers are not actual part of the texts):

s/keep me/kept/g # a
t end # b
s/.*/deleted/g # c
: end # d

on

delete me # 1
delete me # 2
keep me # 3
delete me # 4

you get

deleted
delete me
kept
deleted

instead of

deleted
deleted
kept
deleted

Why? When processing 1, a matches, therefore sets the t flag, b jumps to d,
and the output is produced. When processing line 2, the t flag is still set (this is
the bug). Line a fails to match, but sed is not supposed to clear the t flag when
a substitution fails. Line b sees that the flag is set, therefore it clears it, and
jumps to d, hence you get ‘delete me’ instead of ‘deleted’. When processing
3, t is clear, a matches, so the flag is set, hence b clears the flags and jumps.
Finally, since the flag is clear, 4 is processed properly.

146 Autoconf

There are two things one should remember about ‘t’ in sed. Firstly, always
remember that ‘t’ jumps if some substitution succeeded, not only the immedi-
ately preceding substitution. Therefore, always use a fake ‘t clear; : clear’
to reset the t flag where indeed.

Secondly, you cannot rely on sed to clear the flag at each new cycle.

One portable implementation of the script above is:

t clear
: clear
s/keep me/kept/g
t end
s/.*/deleted/g
: end

touch If you specify the desired timestamp (e.g., with the ‘-r’ option), touch typically
uses the utime or utimes system call, which can result in the same kind of
timestamp truncation problems that ‘cp -p’ has.

On some old bsd systems, touch or any command that results in an empty file
does not update the timestamps, so use a command like echo as a workaround.

gnu touch 3.16r (and presumably all before that) fails to work on SunOS 4.1.3
when the empty file is on an nfs-mounted 4.2 volume.

10.11 Limitations of Make

make itself suffers a great number of limitations, only a few of which are listed here. First
of all, remember that since commands are executed by the shell, all its weaknesses are
inherited. . . .

$< posix says that the ‘$<’ construct in makefiles can be used only in inference
rules and in the ‘.DEFAULT’ rule; its meaning in ordinary rules is unspecified.
Solaris 8’s make for instance will replace it with the argument.

Leading underscore in macro names
Some makes don’t support leading underscores in macro names, such as on
NEWS-OS 4.2R.

$ cat Makefile

_am_include = #
_am_quote =
all:; @echo this is test
$ make

Make: Must be a separator on rules line 2. Stop.
$ cat Makefile2

am_include = #
am_quote =
all:; @echo this is test
$ make -f Makefile2

this is test

Chapter 10: Portable Shell Programming 147

Trailing backslash in macro
On some versions of HP-UX, make will read multiple newlines following a back-
slash, continuing to the next non-empty line. For example,

FOO = one \

BAR = two

test:
: FOO is "$(FOO)"
: BAR is "$(BAR)"

shows FOO equal to one BAR = two. Other makes sensibly let a backslash con-
tinue only to the immediately following line.

Escaped newline in comments
According to posix, ‘Makefile’ comments start with # and continue until an
unescaped newline is reached.

% cat Makefile

A = foo \
bar \
baz

all:
@echo ok

% make # GNU make
ok

However in Real World this is not always the case. Some implementations
discards anything from # up to the end of line, ignoring any trailing backslash.

% pmake # BSD make
"Makefile", line 3: Need an operator
Fatal errors encountered -- cannot continue

Therefore, if you want to comment out a multi-line definition, prefix each line
with #, not only the first.

A = foo \
bar \
baz

make macro=value and sub-makes.
A command-line variable definition such as foo=bar overrides any definition of
foo in the ‘Makefile’. Some make implementations (such as gnu make) will
propagate this override to sub-invocations of make. Some other implementation
will not pass the substitution along to sub-makes.

% cat Makefile

foo = foo
one:

@echo $(foo)
$(MAKE) two

148 Autoconf

two:
@echo $(foo)

% make foo=bar # GNU make 3.79.1
bar
make two
make[1]: Entering directory ‘/home/adl’
bar
make[1]: Leaving directory ‘/home/adl’
% pmake foo=bar # BSD make
bar
pmake two
foo

You have a few possibilities if you do want the foo=bar override to propagate to
sub-makes. One is to use the -e option, which causes all environment variables
to have precedence over the ‘Makefile’ macro definitions, and declare foo as
an environment variable:

% env foo=bar make -e

The -e option is propagated to sub-makes automatically, and since the environ-
ment is inherited between make invocations, the foo macro will be overridden
in sub-makes as expected.

This syntax (foo=bar make -e) is portable only when used outside a
‘Makefile’, for instance from a script or from the command line. When run
inside a make rule, GNU make 3.80 and prior versions forget to propagate the
-e option to sub-makes.

Moreover, using -e could have unexpected side-effects if your environment con-
tains some other macros usually defined by the Makefile. (See also the note
about make -e and SHELL below.)

Another way to propagate overrides to sub-makes is to do it manually, from
your ‘Makefile’:

foo = foo
one:

@echo $(foo)
$(MAKE) foo=$(foo) two

two:
@echo $(foo)

You need to foresee all macros that a user might want to override if you do
that.

The SHELL macro
posix-compliant makes internally use the $(SHELL) macro to spawn shell pro-
cesses and execute ‘Makefile’ rules. This is a builtin macro supplied by make,
but it can be modified from the ‘Makefile’ or a command-line argument.

Not all makes will define this SHELL macro. OSF/Tru64 make is an example;
this implementation will always use /bin/sh. So it’s a good idea to always
define SHELL in your ‘Makefile’s. If you use Autoconf, do

Chapter 10: Portable Shell Programming 149

SHELL = @SHELL@

posix-compliant makes should never acquire the value of $(SHELL) from the
environment, even when make -e is used (otherwise, think about what would
happen to your rules if SHELL=/bin/tcsh).

However not all make implementations will make this exception. For instance
it’s not surprising that OSF/Tru64 make doesn’t protect SHELL, since it doesn’t
use it.

% cat Makefile

SHELL = /bin/sh
FOO = foo
all:

@echo $(SHELL)
@echo $(FOO)

% env SHELL=/bin/tcsh FOO=bar make -e # OSF1 V4.0 Make
/bin/tcsh
bar
% env SHELL=/bin/tcsh FOO=bar gmake -e # GNU make
/bin/sh
bar

Comments in rules
Never put comments in a rule.

Some make treat anything starting with a tab as a command for the current
rule, even if the tab is immediately followed by a #. The make from Tru64 Unix
V5.1 is one of them. The following ‘Makefile’ will run # foo through the shell.

all:
foo

The ‘obj/’ subdirectory.
Never name one of your subdirectories ‘obj/’ if you don’t like surprises.

If an ‘obj/’ directory exists, BSD make will enter it before reading ‘Makefile’.
Hence the ‘Makefile’ in the current directory will not be read.

% cat Makefile

all:
echo Hello

% cat obj/Makefile

all:
echo World

% make # GNU make
echo Hello
Hello
% pmake # BSD make
echo World
World

make -k

150 Autoconf

Do not rely on the exit status of make -k. Some implementations reflect whether
they encountered an error in their exit status; other implementations always
succeed.

% cat Makefile

all:
false

% make -k; echo exit status: $? # GNU make
false
make: *** [all] Error 1
exit status: 2
% pmake -k; echo exit status: $? # BSD make
false
*** Error code 1 (continuing)
exit status: 0

VPATH

There is no VPATH support specified in posix. Many makes have a form of VPATH
support, but its implementation is not consistent amongst makes.
Maybe the best suggestion to give to people who need the VPATH feature is to
choose a make implementation and stick to it. Since the resulting ‘Makefile’s
are not portable anyway, better choose a portable make (hint, hint).
Here are a couple of known issues with some VPATH implementations.

VPATH and double-colon rules
Any assignment to VPATH causes Sun make to only execute the first
set of double-colon rules. (This comment has been here since 1994
and the context has been lost. It’s probably about SunOS 4. If you
can reproduce this, please send us a test case for illustration.)

$< not supported in explicit rules
As said elsewhere, using $< in explicit rules is not portable. The
prerequisite file must be named explicitly in the rule. If you want
to find the prerequisite via a VPATH search, you have to code the
whole thing manually. For instance, using the following pattern:

VPATH = ../src
foo.o: foo.c

cc -c ‘test -f foo.c || echo ../src/‘foo.c -o foo.o

Automatic rule rewriting
Some make implementations, such as SunOS make, will search pre-
requisites in VPATH and rewrite all their occurrences in the rule
appropriately.
For instance

VPATH = ../src
foo.o: foo.c

cc -c foo.c -o foo.o

would execute cc -c ../src/foo.c -o foo.o if ‘foo.c’ was found
in ‘../src’. That sounds great.

Chapter 10: Portable Shell Programming 151

However, for the sake of other make implementations, we can’t rely
on this, and we have to search VPATH manually:

VPATH = ../src
foo.o: foo.c

cc -c ‘test -f foo.c || echo ../src/‘foo.c -o foo.o

However the "prerequisite rewriting" still applies here. So if ‘foo.c’
is in ‘../src’, SunOS make will execute

cc -c ‘test -f ../src/foo.c || echo ../src/‘foo.c -
o foo.o

which reduces to

cc -c foo.c -o foo.o

and thus fails. Oops.

One workaround is to make sure that foo.c never appears as a plain
word in the rule. For instance these three rules would be safe.

VPATH = ../src
foo.o: foo.c

cc -c ‘test -f ./foo.c || echo ../src/‘foo.c -
o foo.o
foo2.o: foo2.c

cc -c ‘test -f ’foo2.c’ || echo ../src/‘foo2.c -
o foo2.o
foo3.o: foo3.c

cc -c ‘test -f "foo3.c" || echo ../src/‘foo3.c -
o foo3.o

Things get worse when your prerequisites are in a macro.

VPATH = ../src
HEADERS = foo.h foo2.h foo3.h
install-HEADERS: $(HEADERS)

for i in $(HEADERS); do \
$(INSTALL) -m 644 ‘test -f $$i || echo ../src/‘$$i \
$(DESTDIR)$(includedir)/$$i; \

done

The above install-HEADERS rule is not SunOS-proof because for
i in $(HEADERS); will be expanded as for i in foo.h foo2.h
foo3.h; where foo.h and foo2.h are plain words and are hence
subject to VPATH adjustments.

If the three files are in ‘../src’, the rule is run as:

for i in ../src/foo.h ../src/foo2.h foo3.h; do \
install -m 644 ‘test -f $i || echo ../src/‘$i \

/usr/local/include/$i; \
done

where the two first install calls will fail. For instance, consider
the foo.h installation:

152 Autoconf

install -m 644 ‘test -f ../src/foo.h || echo ../src/‘../src/foo.h \
/usr/local/include/../src/foo.h;

It reduces to:
install -m 644 ../src/foo.h /usr/local/include/../src/foo.h;

Note that the manual VPATH search did not cause any problems
here; however this command installs ‘foo.h’ in an incorrect direc-
tory.
Trying to quote $(HEADERS) in some way, as we did for foo.c a
few ‘Makefile’s ago, does not help:

install-HEADERS: $(HEADERS)
headers=’$(HEADERS)’; for i in $$headers; do \
$(INSTALL) -m 644 ‘test -f $$i || echo ../src/‘$$i \
$(DESTDIR)$(includedir)/$$i; \

done

Indeed, headers=’$(HEADERS)’ expands to headers=’foo.h
foo2.h foo3.h’ where foo2.h is still a plain word. (Aside: the
headers=’$(HEADERS)’; for i in $$headers; idiom is a good
idea if $(HEADERS) can be empty, because some shell produce a
syntax error on for i in;.)
One workaround is to strip this unwanted ‘../src/’ prefix manu-
ally:

VPATH = ../src
HEADERS = foo.h foo2.h foo3.h
install-HEADERS: $(HEADERS)

headers=’$(HEADERS)’; for i in $$headers; do \
i=‘expr "$$i" : ’../src/\(.*\)’‘;
$(INSTALL) -m 644 ‘test -f $$i || echo ../src/‘$$i \
$(DESTDIR)$(includedir)/$$i; \

done

Automake does something similar.

OSF/Tru64 make creates prerequisite directories magically
When a prerequisite is a sub-directory of VPATH, Tru64 make will
create it in the current directory.

% mkdir -p foo/bar build

% cd build

% cat >Makefile <<END
VPATH = ..

all: foo/bar

END

% make

mkdir foo
mkdir foo/bar

This can yield unexpected results if a rule uses a manual VPATH
search as presented before.

Chapter 10: Portable Shell Programming 153

VPATH = ..
all : foo/bar

command ‘test -d foo/bar || echo ../‘foo/bar

The above command will be run on the empty ‘foo/bar’ directory
that was created in the current directory.

target lookup
gnu make uses a rather complex algorithm to decide when it should
use files found via a VPATH search. See section “How Directory
Searches are Performed” in The gnu Make Manual.
If a target needs to be rebuilt, gnu make discards the filename
found during the VPATH search for this target, and builds the file
locally using the filename given in the ‘Makefile’. If a target does
not need to be rebuilt, gnu make uses the filename found during
the VPATH search.
Other make implementations, like NetBSD make, are easier to de-
scribe: the filename found during the VPATH search will be used
whether the target needs to be rebuilt or not. Therefore new files
are created locally, but existing files are updated at their VPATH
location.
OpenBSD and FreeBSD makes, however, will never perform a VPATH
search for a dependency which has an explicit rule. This is ex-
tremely annoying.
When attempting a VPATH build for an autoconfiscated package
(e.g,, mkdir build && cd build && ../configure), this means the
gnu make will build everything locally in the ‘build’ directory,
while BSD make will build new files locally and update existing
files in the source directory.

% cat Makefile

VPATH = ..
all: foo.x bar.x
foo.x bar.x: newer.x

@echo Building $@
% touch ../bar.x

% touch ../newer.x

% make # GNU make
Building foo.x
Building bar.x
% pmake # NetBSD make
Building foo.x
Building ../bar.x
% fmake # FreeBSD make, OpenBSD make
Building foo.x
Building bar.x
% tmake # Tru64 make
Building foo.x

154 Autoconf

Building bar.x
% touch ../bar.x

% make # GNU make
Building foo.x
% pmake # NetBSD make
Building foo.x
% fmake # FreeBSD make, OpenBSD make
Building foo.x
Building bar.x
% tmake # Tru64 make
Building foo.x
Building bar.x

Note how NetBSD make updates ‘../bar.x’ in its VPATH loca-
tion, and how FreeBSD, OpenBSD, and Tru64 make always update
‘bar.x’, even when ‘../bar.x’ is up to date.
Another point worth mentioning is that once gnu make has decided
to ignore a VPATH filename (e.g., it ignored ‘../bar.x’ in the above
example) it will continue to ignore it when the target occurs as a
prerequisite of another rule.
The following example shows that gnu make does not look up
‘bar.x’ in VPATH before performing the .x.y rule, because it ignored
the VPATH result of ‘bar.x’ while running the bar.x: newer.x rule.

% cat Makefile

VPATH = ..
all: bar.y
bar.x: newer.x

@echo Building $@
.SUFFIXES: .x .y
.x.y:

cp $< $@
% touch ../bar.x

% touch ../newer.x

% make # GNU make
Building bar.x
cp bar.x bar.y
cp: cannot stat ‘bar.x’: No such file or directory
make: *** [bar.y] Error 1
% pmake # NetBSD make
Building ../bar.x
cp ../bar.x bar.y
% rm bar.y

% fmake # FreeBSD make, OpenBSD make
echo Building bar.x
cp bar.x bar.y
cp: cannot stat ‘bar.x’: No such file or directory
*** Error code 1

Chapter 10: Portable Shell Programming 155

% tmake # Tru64 make
Building bar.x
cp: bar.x: No such file or directory
*** Exit 1

Note that if you drop away the command from the bar.x: newer.x
rule, gnu make will magically start to work: it knows that bar.x
hasn’t been updated, therefore it doesn’t discard the result from
VPATH (‘../bar.x’) in succeeding uses. Tru64 will also work, but
FreeBSD and OpenBSD still don’t.

% cat Makefile

VPATH = ..
all: bar.y
bar.x: newer.x
.SUFFIXES: .x .y
.x.y:

cp $< $@
% touch ../bar.x

% touch ../newer.x

% make # GNU make
cp ../bar.x bar.y
% rm bar.y

% pmake # NetBSD make
cp ../bar.x bar.y
% rm bar.y

% fmake # FreeBSD make, OpenBSD make
cp bar.x bar.y
cp: cannot stat ‘bar.x’: No such file or directory
*** Error code 1
% tmake # True64 make
cp ../bar.x bar.y

It seems the sole solution that would please every make implemen-
tation is to never rely on VPATH searches for targets. In other words,
VPATH should be reserved to unbuilt sources.

Single Suffix Rules and Separated Dependencies
A Single Suffix Rule is basically a usual suffix (inference) rule (‘.from.to:’),
but which destination suffix is empty (‘.from:’).
Separated dependencies simply refers to listing the prerequisite of a target,
without defining a rule. Usually one can list on the one hand side, the rules,
and on the other hand side, the dependencies.
Solaris make does not support separated dependencies for targets defined by
single suffix rules:

$ cat Makefile

.SUFFIXES: .in
foo: foo.in
.in:

156 Autoconf

cp $< $ $ touch foo.in

$ make

$ ls

Makefile foo.in

while gnu Make does:
$ gmake

cp foo.in foo
$ ls

Makefile foo foo.in

Note it works without the ‘foo: foo.in’ dependency.
$ cat Makefile

.SUFFIXES: .in

.in:
cp $< $ $ make foo

cp foo.in foo

and it works with double suffix inference rules:
$ cat Makefile

foo.out: foo.in
.SUFFIXES: .in .out
.in.out:

cp $< $ $ make

cp foo.in foo.out

As a result, in such a case, you have to write target rules.

Timestamp Resolution
Traditionally, file timestamps had 1-second resolution, and make used those
timestamps to determine whether one file was newer than the other. However,
many modern filesystems have timestamps with 1-nanosecond resolution. Some
make implementations look at the entire timestamp; others ignore the fractional
part, which can lead to incorrect results. Normally this is not a problem, but
in some extreme cases you may need to use tricks like ‘sleep 1’ to work around
timestamp truncation bugs.
Commands like ‘cp -p’ and ‘touch -r’ typically do not copy file timestamps to
their full resolutions (see Section 10.10 [Limitations of Usual Tools], page 139).
Hence you should be wary of rules like this:

dest: src
cp -p src dest

as ‘dest’ will often appear to be older than ‘src’ after the timestamp is trun-
cated, and this can cause make to do needless rework the next time it is invoked.
To work around this problem, you can use a timestamp file, e.g.:

dest-stamp: src
cp -p src dest
date >dest-stamp

Chapter 11: Manual Configuration 157

11 Manual Configuration

A few kinds of features can’t be guessed automatically by running test programs. For
example, the details of the object-file format, or special options that need to be passed
to the compiler or linker. You can check for such features using ad-hoc means, such as
having configure check the output of the uname program, or looking for libraries that are
unique to particular systems. However, Autoconf provides a uniform method for handling
unguessable features.

11.1 Specifying the System Type

Like other gnu configure scripts, Autoconf-generated configure scripts can make deci-
sions based on a canonical name for the system type, which has the form: ‘cpu-vendor-os ’,
where os can be ‘system ’ or ‘kernel-system ’

configure can usually guess the canonical name for the type of system it’s running
on. To do so it runs a script called config.guess, which infers the name using the uname
command or symbols predefined by the C preprocessor.

Alternately, the user can specify the system type with command line arguments to
configure. Doing so is necessary when cross-compiling. In the most complex case of
cross-compiling, three system types are involved. The options to specify them are:

‘--build=build-type ’
the type of system on which the package is being configured and compiled. It
defaults to the result of running config.guess.

‘--host=host-type ’
the type of system on which the package will run. By default it is the same as
the build machine. Specifying it enables the cross-compilation mode.

‘--target=target-type ’
the type of system for which any compiler tools in the package will produce
code (rarely needed). By default, it is the same as host.

If you mean to override the result of config.guess, use ‘--build’, not ‘--host’, since
the latter enables cross-compilation. For historical reasons, passing ‘--host’ also changes
the build type. Therefore, whenever you specify --host, be sure to specify --build too.
This will be fixed in the future.

./configure --build=i686-pc-linux-gnu --host=m68k-coff

will enter cross-compilation mode, but configure will fail if it can’t run the code generated
by the specified compiler if you configure as follows:

./configure CC=m68k-coff-gcc

configure recognizes short aliases for many system types; for example, ‘decstation’
can be used instead of ‘mips-dec-ultrix4.2’. configure runs a script called config.sub
to canonicalize system type aliases.

This section deliberately omits the description of the obsolete interface; see Section 15.6.3
[Hosts and Cross-Compilation], page 190.

158 Autoconf

11.2 Getting the Canonical System Type

The following macros make the system type available to configure scripts.
The variables ‘build_alias’, ‘host_alias’, and ‘target_alias’ are always exactly the

arguments of ‘--build’, ‘--host’, and ‘--target’; in particular, they are left empty if
the user did not use them, even if the corresponding AC_CANONICAL macro was run. Any
configure script may use these variables anywhere. These are the variables that should be
used when in interaction with the user.

If you need to recognize some special environments based on their system type, run the
following macros to get canonical system names. These variables are not set before the
macro call.

If you use these macros, you must distribute config.guess and config.sub along with
your source code. See Section 4.4 [Output], page 17, for information about the AC_CONFIG_
AUX_DIR macro which you can use to control in which directory configure looks for those
scripts.

[Macro]AC CANONICAL BUILD
Compute the canonical build-system type variable, build, and its three individual
parts build_cpu, build_vendor, and build_os.
If ‘--build’ was specified, then build is the canonicalization of build_alias by
config.sub, otherwise it is determined by the shell script config.guess.

[Macro]AC CANONICAL HOST
Compute the canonical host-system type variable, host, and its three individual parts
host_cpu, host_vendor, and host_os.
If ‘--host’ was specified, then host is the canonicalization of host_alias by
config.sub, otherwise it defaults to build.

[Macro]AC CANONICAL TARGET
Compute the canonical target-system type variable, target, and its three individual
parts target_cpu, target_vendor, and target_os.
If ‘--target’ was specified, then target is the canonicalization of target_alias by
config.sub, otherwise it defaults to host.

Note that there can be artifacts due to the backward compatibility code. See See Sec-
tion 15.6.3 [Hosts and Cross-Compilation], page 190, for more.

11.3 Using the System Type

How do you use a canonical system type? Usually, you use it in one or more case state-
ments in ‘configure.ac’ to select system-specific C files. Then, using AC_CONFIG_LINKS,
link those files which have names based on the system name, to generic names, such as
‘host.h’ or ‘target.c’ (see Section 4.10 [Configuration Links], page 30). The case state-
ment patterns can use shell wild cards to group several cases together, like in this fragment:

case $target in
i386-*-mach* | i386-*-gnu*)

obj_format=aout emulation=mach bfd_gas=yes ;;
i960-*-bout) obj_format=bout ;;

Chapter 11: Manual Configuration 159

esac

and later in ‘configure.ac’, use:
AC_CONFIG_LINKS(host.h:config/$machine.h

object.h:config/$obj_format.h)

Note that the above example uses $target because it’s taken from a tool which can be
built on some architecture ($build), run on another ($host), but yet handle data for a
third architecture ($target). Such tools are usually part of a compiler suite, they generate
code for a specific $target.

However $target should be meaningless for most packages. If you want to base a decision
on the system where your program will be run, make sure you use the $host variable, as
in the following excerpt:

case $host in
--msdos* | *-*-go32* | *-*-mingw32* | *-*-cygwin* | *-*-windows*)
MUMBLE_INIT="mumble.ini"
;;

*)
MUMBLE_INIT=".mumbleinit"
;;

esac
AC_SUBST([MUMBLE_INIT])

You can also use the host system type to find cross-compilation tools. See Section 5.2.2
[Generic Programs], page 37, for information about the AC_CHECK_TOOL macro which does
that.

160 Autoconf

Chapter 12: Site Configuration 161

12 Site Configuration

configure scripts support several kinds of local configuration decisions. There are ways for
users to specify where external software packages are, include or exclude optional features,
install programs under modified names, and set default values for configure options.

12.1 Working With External Software

Some packages require, or can optionally use, other software packages that are already
installed. The user can give configure command line options to specify which such external
software to use. The options have one of these forms:

--with-package[=arg]
--without-package

For example, ‘--with-gnu-ld’ means work with the gnu linker instead of some other
linker. ‘--with-x’ means work with The X Window System.

The user can give an argument by following the package name with ‘=’ and the argument.
Giving an argument of ‘no’ is for packages that are used by default; it says to not use the
package. An argument that is neither ‘yes’ nor ‘no’ could include a name or number of a
version of the other package, to specify more precisely which other package this program is
supposed to work with. If no argument is given, it defaults to ‘yes’. ‘--without-package ’
is equivalent to ‘--with-package=no’.

configure scripts do not complain about ‘--with-package ’ options that they do not
support. This behavior permits configuring a source tree containing multiple packages with
a top-level configure script when the packages support different options, without spurious
error messages about options that some of the packages support. An unfortunate side effect
is that option spelling errors are not diagnosed. No better approach to this problem has
been suggested so far.

For each external software package that may be used, ‘configure.ac’ should call AC_
ARG_WITH to detect whether the configure user asked to use it. Whether each package is
used or not by default, and which arguments are valid, is up to you.

[Macro]AC ARG WITH (package, help-string, [action-if-given], [action-if-not-given])
If the user gave configure the option ‘--with-package ’ or ‘--without-package ’,
run shell commands action-if-given. If neither option was given, run shell commands
action-if-not-given. The name package indicates another software package that this
program should work with. It should consist only of alphanumeric characters and
dashes.
The option’s argument is available to the shell commands action-if-given in the shell
variable withval, which is actually just the value of the shell variable with_package ,
with any ‘-’ characters changed into ‘_’. You may use that variable instead, if you
wish.
The argument help-string is a description of the option that looks like this:

--with-readline support fancy command line editing

help-string may be more than one line long, if more detail is needed. Just make sure
the columns line up in ‘configure --help’. Avoid tabs in the help string. You’ll
need to enclose the help string in ‘[’ and ‘]’ in order to produce the leading spaces.

162 Autoconf

You should format your help-string with the macro AS_HELP_STRING (see Section 12.3
[Pretty Help Strings], page 163).

[Macro]AC WITH (package, action-if-given, [action-if-not-given])
This is an obsolete version of AC_ARG_WITH that does not support providing a help
string.

12.2 Choosing Package Options

If a software package has optional compile-time features, the user can give configure
command line options to specify whether to compile them. The options have one of these
forms:

--enable-feature[=arg]
--disable-feature

These options allow users to choose which optional features to build and install.
‘--enable-feature ’ options should never make a feature behave differently or cause one
feature to replace another. They should only cause parts of the program to be built rather
than left out.

The user can give an argument by following the feature name with ‘=’ and the argument.
Giving an argument of ‘no’ requests that the feature not be made available. A feature with
an argument looks like ‘--enable-debug=stabs’. If no argument is given, it defaults to
‘yes’. ‘--disable-feature ’ is equivalent to ‘--enable-feature=no’.

configure scripts do not complain about ‘--enable-feature ’ options that they do not
support. This behavior permits configuring a source tree containing multiple packages with
a top-level configure script when the packages support different options, without spurious
error messages about options that some of the packages support. An unfortunate side effect
is that option spelling errors are not diagnosed. No better approach to this problem has
been suggested so far.

For each optional feature, ‘configure.ac’ should call AC_ARG_ENABLE to detect whether
the configure user asked to include it. Whether each feature is included or not by default,
and which arguments are valid, is up to you.

[Macro]AC ARG ENABLE (feature, help-string, [action-if-given],
[action-if-not-given])

If the user gave configure the option ‘--enable-feature ’ or ‘--disable-feature ’,
run shell commands action-if-given. If neither option was given, run shell commands
action-if-not-given. The name feature indicates an optional user-level facility. It
should consist only of alphanumeric characters and dashes.

The option’s argument is available to the shell commands action-if-given in the shell
variable enableval, which is actually just the value of the shell variable enable_
feature , with any ‘-’ characters changed into ‘_’. You may use that variable instead,
if you wish. The help-string argument is like that of AC_ARG_WITH (see Section 12.1
[External Software], page 161).

You should format your help-string with the macro AS_HELP_STRING (see Section 12.3
[Pretty Help Strings], page 163).

Chapter 12: Site Configuration 163

[Macro]AC ENABLE (feature, action-if-given, [action-if-not-given])
This is an obsolete version of AC_ARG_ENABLE that does not support providing a help
string.

12.3 Making Your Help Strings Look Pretty

Properly formatting the ‘help strings’ which are used in AC_ARG_WITH (see Section 12.1
[External Software], page 161) and AC_ARG_ENABLE (see Section 12.2 [Package Options],
page 162) can be challenging. Specifically, you want your own ‘help strings’ to line up
in the appropriate columns of ‘configure --help’ just like the standard Autoconf ‘help
strings’ do. This is the purpose of the AS_HELP_STRING macro.

[Macro]AS HELP STRING (left-hand-side, right-hand-side)
Expands into an help string that looks pretty when the user executes ‘configure
--help’. It is typically used in AC_ARG_WITH (see Section 12.1 [External Software],
page 161) or AC_ARG_ENABLE (see Section 12.2 [Package Options], page 162). The
following example will make this clearer.

AC_DEFUN([TEST_MACRO],
[AC_ARG_WITH([foo],

AS_HELP_STRING([--with-foo],
[use foo (default is NO)]),

[ac_cv_use_foo=$withval], [ac_cv_use_foo=no])
AC_CACHE_CHECK([whether to use foo],

[ac_cv_use_foo], [ac_cv_use_foo=no])])

Please note that the call to AS_HELP_STRING is unquoted. Then the last few lines of
‘configure --help’ will appear like this:

--enable and --with options recognized:
--with-foo use foo (default is NO)

The AS_HELP_STRING macro is particularly helpful when the left-hand-side and/or
right-hand-side are composed of macro arguments, as shown in the following example.

AC_DEFUN(MY_ARG_WITH,
[AC_ARG_WITH([$1],

AS_HELP_STRING([--with-$1], [use $1 (default is $2)]),
ac_cv_use_$1=$withval, ac_cv_use_$1=no),

AC_CACHE_CHECK(whether to use $1, ac_cv_use_$1, ac_cv_use_$1=$2)])

12.4 Configuring Site Details

Some software packages require complex site-specific information. Some examples are host
names to use for certain services, company names, and email addresses to contact. Since
some configuration scripts generated by Metaconfig ask for such information interactively,
people sometimes wonder how to get that information in Autoconf-generated configuration
scripts, which aren’t interactive.

Such site configuration information should be put in a file that is edited only by users,
not by programs. The location of the file can either be based on the prefix variable,
or be a standard location such as the user’s home directory. It could even be specified
by an environment variable. The programs should examine that file at run time, rather

164 Autoconf

than at compile time. Run-time configuration is more convenient for users and makes the
configuration process simpler than getting the information while configuring. See section
“Variables for Installation Directories” in gnu Coding Standards, for more information on
where to put data files.

12.5 Transforming Program Names When Installing

Autoconf supports changing the names of programs when installing them. In order to use
these transformations, ‘configure.ac’ must call the macro AC_ARG_PROGRAM.

[Macro]AC ARG PROGRAM
Place in output variable program_transform_name a sequence of sed commands for
changing the names of installed programs.
If any of the options described below are given to configure, program names are
transformed accordingly. Otherwise, if AC_CANONICAL_TARGET has been called and
a ‘--target’ value is given, the target type followed by a dash is used as a prefix.
Otherwise, no program name transformation is done.

12.5.1 Transformation Options

You can specify name transformations by giving configure these command line options:

‘--program-prefix=prefix ’
prepend prefix to the names;

‘--program-suffix=suffix ’
append suffix to the names;

‘--program-transform-name=expression ’
perform sed substitution expression on the names.

12.5.2 Transformation Examples

These transformations are useful with programs that can be part of a cross-compilation
development environment. For example, a cross-assembler running on a Sun 4 configured
with ‘--target=i960-vxworks’ is normally installed as ‘i960-vxworks-as’, rather than
‘as’, which could be confused with a native Sun 4 assembler.

You can force a program name to begin with ‘g’, if you don’t want gnu programs
installed on your system to shadow other programs with the same name. For example, if
you configure gnu diff with ‘--program-prefix=g’, then when you run ‘make install’ it
is installed as ‘/usr/local/bin/gdiff’.

As a more sophisticated example, you could use
--program-transform-name=’s/^/g/; s/^gg/g/; s/^gless/less/’

to prepend ‘g’ to most of the program names in a source tree, excepting those like gdb
that already have one and those like less and lesskey that aren’t gnu programs. (That
is assuming that you have a source tree containing those programs that is set up to use this
feature.)

One way to install multiple versions of some programs simultaneously is to append a
version number to the name of one or both. For example, if you want to keep Autoconf ver-
sion 1 around for awhile, you can configure Autoconf version 2 using ‘--program-suffix=2’

Chapter 12: Site Configuration 165

to install the programs as ‘/usr/local/bin/autoconf2’, ‘/usr/local/bin/autoheader2’,
etc. Nevertheless, pay attention that only the binaries are renamed, therefore you’d have
problems with the library files which might overlap.

12.5.3 Transformation Rules

Here is how to use the variable program_transform_name in a ‘Makefile.in’:
PROGRAMS = cp ls rm
transform = @program_transform_name@
install:

for p in $(PROGRAMS); do \
$(INSTALL_PROGRAM) $$p $(DESTDIR)$(bindir)/‘echo $$p | \

sed ’$(transform)’‘; \
done

uninstall:
for p in $(PROGRAMS); do \
rm -f $(DESTDIR)$(bindir)/‘echo $$p | sed ’$(transform)’‘; \

done

It is guaranteed that program_transform_name is never empty, and that there are no
useless separators. Therefore you may safely embed program_transform_name within a sed
program using ‘;’:

transform = @program_transform_name@
transform_exe = s/$(EXEEXT)$$//;$(transform);s/$$/$(EXEEXT)/

Whether to do the transformations on documentation files (Texinfo or man) is a tricky
question; there seems to be no perfect answer, due to the several reasons for name trans-
forming. Documentation is not usually particular to a specific architecture, and Texinfo
files do not conflict with system documentation. But they might conflict with earlier ver-
sions of the same files, and man pages sometimes do conflict with system documentation.
As a compromise, it is probably best to do name transformations on man pages but not on
Texinfo manuals.

12.6 Setting Site Defaults

Autoconf-generated configure scripts allow your site to provide default values for some
configuration values. You do this by creating site- and system-wide initialization files.

If the environment variable CONFIG_SITE is set, configure uses its value as the name
of a shell script to read. Otherwise, it reads the shell script ‘prefix/share/config.site’
if it exists, then ‘prefix/etc/config.site’ if it exists. Thus, settings in machine-specific
files override those in machine-independent ones in case of conflict.

Site files can be arbitrary shell scripts, but only certain kinds of code are really appro-
priate to be in them. Because configure reads any cache file after it has read any site
files, a site file can define a default cache file to be shared between all Autoconf-generated
configure scripts run on that system (see Section 7.3.2 [Cache Files], page 93). If you set
a default cache file in a site file, it is a good idea to also set the output variable CC in that
site file, because the cache file is only valid for a particular compiler, but many systems
have several available.

166 Autoconf

You can examine or override the value set by a command line option to configure in
a site file; options set shell variables that have the same names as the options, with any
dashes turned into underscores. The exceptions are that ‘--without-’ and ‘--disable-’
options are like giving the corresponding ‘--with-’ or ‘--enable-’ option and the value ‘no’.
Thus, ‘--cache-file=localcache’ sets the variable cache_file to the value ‘localcache’;
‘--enable-warnings=no’ or ‘--disable-warnings’ sets the variable enable_warnings to
the value ‘no’; ‘--prefix=/usr’ sets the variable prefix to the value ‘/usr’; etc.

Site files are also good places to set default values for other output variables, such as
CFLAGS, if you need to give them non-default values: anything you would normally do,
repetitively, on the command line. If you use non-default values for prefix or exec prefix
(wherever you locate the site file), you can set them in the site file if you specify it with the
CONFIG_SITE environment variable.

You can set some cache values in the site file itself. Doing this is useful if you are
cross-compiling, where it is impossible to check features that require running a test pro-
gram. You could “prime the cache” by setting those values correctly for that system in
‘prefix/etc/config.site’. To find out the names of the cache variables you need to set,
look for shell variables with ‘_cv_’ in their names in the affected configure scripts, or in
the Autoconf M4 source code for those macros.

The cache file is careful to not override any variables set in the site files. Similarly, you
should not override command-line options in the site files. Your code should check that
variables such as prefix and cache_file have their default values (as set near the top of
configure) before changing them.

Here is a sample file ‘/usr/share/local/gnu/share/config.site’. The command
‘configure --prefix=/usr/share/local/gnu’ would read this file (if CONFIG_SITE is not
set to a different file).

config.site for configure
#
Change some defaults.
test "$prefix" = NONE && prefix=/usr/share/local/gnu
test "$exec_prefix" = NONE && exec_prefix=/usr/local/gnu
test "$sharedstatedir" = ’$prefix/com’ && sharedstatedir=/var
test "$localstatedir" = ’$prefix/var’ && localstatedir=/var

Give Autoconf 2.x generated configure scripts a shared default
cache file for feature test results, architecture-specific.
if test "$cache_file" = /dev/null; then
cache_file="$prefix/var/config.cache"
A cache file is only valid for one C compiler.
CC=gcc

fi

Chapter 13: Running configure Scripts 167

13 Running configure Scripts

Below are instructions on how to configure a package that uses a configure script, suitable
for inclusion as an ‘INSTALL’ file in the package. A plain-text version of ‘INSTALL’ which
you may use comes with Autoconf.

13.1 Basic Installation

These are generic installation instructions.

The configure shell script attempts to guess correct values for various system-dependent
variables used during compilation. It uses those values to create a ‘Makefile’ in each
directory of the package. It may also create one or more ‘.h’ files containing system-
dependent definitions. Finally, it creates a shell script ‘config.status’ that you can run in
the future to recreate the current configuration, and a file ‘config.log’ containing compiler
output (useful mainly for debugging configure).

It can also use an optional file (typically called ‘config.cache’ and enabled with
‘--cache-file=config.cache’ or simply ‘-C’) that saves the results of its tests to speed
up reconfiguring. (Caching is disabled by default to prevent problems with accidental use
of stale cache files.)

If you need to do unusual things to compile the package, please try to figure out how
configure could check whether to do them, and mail diffs or instructions to the address
given in the ‘README’ so they can be considered for the next release. If you are using the
cache, and at some point ‘config.cache’ contains results you don’t want to keep, you may
remove or edit it.

The file ‘configure.ac’ (or ‘configure.in’) is used to create ‘configure’ by a program
called autoconf. You only need ‘configure.ac’ if you want to change it or regenerate
‘configure’ using a newer version of autoconf.

The simplest way to compile this package is:

1. cd to the directory containing the package’s source code and type ‘./configure’ to
configure the package for your system. If you’re using csh on an old version of System
V, you might need to type ‘sh ./configure’ instead to prevent csh from trying to
execute configure itself.

Running configure takes awhile. While running, it prints some messages telling which
features it is checking for.

2. Type ‘make’ to compile the package.

3. Optionally, type ‘make check’ to run any self-tests that come with the package.

4. Type ‘make install’ to install the programs and any data files and documentation.

5. You can remove the program binaries and object files from the source code directory
by typing ‘make clean’. To also remove the files that configure created (so you can
compile the package for a different kind of computer), type ‘make distclean’. There is
also a ‘make maintainer-clean’ target, but that is intended mainly for the package’s
developers. If you use it, you may have to get all sorts of other programs in order to
regenerate files that came with the distribution.

168 Autoconf

13.2 Compilers and Options

Some systems require unusual options for compilation or linking that the configure script
does not know about. Run ‘./configure --help’ for details on some of the pertinent
environment variables.

You can give configure initial values for configuration parameters by setting variables
in the command line or in the environment. Here is an example:

./configure CC=c89 CFLAGS=-O2 LIBS=-lposix

See Section 13.8 [Defining Variables], page 169, for more details.

13.3 Compiling For Multiple Architectures

You can compile the package for more than one kind of computer at the same time, by
placing the object files for each architecture in their own directory. To do this, you must
use a version of make that supports the VPATH variable, such as GNU make. cd to the
directory where you want the object files and executables to go and run the configure
script. configure automatically checks for the source code in the directory that configure
is in and in ‘..’.

If you have to use a make that does not support the VPATH variable, you have to compile
the package for one architecture at a time in the source code directory. After you have
installed the package for one architecture, use ‘make distclean’ before reconfiguring for
another architecture.

13.4 Installation Names

By default, ‘make install’ will install the package’s files in ‘/usr/local/bin’,
‘/usr/local/man’, etc. You can specify an installation prefix other than ‘/usr/local’ by
giving configure the option ‘--prefix=path ’.

You can specify separate installation prefixes for architecture-specific files and
architecture-independent files. If you give configure the option ‘--exec-prefix=path ’,
the package will use path as the prefix for installing programs and libraries. Documentation
and other data files will still use the regular prefix.

In addition, if you use an unusual directory layout you can give options like
‘--bindir=path ’ to specify different values for particular kinds of files. Run ‘configure
--help’ for a list of the directories you can set and what kinds of files go in them.

If the package supports it, you can cause programs to be installed with an extra prefix
or suffix on their names by giving configure the option ‘--program-prefix=PREFIX ’ or
‘--program-suffix=SUFFIX ’.

13.5 Optional Features

Some packages pay attention to ‘--enable-feature ’ options to configure, where feature
indicates an optional part of the package. They may also pay attention to ‘--with-package ’
options, where package is something like ‘gnu-as’ or ‘x’ (for the X Window System). The
‘README’ should mention any ‘--enable-’ and ‘--with-’ options that the package recog-
nizes.

Chapter 13: Running configure Scripts 169

For packages that use the X Window System, configure can usually find the X in-
clude and library files automatically, but if it doesn’t, you can use the configure options
‘--x-includes=dir ’ and ‘--x-libraries=dir ’ to specify their locations.

13.6 Specifying the System Type

There may be some features configure cannot figure out automatically, but needs to de-
termine by the type of machine the package will run on. Usually, assuming the package is
built to be run on the same architectures, configure can figure that out, but if it prints a
message saying it cannot guess the machine type, give it the ‘--build=type ’ option. type
can either be a short name for the system type, such as ‘sun4’, or a canonical name which
has the form:

cpu-company-system

where system can have one of these forms:
os kernel-os

See the file ‘config.sub’ for the possible values of each field. If ‘config.sub’ isn’t
included in this package, then this package doesn’t need to know the machine type.

If you are building compiler tools for cross-compiling, you should use the
‘--target=type ’ option to select the type of system they will produce code for.

If you want to use a cross compiler, that generates code for a platform different from
the build platform, you should specify the host platform (i.e., that on which the generated
programs will eventually be run) with ‘--host=type ’.

13.7 Sharing Defaults

If you want to set default values for configure scripts to share, you can create a site
shell script called ‘config.site’ that gives default values for variables like CC, cache_
file, and prefix. configure looks for ‘prefix/share/config.site’ if it exists, then
‘prefix/etc/config.site’ if it exists. Or, you can set the CONFIG_SITE environment
variable to the location of the site script. A warning: not all configure scripts look for a
site script.

13.8 Defining Variables

Variables not defined in a site shell script can be set in the environment passed to configure.
However, some packages may run configure again during the build, and the customized
values of these variables may be lost. In order to avoid this problem, you should set them
in the configure command line, using ‘VAR=value’. For example:

./configure CC=/usr/local2/bin/gcc

will cause the specified gcc to be used as the C compiler (unless it is overridden in the site
shell script).

13.9 configure Invocation

configure recognizes the following options to control how it operates.

‘--help’
‘-h’ Print a summary of the options to configure, and exit.

170 Autoconf

‘--version’
‘-V’ Print the version of Autoconf used to generate the configure script, and exit.

‘--cache-file=file ’
Enable the cache: use and save the results of the tests in file, traditionally
‘config.cache’. file defaults to ‘/dev/null’ to disable caching.

‘--config-cache’
‘-C’ Alias for ‘--cache-file=config.cache’.

‘--quiet’
‘--silent’
‘-q’ Do not print messages saying which checks are being made. To suppress all nor-

mal output, redirect it to ‘/dev/null’ (any error messages will still be shown).

‘--srcdir=dir ’
Look for the package’s source code in directory dir. Usually configure can
determine that directory automatically.

configure also accepts some other, not widely useful, options. Run ‘configure --help’
for more details.

Chapter 14: Recreating a Configuration 171

14 Recreating a Configuration

The configure script creates a file named ‘config.status’, which actually configures,
instantiates, the template files. It also records the configuration options that were specified
when the package was last configured in case reconfiguring is needed.

Synopsis:

./config.status option... [file...]

It configures the files; if none are specified, all the templates are instantiated. The files
must be specified without their dependencies, as in

./config.status foobar

not

./config.status foobar:foo.in:bar.in

The supported options are:

‘--help’
‘-h’ Print a summary of the command line options, the list of the template files,

and exit.

‘--version’
‘-V’ Print the version number of Autoconf and exit.

‘--silent’
‘--quiet’
‘-q’ Do not print progress messages.

‘--debug’
‘-d’ Don’t remove the temporary files.

‘--file=file[:template]’
Require that file be instantiated as if ‘AC_CONFIG_FILES(file:template)’ was
used. Both file and template may be ‘-’ in which case the standard output
and/or standard input, respectively, is used. If a template filename is relative,
it is first looked for in the build tree, and then in the source tree. See Section 4.5
[Configuration Actions], page 18, for more details.
This option and the following ones provide one way for separately distributed
packages to share the values computed by configure. Doing so can be useful if
some of the packages need a superset of the features that one of them, perhaps
a common library, does. These options allow a ‘config.status’ file to create
files other than the ones that its ‘configure.ac’ specifies, so it can be used for
a different package.

‘--header=file[:template]’
Same as ‘--file’ above, but with ‘AC_CONFIG_HEADERS’.

‘--recheck’
Ask ‘config.status’ to update itself and exit (no instantiation). This option
is useful if you change configure, so that the results of some tests might be dif-
ferent from the previous run. The ‘--recheck’ option re-runs configure with

172 Autoconf

the same arguments you used before, plus the ‘--no-create’ option, which pre-
vents configure from running ‘config.status’ and creating ‘Makefile’ and
other files, and the ‘--no-recursion’ option, which prevents configure from
running other configure scripts in subdirectories. (This is so other ‘Makefile’
rules can run ‘config.status’ when it changes; see Section 4.7.4 [Automatic
Remaking], page 25, for an example).

‘config.status’ checks several optional environment variables that can alter its behav-
ior:

[Variable]CONFIG SHELL
The shell with which to run configure for the ‘--recheck’ option. It must be Bourne-
compatible. The default is a shell that supports LINENO if available, and ‘/bin/sh’
otherwise.

[Variable]CONFIG STATUS
The file name to use for the shell script that records the configuration. The default
is ‘./config.status’. This variable is useful when one package uses parts of an-
other and the configure scripts shouldn’t be merged because they are maintained
separately.

You can use ‘./config.status’ in your Makefiles. For example, in the dependencies
given above (see Section 4.7.4 [Automatic Remaking], page 25), ‘config.status’ is run
twice when ‘configure.ac’ has changed. If that bothers you, you can make each run only
regenerate the files for that rule:

config.h: stamp-h
stamp-h: config.h.in config.status

./config.status config.h
echo > stamp-h

Makefile: Makefile.in config.status
./config.status Makefile

The calling convention of ‘config.status’ has changed; see Section 15.1 [Obsolete con-
fig.status Use], page 173, for details.

Chapter 15: Obsolete Constructs 173

15 Obsolete Constructs

Autoconf changes, and throughout the years some constructs have been obsoleted. Most
of the changes involve the macros, but in some cases the tools themselves, or even some
concepts, are now considered obsolete.

You may completely skip this chapter if you are new to Autoconf. Its intention is mainly
to help maintainers updating their packages by understanding how to move to more modern
constructs.

15.1 Obsolete ‘config.status’ Invocation

‘config.status’ now supports arguments to specify the files to instantiate; see Chapter 14
[config.status Invocation], page 171, for more details. Before, environment variables had to
be used.

[Variable]CONFIG COMMANDS
The tags of the commands to execute. The default is the arguments given to AC_
OUTPUT and AC_CONFIG_COMMANDS in ‘configure.ac’.

[Variable]CONFIG FILES
The files in which to perform ‘@variable@’ substitutions. The default is the argu-
ments given to AC_OUTPUT and AC_CONFIG_FILES in ‘configure.ac’.

[Variable]CONFIG HEADERS
The files in which to substitute C #define statements. The default is the arguments
given to AC_CONFIG_HEADERS; if that macro was not called, ‘config.status’ ignores
this variable.

[Variable]CONFIG LINKS
The symbolic links to establish. The default is the arguments given to AC_CONFIG_
LINKS; if that macro was not called, ‘config.status’ ignores this variable.

In Chapter 14 [config.status Invocation], page 171, using this old interface, the example
would be:

config.h: stamp-h
stamp-h: config.h.in config.status

CONFIG_COMMANDS= CONFIG_LINKS= CONFIG_FILES= \
CONFIG_HEADERS=config.h ./config.status

echo > stamp-h

Makefile: Makefile.in config.status
CONFIG_COMMANDS= CONFIG_LINKS= CONFIG_HEADERS= \
CONFIG_FILES=Makefile ./config.status

(If ‘configure.ac’ does not call AC_CONFIG_HEADERS, there is no need to set CONFIG_
HEADERS in the make rules. Equally for CONFIG_COMMANDS etc.)

174 Autoconf

15.2 ‘acconfig.h’

In order to produce ‘config.h.in’, autoheader needs to build or to find templates for each
symbol. Modern releases of Autoconf use AH_VERBATIM and AH_TEMPLATE (see Section 4.8.3
[Autoheader Macros], page 29), but in older releases a file, ‘acconfig.h’, contained the list
of needed templates. autoheader copied comments and #define and #undef statements
from ‘acconfig.h’ in the current directory, if present. This file used to be mandatory if
you AC_DEFINE any additional symbols.

Modern releases of Autoconf also provide AH_TOP and AH_BOTTOM if you need to
prepend/append some information to ‘config.h.in’. Ancient versions of Autoconf had a
similar feature: if ‘./acconfig.h’ contains the string ‘@TOP@’, autoheader copies the lines
before the line containing ‘@TOP@’ into the top of the file that it generates. Similarly, if
‘./acconfig.h’ contains the string ‘@BOTTOM@’, autoheader copies the lines after that line
to the end of the file it generates. Either or both of those strings may be omitted. An even
older alternate way to produce the same effect in ancient versions of Autoconf is to create
the files ‘file.top’ (typically ‘config.h.top’) and/or ‘file.bot’ in the current directory.
If they exist, autoheader copies them to the beginning and end, respectively, of its output.

In former versions of Autoconf, the files used in preparing a software package for distri-
bution were:

configure.ac --. .------> autoconf* -----> configure
+---+

[aclocal.m4] --+ ‘---.
[acsite.m4] ---’ |

+--> [autoheader*] -> [config.h.in]
[acconfig.h] ----. |

+-----’
[config.h.top] --+
[config.h.bot] --’

Using only the AH_ macros, ‘configure.ac’ should be self-contained, and should not
depend upon ‘acconfig.h’ etc.

15.3 Using autoupdate to Modernize ‘configure.ac’

The autoupdate program updates a ‘configure.ac’ file that calls Autoconf macros by their
old names to use the current macro names. In version 2 of Autoconf, most of the macros
were renamed to use a more uniform and descriptive naming scheme. See Section 9.2
[Macro Names], page 111, for a description of the new scheme. Although the old names
still work (see Section 15.4 [Obsolete Macros], page 175, for a list of the old macros and
the corresponding new names), you can make your ‘configure.ac’ files more readable and
make it easier to use the current Autoconf documentation if you update them to use the
new macro names.

If given no arguments, autoupdate updates ‘configure.ac’, backing up the original ver-
sion with the suffix ‘~’ (or the value of the environment variable SIMPLE_BACKUP_SUFFIX, if
that is set). If you give autoupdate an argument, it reads that file instead of ‘configure.ac’
and writes the updated file to the standard output.

autoupdate accepts the following options:

Chapter 15: Obsolete Constructs 175

‘--help’
‘-h’ Print a summary of the command line options and exit.

‘--version’
‘-V’ Print the version number of Autoconf and exit.

‘--verbose’
‘-v’ Report processing steps.

‘--debug’
‘-d’ Don’t remove the temporary files.

‘--force’
‘-f’ Force the update even if the file has not changed. Disregard the cache.

‘--include=dir ’
‘-I dir ’ Also look for input files in dir. Multiple invocations accumulate. Directories

are browsed from last to first.

15.4 Obsolete Macros

Several macros are obsoleted in Autoconf, for various reasons (typically they failed to quote
properly, couldn’t be extended for more recent issues etc.). They are still supported, but
deprecated: their use should be avoided.

During the jump from Autoconf version 1 to version 2, most of the macros were renamed
to use a more uniform and descriptive naming scheme, but their signature did not change.
See Section 9.2 [Macro Names], page 111, for a description of the new naming scheme.
Below, if there is just the mapping from old names to new names for these macros, the
reader is invited to refer to the definition of the new macro for the signature and the
description.

[Macro]AC ALLOCA
AC_FUNC_ALLOCA

[Macro]AC ARG ARRAY
removed because of limited usefulness

[Macro]AC C CROSS
This macro is obsolete; it does nothing.

[Macro]AC CANONICAL SYSTEM
Determine the system type and set output variables to the names of the canonical sys-
tem types. See Section 11.2 [Canonicalizing], page 158, for details about the variables
this macro sets.

The user is encouraged to use either AC_CANONICAL_BUILD, or AC_CANONICAL_HOST,
or AC_CANONICAL_TARGET, depending on the needs. Using AC_CANONICAL_TARGET is
enough to run the two other macros.

[Macro]AC CHAR UNSIGNED
AC_C_CHAR_UNSIGNED

176 Autoconf

[Macro]AC CHECK TYPE (type, default)
Autoconf, up to 2.13, used to provide this version of AC_CHECK_TYPE, deprecated
because of its flaws. Firstly, although it is a member of the CHECK clan, singular sub-
family, it does more than just checking. Secondly, missing types are not typedef’d,
they are #define’d, which can lead to incompatible code in the case of pointer types.
This use of AC_CHECK_TYPE is obsolete and discouraged; see Section 5.9.2 [Generic
Types], page 57, for the description of the current macro.
If the type type is not defined, define it to be the C (or C++) builtin type default,
e.g., ‘short’ or ‘unsigned’.
This macro is equivalent to:

AC_CHECK_TYPE([type],,
[AC_DEFINE_UNQUOTED([type], [default],

[Define to ‘default’ if
<sys/types.h> does not define.])])

In order to keep backward compatibility, the two versions of AC_CHECK_TYPE are
implemented, selected by a simple heuristics:
1. If there are three or four arguments, the modern version is used.
2. If the second argument appears to be a C or C++ type, then the obsolete version

is used. This happens if the argument is a C or C++ builtin type or a C identifier
ending in ‘_t’, optionally followed by one of ‘[(* ’ and then by a string of zero
or more characters taken from the set ‘[]()* _a-zA-Z0-9’.

3. If the second argument is spelled with the alphabet of valid C and C++ types,
the user is warned and the modern version is used.

4. Otherwise, the modern version is used.

You are encouraged either to use a valid builtin type, or to use the equivalent modern
code (see above), or better yet, to use AC_CHECK_TYPES together with

#if !HAVE_LOFF_T
typedef loff_t off_t;
#endif

[Macro]AC CHECKING (feature-description)
Same as ‘AC_MSG_NOTICE([checking feature-description...]’.

[Macro]AC COMPILE CHECK (echo-text, includes, function-body,
action-if-found, [action-if-not-found])

This is an obsolete version of AC_TRY_COMPILE itself replaced by AC_COMPILE_IFELSE
(see Section 6.4 [Running the Compiler], page 85), with the addition that it prints
‘checking for echo-text ’ to the standard output first, if echo-text is non-empty.
Use AC_MSG_CHECKING and AC_MSG_RESULT instead to print messages (see Section 7.4
[Printing Messages], page 94).

[Macro]AC CONST
AC_C_CONST

[Macro]AC CROSS CHECK
Same as AC_C_CROSS, which is obsolete too, and does nothing :-).

Chapter 15: Obsolete Constructs 177

[Macro]AC CYGWIN
Check for the Cygwin environment in which case the shell variable CYGWIN is set to
‘yes’. Don’t use this macro, the dignified means to check the nature of the host is
using AC_CANONICAL_HOST. As a matter of fact this macro is defined as:

AC_REQUIRE([AC_CANONICAL_HOST])[]dnl
case $host_os in
cygwin) CYGWIN=yes;;

*) CYGWIN=no;;
esac

Beware that the variable CYGWIN has a very special meaning when running CygWin32,
and should not be changed. That’s yet another reason not to use this macro.

[Macro]AC DECL SYS SIGLIST
Same as:

AC_CHECK_DECLS([sys_siglist],,,
[#include <signal.h>
/* NetBSD declares sys_siglist in unistd.h. */
#if HAVE_UNISTD_H
include <unistd.h>
#endif
])

[Macro]AC DECL YYTEXT
Does nothing, now integrated in AC_PROG_LEX.

[Macro]AC DIR HEADER
Like calling AC_FUNC_CLOSEDIR_VOID andAC_HEADER_DIRENT, but defines a different
set of C preprocessor macros to indicate which header file is found:
Header Old Symbol New Symbol
‘dirent.h’ DIRENT HAVE_DIRENT_H
‘sys/ndir.h’ SYSNDIR HAVE_SYS_NDIR_H
‘sys/dir.h’ SYSDIR HAVE_SYS_DIR_H
‘ndir.h’ NDIR HAVE_NDIR_H

[Macro]AC DYNIX SEQ
If on DYNIX/ptx, add ‘-lseq’ to output variable LIBS. This macro used to be defined
as

AC_CHECK_LIB(seq, getmntent, LIBS="-lseq $LIBS")

now it is just AC_FUNC_GETMNTENT.

[Macro]AC EXEEXT
Defined the output variable EXEEXT based on the output of the compiler, which is
now done automatically. Typically set to empty string if Unix and ‘.exe’ if Win32
or OS/2.

[Macro]AC EMXOS2
Similar to AC_CYGWIN but checks for the EMX environment on OS/2 and sets EMXOS2.

178 Autoconf

[Macro]AC ERROR
AC_MSG_ERROR

[Macro]AC FIND X
AC_PATH_X

[Macro]AC FIND XTRA
AC_PATH_XTRA

[Macro]AC FUNC CHECK
AC_CHECK_FUNC

[Macro]AC FUNC WAIT3
If wait3 is found and fills in the contents of its third argument (a ‘struct rusage
*’), which HP-UX does not do, define HAVE_WAIT3.
These days portable programs should use waitpid, not wait3, as wait3 is being
removed from the Open Group standards, and will not appear in the next revision of
POSIX.

[Macro]AC GCC TRADITIONAL
AC_PROG_GCC_TRADITIONAL

[Macro]AC GETGROUPS T
AC_TYPE_GETGROUPS

[Macro]AC GETLOADAVG
AC_FUNC_GETLOADAVG

[Macro]AC HAVE FUNCS
AC_CHECK_FUNCS

[Macro]AC HAVE HEADERS
AC_CHECK_HEADERS

[Macro]AC HAVE LIBRARY (library, [action-if-found], [action-if-not-found],
[other-libraries])

This macro is equivalent to calling AC_CHECK_LIB with a function argument of main.
In addition, library can be written as any of ‘foo’, ‘-lfoo’, or ‘libfoo.a’. In all
of those cases, the compiler is passed ‘-lfoo’. However, library cannot be a shell
variable; it must be a literal name.

[Macro]AC HAVE POUNDBANG
AC_SYS_INTERPRETER (different calling convention)

[Macro]AC HEADER CHECK
AC_CHECK_HEADER

[Macro]AC HEADER EGREP
AC_EGREP_HEADER

[Macro]AC HELP STRING
AS_HELP_STRING

Chapter 15: Obsolete Constructs 179

[Macro]AC INIT (unique-file-in-source-dir)
Formerly AC_INIT used to have a single argument, and was equivalent to:

AC_INIT
AC_CONFIG_SRCDIR(unique-file-in-source-dir)

[Macro]AC INLINE
AC_C_INLINE

[Macro]AC INT 16 BITS
If the C type int is 16 bits wide, define INT_16_BITS. Use ‘AC_CHECK_SIZEOF(int)’
instead.

[Macro]AC IRIX SUN
If on irix (Silicon Graphics unix), add ‘-lsun’ to output LIBS. If you were using it to
get getmntent, use AC_FUNC_GETMNTENT instead. If you used it for the NIS versions
of the password and group functions, use ‘AC_CHECK_LIB(sun, getpwnam)’. Up to
Autoconf 2.13, it used to be

AC_CHECK_LIB(sun, getmntent, LIBS="-lsun $LIBS")

now it is defined as
AC_FUNC_GETMNTENT
AC_CHECK_LIB(sun, getpwnam)

[Macro]AC LANG C
Same as ‘AC_LANG(C)’.

[Macro]AC LANG CPLUSPLUS
Same as ‘AC_LANG(C++)’.

[Macro]AC LANG FORTRAN77
Same as ‘AC_LANG(Fortran 77)’.

[Macro]AC LANG RESTORE
Select the language that is saved on the top of the stack, as set by AC_LANG_SAVE,
remove it from the stack, and call AC_LANG(language).

[Macro]AC LANG SAVE
Remember the current language (as set by AC_LANG) on a stack. The current language
does not change. AC_LANG_PUSH is preferred.

[Macro]AC LINK FILES (source . . . , dest. . .)
This is an obsolete version of AC_CONFIG_LINKS. An updated version of:

AC_LINK_FILES(config/$machine.h config/$obj_format.h,
host.h object.h)

is:
AC_CONFIG_LINKS(host.h:config/$machine.h

object.h:config/$obj_format.h)

[Macro]AC LN S
AC_PROG_LN_S

180 Autoconf

[Macro]AC LONG 64 BITS
Define LONG_64_BITS if the C type long int is 64 bits wide. Use the generic macro
‘AC_CHECK_SIZEOF([long int])’ instead.

[Macro]AC LONG DOUBLE
AC_C_LONG_DOUBLE

[Macro]AC LONG FILE NAMES
AC_SYS_LONG_FILE_NAMES

[Macro]AC MAJOR HEADER
AC_HEADER_MAJOR

[Macro]AC MEMORY H
Used to define NEED_MEMORY_H if the mem functions were defined in ‘memory.h’. Today
it is equivalent to ‘AC_CHECK_HEADERS(memory.h)’. Adjust your code to depend upon
HAVE_MEMORY_H, not NEED_MEMORY_H; see Section 5.1.1 [Standard Symbols], page 33.

[Macro]AC MINGW32
Similar to AC_CYGWIN but checks for the MingW32 compiler environment and sets
MINGW32.

[Macro]AC MINUS C MINUS O
AC_PROG_CC_C_O

[Macro]AC MMAP
AC_FUNC_MMAP

[Macro]AC MODE T
AC_TYPE_MODE_T

[Macro]AC OBJEXT
Defined the output variable OBJEXT based on the output of the compiler, after .c files
have been excluded. Typically set to ‘o’ if Unix, ‘obj’ if Win32. Now the compiler
checking macros handle this automatically.

[Macro]AC OBSOLETE (this-macro-name, [suggestion])
Make M4 print a message to the standard error output warning that this-macro-name
is obsolete, and giving the file and line number where it was called. this-macro-name
should be the name of the macro that is calling AC_OBSOLETE. If suggestion is given,
it is printed at the end of the warning message; for example, it can be a suggestion
for what to use instead of this-macro-name.

For instance

AC_OBSOLETE([$0], [; use AC_CHECK_HEADERS(unistd.h) instead])dnl

You are encouraged to use AU_DEFUN instead, since it gives better services to the user.

[Macro]AC OFF T
AC_TYPE_OFF_T

Chapter 15: Obsolete Constructs 181

[Macro]AC OUTPUT ([file]. . . , [extra-cmds], [init-cmds])
The use of AC_OUTPUT with argument is deprecated. This obsoleted interface is equiv-
alent to:

AC_CONFIG_FILES(file...)
AC_CONFIG_COMMANDS([default],

extra-cmds, init-cmds)
AC_OUTPUT

[Macro]AC OUTPUT COMMANDS (extra-cmds, [init-cmds])
Specify additional shell commands to run at the end of ‘config.status’, and shell
commands to initialize any variables from configure. This macro may be called
multiple times. It is obsolete, replaced by AC_CONFIG_COMMANDS.
Here is an unrealistic example:

fubar=27
AC_OUTPUT_COMMANDS([echo this is extra $fubar, and so on.],

[fubar=$fubar])
AC_OUTPUT_COMMANDS([echo this is another, extra, bit],

[echo init bit])

Aside from the fact that AC_CONFIG_COMMANDS requires an additional key, an impor-
tant difference is that AC_OUTPUT_COMMANDS is quoting its arguments twice, unlike
AC_CONFIG_COMMANDS. This means that AC_CONFIG_COMMANDS can safely be given
macro calls as arguments:

AC_CONFIG_COMMANDS(foo, [my_FOO()])

Conversely, where one level of quoting was enough for literal strings with AC_OUTPUT_
COMMANDS, you need two with AC_CONFIG_COMMANDS. The following lines are equiva-
lent:

AC_OUTPUT_COMMANDS([echo "Square brackets: []"])
AC_CONFIG_COMMANDS([default], [[echo "Square brackets: []"]])

[Macro]AC PID T
AC_TYPE_PID_T

[Macro]AC PREFIX
AC_PREFIX_PROGRAM

[Macro]AC PROG CC STDC
This macro has been integrated into AC_PROG_CC.

[Macro]AC PROGRAMS CHECK
AC_CHECK_PROGS

[Macro]AC PROGRAMS PATH
AC_PATH_PROGS

[Macro]AC PROGRAM CHECK
AC_CHECK_PROG

[Macro]AC PROGRAM EGREP
AC_EGREP_CPP

182 Autoconf

[Macro]AC PROGRAM PATH
AC_PATH_PROG

[Macro]AC REMOTE TAPE
removed because of limited usefulness

[Macro]AC RESTARTABLE SYSCALLS
AC_SYS_RESTARTABLE_SYSCALLS

[Macro]AC RETSIGTYPE
AC_TYPE_SIGNAL

[Macro]AC RSH
removed because of limited usefulness

[Macro]AC SCO INTL
If on SCO UNIX, add ‘-lintl’ to output variable LIBS. This macro used to

AC_CHECK_LIB(intl, strftime, LIBS="-lintl $LIBS")

Now it just calls AC_FUNC_STRFTIME instead.

[Macro]AC SETVBUF REVERSED
AC_FUNC_SETVBUF_REVERSED

[Macro]AC SET MAKE
AC_PROG_MAKE_SET

[Macro]AC SIZEOF TYPE
AC_CHECK_SIZEOF

[Macro]AC SIZE T
AC_TYPE_SIZE_T

[Macro]AC STAT MACROS BROKEN
AC_HEADER_STAT

[Macro]AC STDC HEADERS
AC_HEADER_STDC

[Macro]AC STRCOLL
AC_FUNC_STRCOLL

[Macro]AC ST BLKSIZE
AC_CHECK_MEMBERS

[Macro]AC ST BLOCKS
AC_STRUCT_ST_BLOCKS

[Macro]AC ST RDEV
AC_CHECK_MEMBERS

Chapter 15: Obsolete Constructs 183

[Macro]AC SYS RESTARTABLE SYSCALLS
If the system automatically restarts a system call that is interrupted by a signal,
define HAVE_RESTARTABLE_SYSCALLS. This macro does not check if system calls are
restarted in general–it tests whether a signal handler installed with signal (but not
sigaction) causes system calls to be restarted. It does not test if system calls can
be restarted when interrupted by signals that have no handler.
These days portable programs should use sigaction with SA_RESTART if they want
restartable system calls. They should not rely on HAVE_RESTARTABLE_SYSCALLS, since
nowadays whether a system call is restartable is a dynamic issue, not a configuration-
time issue.

[Macro]AC SYS SIGLIST DECLARED
AC_DECL_SYS_SIGLIST

[Macro]AC TEST CPP
AC_TRY_CPP, replaced by AC_PREPROC_IFELSE.

[Macro]AC TEST PROGRAM
AC_TRY_RUN, replaced by AC_RUN_IFELSE.

[Macro]AC TIMEZONE
AC_STRUCT_TIMEZONE

[Macro]AC TIME WITH SYS TIME
AC_HEADER_TIME

[Macro]AC TRY COMPILE (includes, function-body, [action-if-found],
[action-if-not-found])

Same as ‘AC_COMPILE_IFELSE([AC_LANG_SOURCE([[includes]], [[function-
body]])], [action-if-true], [action-if-false])’ (see Section 6.4 [Running
the Compiler], page 85).
This macro double quotes both includes and function-body.
For C and C++, includes is any #include statements needed by the code in function-
body (includes will be ignored if the currently selected language is Fortran or Fortran
77). The compiler and compilation flags are determined by the current language (see
Section 6.1 [Language Choice], page 79).

[Macro]AC TRY CPP (input, [action-if-true], [action-if-false])
Same as ‘AC_PREPROC_IFELSE([AC_LANG_SOURCE([[input]])], [action-if-
true], [action-if-false])’ (see Section 6.3 [Running the Preprocessor],
page 84).
This macro double quotes the input.

[Macro]AC TRY LINK (includes, function-body, [action-if-found],
[action-if-not-found])

Same as ‘AC_LINK_IFELSE([AC_LANG_SOURCE([[includes]], [[function-
body]])], [action-if-true], [action-if-false])’ (see Section 6.4 [Running
the Compiler], page 85).

184 Autoconf

This macro double quotes both includes and function-body.
Depending on the current language (see Section 6.1 [Language Choice], page 79),
create a test program to see whether a function whose body consists of function-
body can be compiled and linked. If the file compiles and links successfully, run shell
commands action-if-found, otherwise run action-if-not-found.
This macro double quotes both includes and function-body.
For C and C++, includes is any #include statements needed by the code in function-
body (includes will be ignored if the currently selected language is Fortran or Fortran
77). The compiler and compilation flags are determined by the current language (see
Section 6.1 [Language Choice], page 79), and in addition LDFLAGS and LIBS are used
for linking.

[Macro]AC TRY LINK FUNC (function, [action-if-found], [action-if-not-found])
This macro is equivalent to ‘AC_LINK_IFELSE([AC_LANG_CALL([[includes]],
[[function-body]])], [action-if-true], [action-if-false])’.

[Macro]AC TRY RUN (program, [action-if-true], [action-if-false],
[action-if-cross-compiling])

Same as ‘AC_RUN_IFELSE([AC_LANG_SOURCE([[program]], [action-if-true],
[action-if-false], [action-if-cross-compiling])’ (see Section 6.6 [Run
Time], page 86).

[Macro]AC UID T
AC_TYPE_UID_T

[Macro]AC UNISTD H
Same as ‘AC_CHECK_HEADERS(unistd.h)’.

[Macro]AC USG
Define USG if the bsd string functions are defined in ‘strings.h’. You should no longer
depend upon USG, but on HAVE_STRING_H; see Section 5.1.1 [Standard Symbols],
page 33.

[Macro]AC UTIME NULL
AC_FUNC_UTIME_NULL

[Macro]AC VALIDATE CACHED SYSTEM TUPLE ([cmd])
If the cache file is inconsistent with the current host, target and build system types, it
used to execute cmd or print a default error message. This is now handled by default.

[Macro]AC VERBOSE (result-description)
AC_MSG_RESULT.

[Macro]AC VFORK
AC_FUNC_VFORK

[Macro]AC VPRINTF
AC_FUNC_VPRINTF

[Macro]AC WAIT3
AC_FUNC_WAIT3

Chapter 15: Obsolete Constructs 185

[Macro]AC WARN
AC_MSG_WARN

[Macro]AC WORDS BIGENDIAN
AC_C_BIGENDIAN

[Macro]AC XENIX DIR
This macro used to add ‘-lx’ to output variable LIBS if on Xenix. Also, if ‘dirent.h’
is being checked for, added ‘-ldir’ to LIBS. Now it is merely an alias of AC_HEADER_
DIRENT instead, plus some code to detect whether running xenix on which you should
not depend:

AC_MSG_CHECKING([for Xenix])
AC_EGREP_CPP(yes,
[#if defined M_XENIX && !defined M_UNIX
yes

#endif],
[AC_MSG_RESULT([yes]); XENIX=yes],
[AC_MSG_RESULT([no]); XENIX=])

[Macro]AC YYTEXT POINTER
AC_DECL_YYTEXT

15.5 Upgrading From Version 1

Autoconf version 2 is mostly backward compatible with version 1. However, it introduces
better ways to do some things, and doesn’t support some of the ugly things in version 1.
So, depending on how sophisticated your ‘configure.ac’ files are, you might have to do
some manual work in order to upgrade to version 2. This chapter points out some problems
to watch for when upgrading. Also, perhaps your configure scripts could benefit from
some of the new features in version 2; the changes are summarized in the file ‘NEWS’ in the
Autoconf distribution.

15.5.1 Changed File Names

If you have an ‘aclocal.m4’ installed with Autoconf (as opposed to in a particular package’s
source directory), you must rename it to ‘acsite.m4’. See Section 3.4 [autoconf Invocation],
page 10.

If you distribute ‘install.sh’ with your package, rename it to ‘install-sh’ so make
builtin rules won’t inadvertently create a file called ‘install’ from it. AC_PROG_INSTALL
looks for the script under both names, but it is best to use the new name.

If you were using ‘config.h.top’, ‘config.h.bot’, or ‘acconfig.h’, you still can, but
you will have less clutter if you use the AH_ macros. See Section 4.8.3 [Autoheader Macros],
page 29.

15.5.2 Changed Makefiles

Add ‘@CFLAGS@’, ‘@CPPFLAGS@’, and ‘@LDFLAGS@’ in your ‘Makefile.in’ files, so they can
take advantage of the values of those variables in the environment when configure is run.
Doing this isn’t necessary, but it’s a convenience for users.

186 Autoconf

Also add ‘@configure_input@’ in a comment to each input file for AC_OUTPUT, so that
the output files will contain a comment saying they were produced by configure. Au-
tomatically selecting the right comment syntax for all the kinds of files that people call
AC_OUTPUT on became too much work.

Add ‘config.log’ and ‘config.cache’ to the list of files you remove in distclean
targets.

If you have the following in ‘Makefile.in’:
prefix = /usr/local
exec_prefix = $(prefix)

you must change it to:
prefix = @prefix@
exec_prefix = @exec_prefix@

The old behavior of replacing those variables without ‘@’ characters around them has been
removed.

15.5.3 Changed Macros

Many of the macros were renamed in Autoconf version 2. You can still use the old names,
but the new ones are clearer, and it’s easier to find the documentation for them. See
Section 15.4 [Obsolete Macros], page 175, for a table showing the new names for the old
macros. Use the autoupdate program to convert your ‘configure.ac’ to using the new
macro names. See Section 15.3 [autoupdate Invocation], page 174.

Some macros have been superseded by similar ones that do the job better, but are not
call-compatible. If you get warnings about calling obsolete macros while running autoconf,
you may safely ignore them, but your configure script will generally work better if you
follow the advice that is printed about what to replace the obsolete macros with. In par-
ticular, the mechanism for reporting the results of tests has changed. If you were using
echo or AC_VERBOSE (perhaps via AC_COMPILE_CHECK), your configure script’s output will
look better if you switch to AC_MSG_CHECKING and AC_MSG_RESULT. See Section 7.4 [Print-
ing Messages], page 94. Those macros work best in conjunction with cache variables. See
Section 7.3 [Caching Results], page 91.

15.5.4 Changed Results

If you were checking the results of previous tests by examining the shell variable DEFS,
you need to switch to checking the values of the cache variables for those tests. DEFS no
longer exists while configure is running; it is only created when generating output files.
This difference from version 1 is because properly quoting the contents of that variable
turned out to be too cumbersome and inefficient to do every time AC_DEFINE is called. See
Section 7.3.1 [Cache Variable Names], page 93.

For example, here is a ‘configure.ac’ fragment written for Autoconf version 1:
AC_HAVE_FUNCS(syslog)
case "$DEFS" in
-DHAVE_SYSLOG) ;;
*) # syslog is not in the default libraries. See if it’s in some other.
saved_LIBS="$LIBS"
for lib in bsd socket inet; do

Chapter 15: Obsolete Constructs 187

AC_CHECKING(for syslog in -l$lib)
LIBS="$saved_LIBS -l$lib"
AC_HAVE_FUNCS(syslog)
case "$DEFS" in
-DHAVE_SYSLOG) break ;;
*) ;;
esac
LIBS="$saved_LIBS"

done ;;
esac

Here is a way to write it for version 2:

AC_CHECK_FUNCS(syslog)
if test $ac_cv_func_syslog = no; then
syslog is not in the default libraries. See if it’s in some other.
for lib in bsd socket inet; do
AC_CHECK_LIB($lib, syslog, [AC_DEFINE(HAVE_SYSLOG)
LIBS="$LIBS -l$lib"; break])

done
fi

If you were working around bugs in AC_DEFINE_UNQUOTED by adding backslashes before
quotes, you need to remove them. It now works predictably, and does not treat quotes
(except back quotes) specially. See Section 7.2 [Setting Output Variables], page 90.

All of the Boolean shell variables set by Autoconf macros now use ‘yes’ for the true
value. Most of them use ‘no’ for false, though for backward compatibility some use the
empty string instead. If you were relying on a shell variable being set to something like 1
or ‘t’ for true, you need to change your tests.

15.5.5 Changed Macro Writing

When defining your own macros, you should now use AC_DEFUN instead of define. AC_DEFUN
automatically calls AC_PROVIDE and ensures that macros called via AC_REQUIRE do not
interrupt other macros, to prevent nested ‘checking...’ messages on the screen. There’s
no actual harm in continuing to use the older way, but it’s less convenient and attractive.
See Section 9.1 [Macro Definitions], page 111.

You probably looked at the macros that came with Autoconf as a guide for how to do
things. It would be a good idea to take a look at the new versions of them, as the style is
somewhat improved and they take advantage of some new features.

If you were doing tricky things with undocumented Autoconf internals (macros, variables,
diversions), check whether you need to change anything to account for changes that have
been made. Perhaps you can even use an officially supported technique in version 2 instead
of kludging. Or perhaps not.

To speed up your locally written feature tests, add caching to them. See whether any of
your tests are of general enough usefulness to encapsulate them into macros that you can
share.

188 Autoconf

15.6 Upgrading From Version 2.13

The introduction of the previous section (see Section 15.5 [Autoconf 1], page 185) perfectly
suits this section. . . .

Autoconf version 2.50 is mostly backward compatible with version 2.13. How-
ever, it introduces better ways to do some things, and doesn’t support some
of the ugly things in version 2.13. So, depending on how sophisticated your
‘configure.ac’ files are, you might have to do some manual work in order
to upgrade to version 2.50. This chapter points out some problems to watch
for when upgrading. Also, perhaps your configure scripts could benefit from
some of the new features in version 2.50; the changes are summarized in the file
‘NEWS’ in the Autoconf distribution.

15.6.1 Changed Quotation

The most important changes are invisible to you: the implementation of most macros have
completely changed. This allowed more factorization of the code, better error messages, a
higher uniformity of the user’s interface etc. Unfortunately, as a side effect, some construct
which used to (miraculously) work might break starting with Autoconf 2.50. The most
common culprit is bad quotation.

For instance, in the following example, the message is not properly quoted:
AC_INIT
AC_CHECK_HEADERS(foo.h,,
AC_MSG_ERROR(cannot find foo.h, bailing out))
AC_OUTPUT

Autoconf 2.13 simply ignores it:
$ autoconf-2.13; ./configure --silent

creating cache ./config.cache
configure: error: cannot find foo.h
$

while Autoconf 2.50 will produce a broken ‘configure’:
$ autoconf-2.50; ./configure --silent

configure: error: cannot find foo.h
./configure: exit: bad non-numeric arg ‘bailing’
./configure: exit: bad non-numeric arg ‘bailing’
$

The message needs to be quoted, and the AC_MSG_ERROR invocation too!
AC_INIT
AC_CHECK_HEADERS(foo.h,,

[AC_MSG_ERROR([cannot find foo.h, bailing out])])
AC_OUTPUT

Many many (and many more) Autoconf macros were lacking proper quotation, including
no less than. . . AC_DEFUN itself!

$ cat configure.in

AC_DEFUN([AC_PROG_INSTALL],
[# My own much better version

Chapter 15: Obsolete Constructs 189

])
AC_INIT
AC_PROG_INSTALL
AC_OUTPUT
$ autoconf-2.13

autoconf: Undefined macros:
BUG in Autoconf--please report AC_FD_MSG
BUG in Autoconf--please report AC_EPI
configure.in:1:AC_DEFUN([AC_PROG_INSTALL],
configure.in:5:AC_PROG_INSTALL
$ autoconf-2.50

$

15.6.2 New Macros

Because Autoconf has been dormant for years, Automake provided Autoconf-like macros for
a while. Autoconf 2.50 now provides better versions of these macros, integrated in the AC_
namespace, instead of AM_. But in order to ease the upgrading via autoupdate, bindings
to such AM_ macros are provided.

Unfortunately Automake did not quote the names of these macros! Therefore, when
m4 finds something like ‘AC_DEFUN(AM_TYPE_PTRDIFF_T, ...)’ in ‘aclocal.m4’, AM_TYPE_
PTRDIFF_T is expanded, replaced with its Autoconf definition.

Fortunately Autoconf catches pre-AC_INIT expansions, and will complain, in its own
words:

$ cat configure.in

AC_INIT
AM_TYPE_PTRDIFF_T
$ aclocal-1.4

$ autoconf

./aclocal.m4:17: error: m4_defn: undefined macro: _m4_divert_diversion
actypes.m4:289: AM_TYPE_PTRDIFF_T is expanded from...
./aclocal.m4:17: the top level
$

Future versions of Automake will simply no longer define most of these macros, and will
properly quote the names of the remaining macros. But you don’t have to wait for it to
happen to do the right thing right now: do not depend upon macros from Automake as it
is simply not its job to provide macros (but the one it requires itself):

$ cat configure.in

AC_INIT
AM_TYPE_PTRDIFF_T
$ rm aclocal.m4

$ autoupdate

autoupdate: ‘configure.in’ is updated
$ cat configure.in

AC_INIT
AC_CHECK_TYPES([ptrdiff_t])
$ aclocal-1.4

190 Autoconf

$ autoconf

$

15.6.3 Hosts and Cross-Compilation

Based on the experience of compiler writers, and after long public debates, many aspects
of the cross-compilation chain have changed:

− the relationship between the build, host, and target architecture types,

− the command line interface for specifying them to configure,

− the variables defined in configure,

− the enabling of cross-compilation mode.

The relationship between build, host, and target have been cleaned up: the chain of
default is now simply: target defaults to host, host to build, and build to the result of
config.guess. Nevertheless, in order to ease the transition from 2.13 to 2.50, the following
transition scheme is implemented. Do not rely on it, as it will be completely disabled in a
couple of releases (we cannot keep it, as it proves to cause more problems than it cures).

They all default to the result of running config.guess, unless you specify either
‘--build’ or ‘--host’. In this case, the default becomes the system type you specified. If
you specify both, and they’re different, configure will enter cross compilation mode, so it
won’t run any tests that require execution.

Hint: if you mean to override the result of config.guess, prefer ‘--build’ over ‘--host’.
In the future, ‘--host’ will not override the name of the build system type. Whenever you
specify --host, be sure to specify --build too.

For backward compatibility, configure will accept a system type as an option by itself.
Such an option will override the defaults for build, host, and target system types. The
following configure statement will configure a cross toolchain that will run on Netbsd/alpha
but generate code for gnu Hurd/sparc, which is also the build platform.

./configure --host=alpha-netbsd sparc-gnu

In Autoconf 2.13 and before, the variables build, host, and target had a different
semantics before and after the invocation of AC_CANONICAL_BUILD etc. Now, the argument
of ‘--build’ is strictly copied into build_alias, and is left empty otherwise. After the
AC_CANONICAL_BUILD, build is set to the canonicalized build type. To ease the transition,
before, its contents is the same as that of build_alias. Do not rely on this broken feature.

For consistency with the backward compatibility scheme exposed above, when ‘--host’
is specified but ‘--build’ isn’t, the build system will be assumed to be the same as ‘--host’,
and ‘build_alias’ will be set to that value. Eventually, this historically incorrect behavior
will go away.

The former scheme to enable cross-compilation proved to cause more harm than good,
in particular, it used to be triggered too easily, leaving regular end users puzzled in front of
cryptic error messages. configure could even enter cross-compilation mode only because

Chapter 15: Obsolete Constructs 191

the compiler was not functional. This is mainly because configure used to try to detect
cross-compilation, instead of waiting for an explicit flag from the user.

Now, configure enters cross-compilation mode if and only if ‘--host’ is passed.
That’s the short documentation. To ease the transition between 2.13 and its successors,

a more complicated scheme is implemented. Do not rely on the following, as it will be
removed in the near future.

If you specify ‘--host’, but not ‘--build’, when configure performs the first compiler
test it will try to run an executable produced by the compiler. If the execution fails, it will
enter cross-compilation mode. This is fragile. Moreover, by the time the compiler test is
performed, it may be too late to modify the build-system type: other tests may have already
been performed. Therefore, whenever you specify --host, be sure to specify --build too.

./configure --build=i686-pc-linux-gnu --host=m68k-coff

will enter cross-compilation mode. The former interface, which consisted in setting the com-
piler to a cross-compiler without informing configure is obsolete. For instance, configure
will fail if it can’t run the code generated by the specified compiler if you configure as
follows:

./configure CC=m68k-coff-gcc

15.6.4 AC_LIBOBJ vs. LIBOBJS

Up to Autoconf 2.13, the replacement of functions was triggered via the variable LIBOBJS.
Since Autoconf 2.50, the macro AC_LIBOBJ should be used instead (see Section 5.5.3 [Generic
Functions], page 46). Starting at Autoconf 2.53, the use of LIBOBJS is an error.

This change is mandated by the unification of the gnu Build System components. In
particular, the various fragile techniques used to parse a ‘configure.ac’ are all replaced
with the use of traces. As a consequence, any action must be traceable, which obsoletes
critical variable assignments. Fortunately, LIBOBJS was the only problem, and it can even
be handled gracefully (read, “without your having to change something”).

There were two typical uses of LIBOBJS: asking for a replacement function, and adjusting
LIBOBJS for Automake and/or Libtool.

As for function replacement, the fix is immediate: use AC_LIBOBJ. For instance:
LIBOBJS="$LIBOBJS fnmatch.o"
LIBOBJS="$LIBOBJS malloc.$ac_objext"

should be replaced with:
AC_LIBOBJ([fnmatch])
AC_LIBOBJ([malloc])

When asked for automatic de-ANSI-fication, Automake needs LIBOBJS’ed filenames to
have ‘$U’ appended to the base names. Libtool requires the definition of LTLIBOBJS, whose
suffixes are mapped to ‘.lo’. People used to run snippets such as:

This is necessary so that .o files in LIBOBJS are also built via
the ANSI2KNR-filtering rules.
LIBOBJS=‘echo "$LIBOBJS" | sed ’s/\.o /\$U.o /g;s/\.o$/\$U.o/’‘
LTLIBOBJS=‘echo "$LIBOBJS" | sed ’s/\.o/\.lo/g’‘

192 Autoconf

AC_SUBST(LTLIBOBJS)

Note that this code is wrong, because ‘.o’ is not the only possible extension1! It should
have read:

This is necessary so that .o files in LIBOBJS are also built via
the ANSI2KNR-filtering rules.
LIB@&t@OBJS=‘echo "$LIB@&t@OBJS" |

sed ’s,\.[[^.]]* ,$U&,g;s,\.[[^.]]*$,$U&,’‘
LTLIBOBJS=‘echo "$LIB@&t@OBJS" |

sed ’s,\.[[^.]]* ,.lo ,g;s,\.[[^.]]*$,.lo,’‘
AC_SUBST(LTLIBOBJS)

You no longer have to use this: AC_OUTPUT normalizes LIBOBJS and LTLIBOBJS (hence
it works with any version of Automake and Libtool). Just remove these lines (autoupdate
cannot handle this task, since this is not a macro).

Note that U must not be used in your Makefiles.

15.6.5 AC_FOO_IFELSE vs. AC_TRY_FOO

Since Autoconf 2.50, internal codes uses AC_PREPROC_IFELSE, AC_COMPILE_IFELSE, AC_
LINK_IFELSE, and AC_RUN_IFELSE on one hand and AC_LANG_SOURCES, and AC_LANG_
PROGRAM on the other hand instead of the deprecated AC_TRY_CPP, AC_TRY_COMPILE, AC_
TRY_LINK, and AC_TRY_RUN. The motivations where:
− a more consistent interface: AC_TRY_COMPILE etc. were double quoting their arguments;
− the combinatoric explosion is solved by decomposing on the one hand the generation

of sources, and on the other hand executing the program;
− this scheme helps supporting more languages than plain C and C++.

In addition to the change of syntax, the philosphy has changed too: while emphasis was
put on speed at the expense of accuracy, today’s Autoconf promotes accuracy of the testing
framework at, ahem..., the expense of speed.

As a perfect example of what is not to be done, here is how to find out whether a header
file contains a particular declaration, such as a typedef, a structure, a structure member,
or a function. Use AC_EGREP_HEADER instead of running grep directly on the header file;
on some systems the symbol might be defined in another header file that the file you are
checking ‘#include’s.

As a (bad) example, here is how you should not check for C preprocessor symbols, either
defined by header files or predefined by the C preprocessor: using AC_EGREP_CPP:

AC_EGREP_CPP(yes,
[#ifdef _AIX
yes

#endif
], is_aix=yes, is_aix=no)

The above example, properly written would (i) use AC_LANG_PROGRAM, and (ii) run the
compiler:

1 Yet another reason why assigning LIBOBJS directly is discouraged.

Chapter 15: Obsolete Constructs 193

AC_COMPILE_IFELSE([AC_LANG_PROGRAM(
[[#if !defined _AIX
error _AIX not defined
#endif
]])],

[is_aix=yes],
[is_aix=no])

194 Autoconf

Chapter 16: Generating Test Suites with Autotest 195

16 Generating Test Suites with Autotest

N.B.: This section describes an experimental feature which will
be part of Autoconf in a forthcoming release. Although we believe
Autotest is stabilizing, this documentation describes an interface which
might change in the future: do not depend upon Autotest without
subscribing to the Autoconf mailing lists.

It is paradoxical that portable projects depend on nonportable tools to run their test
suite. Autoconf by itself is the paragon of this problem: although it aims at perfectly porta-
bility, up to 2.13, its test suite was using Dejagnu, a rich and complex testing framework,
but which is far from being standard on Unix systems. Worse yet, it was likely to be missing
on the most fragile platforms, the very platforms that are most likely to torture Autoconf
and exhibit deficiencies.

To circumvent this problem many package maintainers have developed their own testing
framework, based on simple shell scripts whose sole output are their exit status: the test
succeeded, or failed. In addition, most of these tests share some common patterns, what
results in lots of duplicated code, tedious maintenance etc.

Following exactly the same reasoning that yielded to the inception of Autoconf, Autotest
provides a test suite generation frame work, based on M4 macros, building a portable shell
script. The suite itself is equipped with automatic logging and tracing facilities which
greatly diminish the interaction with bug reporters, and simple timing reports.

Autoconf itself has been using Autotest for years, and we do attest that it has consider-
ably improved the strength of the test suite, and the quality of bug reports. Other projects
are known to use some generation of Autotest, such as Bison, Free Recode, Free Wdiff, gnu
Tar, each of them having different needs, what slowly polishes Autotest as a general testing
framework.

Nonetheless, compared to Dejagnu, Autotest is inadequate for interactive tool testing,
which is probably its main limitation.

16.1 Using an Autotest Test Suite

16.1.1 testsuite Scripts

Generating testing or validation suites using Autotest is rather easy. The whole validation
suite is held in a file to be processed through autom4te, itself using gnu M4 under the
scene, to produce a stand-alone Bourne shell script which then gets distributed. Neither
autom4te nor gnu M4 are not needed anymore at the installer end.

Each test of the validation suite should be part of some test group. A test group is a
sequence of interwoven tests that ought to be executed together, usually because one test
in the group creates data files than a later test in the same group needs to read. Complex
test groups make later debugging more tedious. It is much better keeping keep only a few
tests per test group, and if you can put only one test per test group, this is just ideal.

For all but the simplest packages, some file such as ‘testsuite.at’ does not fully hold all
test sources, as these are often easier to maintain in separate files. Each of these separate
files holds a single test group, or a sequence of test groups all addressing some common
functionality in the package. In such cases, file ‘testsuite.at’ only initializes the whole

196 Autoconf

validation suite, and sometimes do elementary health checking, before listing include state-
ments for all other test files. The special file ‘package.m4’, containing the identification of
the package, is automatically included if found.

A convenient alternative consists in moving all the global issues (local Autotest macros,
elementary health checking, and AT_INIT invocation) into the file local.at, and making
‘testsuite.at’ be a simple list of m4_include of sub test suites. In such case, generating
the whole test suite or pieces of it is only a matter of choosing the autom4te command line
arguments.

The validation scripts that Autotest produces are by convention called testsuite. When
run, testsuite executes each test group in turn, producing only one summary line per test
to say if that particular test succeeded or failed. At end of all tests, summarizing counters
get printed. One debugging directory is left for each test group which failed, if any: such
directories are named ‘testsuite.dir/nn ’, where nn is the sequence number of the test
group, and they include:
• a debugging script named ‘run’ which reruns the test in debug mode (see Section 16.3

[testsuite Invocation], page 199). The automatic generation of debugging scripts has
the purpose of easing the chase for bugs.

• all the files created with AT_DATA

• a log of the run, named ‘testsuite.log’

In the ideal situation, none of the tests fail, and consequently, no debugging directory is
left out of validation.

It often happens in practice that individual tests in the validation suite need to get
information coming out of the configuration process. Some of this information, common
for all validation suites, is provided through the file ‘atconfig’, automatically created
by AC_CONFIG_TESTDIR. For configuration informations which your testing environment
specifically needs, you might prepare an optional file named ‘atlocal.in’, instantiated
by AC_CONFIG_FILES. The configuration process produces ‘atconfig’ and ‘atlocal’ out of
these two input files, and these two produced files are automatically read by the ‘testsuite’
script.

Here is a diagram showing the relationship between files.
Files used in preparing a software package for distribution:

[package.m4] -->.
\

subfile-1.at ->. [local.at] ---->+
... \ \

subfile-i.at ---->-- testsuite.at -->-- autom4te* -->testsuite
... /

subfile-n.at ->’

Files used in configuring a software package:
.--> atconfig
/

[atlocal.in] --> config.status* --<
\
‘--> [atlocal]

Chapter 16: Generating Test Suites with Autotest 197

Files created during the test suite execution:
atconfig -->. .--> testsuite.log

\ /
>-- testsuite* --<
/ \

[atlocal] ->’ ‘--> [testsuite.dir]

16.1.2 Autotest Logs

When run, the test suite creates a log file named after itself, e.g., a test suite named
testsuite creates ‘testsuite.log’. It contains a lot of information, usually more than
maintainers actually need, but therefore most of the time it contains all that is needed:

command line arguments
A very bad Unix habit which is unfortunately wide spread consists of setting
environment variables before the command, such as in ‘CC=my-home-grown-cc
./testsuite’. This results in the test suite not knowing this change, hence (i)
it can’t report it to you, and (ii) it cannot preserve the value of CC for subsequent
runs. Autoconf faced exactly the same problem, and solved it by asking users
to pass the variable definitions as command line arguments. Autotest requires
this rule too, but has no means to enforce it; the log then contains a trace of
the variables the user changed.

‘ChangeLog’ excerpts
The topmost lines of all the ‘ChangeLog’s found in the source hierarchy. This
is especially useful when bugs are reported against development versions of the
package, since the version string does not provide sufficient information to know
the exact state of the sources the user compiled. Of course this relies on the
use of a ‘ChangeLog’.

build machine
Running a test suite in a cross-compile environment is not an easy task, since
it would mean having the test suite run on a machine build, while running
programs on a machine host. It is much simpler to run both the test suite and
the programs on host, but then, from the point of view of the test suite, there
remains a single environment, host = build. The log contains relevant informa-
tion on the state of the build machine, including some important environment
variables.

tested programs
The absolute path and answers to ‘--version’ of the tested programs (see
Section 16.2 [Writing testsuite.at], page 197, AT_TESTED).

configuration log
The contents of ‘config.log’, as created by configure, are appended. It
contains the configuration flags and a detailed report on the configuration itself.

16.2 Writing ‘testsuite.at’

The ‘testsuite.at’ is a Bourne shell script making use of special Autotest M4 macros. It
often contains a call to AT_INIT nears its beginning followed by one call to m4_include per

198 Autoconf

source file for tests. Each such included file, or the remainder of ‘testsuite.at’ if include
files are not used, contain a sequence of test groups. Each test group begins with one call
to AT_SETUP, it contains an arbitrary number of shell commands or calls to AT_CHECK, and
it completes with one call to AT_CLEANUP.

[Macro]AT INIT ([name])
Initialize Autotest. Giving a name to the test suite is encouraged if your package
includes several test suites. In any case, the test suite always displays the package
name and version. It also inherits the package bug report address.

[Macro]AT TESTED (executables)
Log the path and answer to ‘--version’ of each program in space-separated list
executables. Several invocations register new executables, in other words, don’t fear
registering one program several times.

Autotest test suites rely on the PATH to find the tested program. This saves from generat-
ing the absolute paths to the various tools, and makes it possible to test installed programs.
Therefore, knowing what programs are being exercised is crucial to understand some prob-
lems in the test suite itself, or its occasional misuses. It is a good idea to also subscribe
foreign programs you depend upon, to ease incompatibility diagnostics.

[Macro]AT SETUP (test-group-name)
This macro starts a group of related tests, all to be executed in the same subshell.
It accepts a single argument, which holds a few words (no more than about 30 or 40
characters) quickly describing the purpose of the test group being started.

[Macro]AT KEYWORDS (keywords)
Associate the space-separated list of keywords to the enclosing test group. This
makes it possible to run “slices” of the test suite. For instance if some of your
test groups exercise some ‘foo’ feature, then using ‘AT_KEYWORDS(foo)’ lets you run
‘./testsuite -k foo’ to run exclusively these test groups. The title of the test group
is automatically recorded to AT_KEYWORDS.
Several invocations within a test group accumulate new keywords. In other words,
don’t fear registering several times the same keyword in a test group.

[Macro]AT XFAIL IF (shell-condition)
Determine whether the test is expected to fail because it is a known bug (for unsup-
ported features, you should skip the test). shell-condition is a shell expression such as
a test command; you can instantiate this macro many times from within the same
test group, and one of the conditions will be enough to turn the test into an expected
failure.

[Macro]AT CLEANUP
End the current test group.

[Macro]AT DATA (file, contents)
Initialize an input data file with given contents. Of course, the contents have to
be properly quoted between square brackets to protect against included commas or
spurious M4 expansion. The contents ought to end with an end of line.

Chapter 16: Generating Test Suites with Autotest 199

[Macro]AT CHECK (commands, [status = ‘‘0’’], [stdout = ‘‘’’], [stderr = ‘‘’’],
[run-if-fail], [run-if-pass])

Execute a test by performing given shell commands. These commands should nor-
mally exit with status, while producing expected stdout and stderr contents. If com-
mands exit with status 77, then the whole test group is skipped. Otherwise, if this
test fails, run shell commands run-if-fail or, if this test passes, run shell commands
run-if-pass.
The commands must not redirect the standard output, nor the standard error.
If status, or stdout, or stderr is ‘ignore’, then the corresponding value is not checked.
The special value ‘expout’ for stdout means the expected output of the commands
is the content of the file ‘expout’. If stdout is ‘stdout’, then the standard output of
the commands is available for further tests in the file ‘stdout’. Similarly for stderr
with ‘expout’ and ‘stderr’.

16.3 Running testsuite Scripts

Autotest test suites support the following arguments:

‘--help’
‘-h’ Display the list of options and exit successfully.

‘--version’
‘-V’ Display the version of the test suite and exit successfully.

‘--clean’
‘-c’ Remove all the files the test suite might have created and exit. Meant for clean

Makefile targets.

‘--list’
‘-l’ List all the tests (or only the selection), including their possible keywords.

By default all the tests are performed (or described with ‘--list’) in the default envi-
ronment first silently, then verbosely, but the environment, set of tests, and verbosity level
can be tuned:

‘variable=value ’
Set the environment variable to value. Do not run ‘FOO=foo ./testsuite’ as
debugging scripts would then run in a different environment.
The variable AUTOTEST_PATH specifies the testing path to prepend to PATH. It
handles specially relative paths (not starting with ‘/’): they are considered to be
relative to the top level of the package being built. All the directories are made
absolute, first starting from the top level build tree, then from the source tree.
For instance ‘./testsuite AUTOTEST_PATH=tests:bin’ for a ‘/src/foo-1.0’
source package built in ‘/tmp/foo’ results in ‘/tmp/foo/tests:/tmp/foo/bin’
and then ‘/src/foo-1.0/tests:/src/foo-1.0/bin’ being prepended to PATH.

‘number ’
‘number-number ’
‘number-’
‘-number ’ Add the corresponding test groups, with obvious semantics, to the selection.

200 Autoconf

‘--keywords=keywords ’
‘-k keywords ’

Add to the selection the test groups which title or keywords (arguments to AT_
SETUP or AT_KEYWORDS) match all the keywords of the comma separated list
keywords.
Running ‘./testsuite -k autoupdate,FUNC’ will select all the tests tagged
with ‘autoupdate’ and ‘FUNC’ (as in ‘AC_CHECK_FUNC’, ‘AC_FUNC_FNMATCH’ etc.)
while ‘./testsuite -k autoupdate -k FUNC’ runs all the tests tagged with
‘autoupdate’ or ‘FUNC’.

‘--errexit’
‘-e’ If any test fails, immediately abort testing. It implies ‘--debug’: post test group

clean up, debugging script generation, and logging are inhibited. This option
is meant for the full test suite, it is not really useful for generated debugging
scripts.

‘--verbose’
‘-v’ Force more verbosity in the detailed output of what is being done. This is the

default for debugging scripts.

‘--debug’
‘-d’ Do not remove the files after a test group was performed —but they are still

removed before, therefore using this option is sane when running several test
groups. Do not create debugging scripts. Do not log (in order to preserve
supposedly existing full log file). This is the default for debugging scripts, but
it can also be useful to debug the testsuite itself.

‘--trace’
‘-x’ Trigger shell tracing of the test groups.

16.4 Making testsuite Scripts

For putting Autotest into movement, you need some configuration and Makefile machinery.
We recommend, at least if your package uses deep or shallow hierarchies, that you use
‘tests/’ as the name of the directory holding all your tests and their ‘Makefile’. Here is
a check list of things to do.
− Make sure to create the file ‘package.m4’, which defines the identity of the package. It

must define AT_PACKAGE_STRING, the full signature of the package, and AT_PACKAGE_
BUGREPORT, the address to which bug reports should be sent. For sake of complete-
ness, we suggest that you also define AT_PACKAGE_NAME, AT_PACKAGE_TARNAME, and
AT_PACKAGE_VERSION. See Section 4.1 [Initializing configure], page 15, for a descrip-
tion of these variables. We suggest the following Makefile excerpt:

$(srcdir)/package.m4: $(top_srcdir)/configure.ac

{ \

echo ’# Signature of the current package.’; \

echo ’m4_define([AT_PACKAGE_NAME], [@PACKAGE_NAME@])’; \

echo ’m4_define([AT_PACKAGE_TARNAME], [@PACKAGE_TARNAME@])’; \

echo ’m4_define([AT_PACKAGE_VERSION], [@PACKAGE_VERSION@])’; \

echo ’m4_define([AT_PACKAGE_STRING], [@PACKAGE_STRING@])’; \

echo ’m4_define([AT_PACKAGE_BUGREPORT], [@PACKAGE_BUGREPORT@])’; \

} >$(srcdir)/package.m4

Chapter 16: Generating Test Suites with Autotest 201

Be sure to distribute ‘package.m4’ and to put it into the source hierarchy: the test
suite ought to be shipped!

− Invoke AC_CONFIG_TESTDIR.

[Macro]AC CONFIG TESTDIR (directory, [test-path = ‘directory ’])
An Autotest test suite is to be configured in directory. This macro requires the in-
stantiation of ‘directory/atconfig’ from ‘directory/atconfig.in’, and sets
the default AUTOTEST_PATH to test-path (see Section 16.3 [testsuite Invocation],
page 199).

− Still within ‘configure.ac’, as appropriate, ensure that some AC_CONFIG_FILES com-
mand includes substitution for ‘tests/atlocal’.

− The ‘tests/Makefile.in’ should be modified so the validation in your package is
triggered by ‘make check’. An example is provided below.

With Automake, here is a minimal example about how to link ‘make check’ with a
validation suite.

EXTRA_DIST = testsuite.at testsuite
TESTSUITE = $(srcdir)/testsuite
check-local: atconfig atlocal $(TESTSUITE)

$(SHELL) $(TESTSUITE)

AUTOTEST = $(AUTOM4TE) --language=autotest
$(TESTSUITE): $(srcdir)/testsuite.at

$(AUTOTEST) -I $(srcdir) $@.at -o $@.tmp
mv $@.tmp $@

You might want to list explicitly the dependencies, i.e., the list of the files ‘testsuite.at’
includes.

With strict Autoconf, you might need to add lines inspired from the following:
subdir = tests

atconfig: $(top_builddir)/config.status
cd $(top_builddir) && \

$(SHELL) ./config.status $(subdir)/$@

atlocal: $(srcdir)/atlocal.in $(top_builddir)/config.status
cd $(top_builddir) && \

$(SHELL) ./config.status $(subdir)/$@

and manage to have ‘atconfig.in’ and $(EXTRA_DIST) distributed.

202 Autoconf

Chapter 17: Frequent Autoconf Questions, with answers 203

17 Frequent Autoconf Questions, with answers

Several questions about Autoconf come up occasionally. Here some of them are addressed.

17.1 Distributing configure Scripts
What are the restrictions on distributing configure
scripts that Autoconf generates? How does that affect my
programs that use them?

There are no restrictions on how the configuration scripts that Autoconf produces may
be distributed or used. In Autoconf version 1, they were covered by the gnu General Public
License. We still encourage software authors to distribute their work under terms like those
of the GPL, but doing so is not required to use Autoconf.

Of the other files that might be used with configure, ‘config.h.in’ is under whatever
copyright you use for your ‘configure.ac’. ‘config.sub’ and ‘config.guess’ have an
exception to the GPL when they are used with an Autoconf-generated configure script,
which permits you to distribute them under the same terms as the rest of your package.
‘install-sh’ is from the X Consortium and is not copyrighted.

17.2 Why Require gnu M4?
Why does Autoconf require gnu M4?

Many M4 implementations have hard-coded limitations on the size and number of macros
that Autoconf exceeds. They also lack several builtin macros that it would be difficult to
get along without in a sophisticated application like Autoconf, including:

m4_builtin
m4_indir
m4_bpatsubst
__file__
__line__

Autoconf requires version 1.4 or above of gnu M4 because it uses frozen state files.

Since only software maintainers need to use Autoconf, and since gnu M4 is simple to
configure and install, it seems reasonable to require gnu M4 to be installed also. Many
maintainers of gnu and other free software already have most of the gnu utilities installed,
since they prefer them.

17.3 How Can I Bootstrap?
If Autoconf requires gnu M4 and gnu M4 has an Autoconf
configure script, how do I bootstrap? It seems like a chicken
and egg problem!

This is a misunderstanding. Although gnu M4 does come with a configure script
produced by Autoconf, Autoconf is not required in order to run the script and install gnu
M4. Autoconf is only required if you want to change the M4 configure script, which few
people have to do (mainly its maintainer).

204 Autoconf

17.4 Why Not Imake?
Why not use Imake instead of configure scripts?

Several people have written addressing this question, so I include adaptations of their
explanations here.

The following answer is based on one written by Richard Pixley:
Autoconf generated scripts frequently work on machines that it has never been
set up to handle before. That is, it does a good job of inferring a configuration
for a new system. Imake cannot do this.
Imake uses a common database of host specific data. For X11, this makes sense
because the distribution is made as a collection of tools, by one central authority
who has control over the database.
gnu tools are not released this way. Each gnu tool has a maintainer; these
maintainers are scattered across the world. Using a common database would be
a maintenance nightmare. Autoconf may appear to be this kind of database,
but in fact it is not. Instead of listing host dependencies, it lists program
requirements.
If you view the gnu suite as a collection of native tools, then the problems
are similar. But the gnu development tools can be configured as cross tools in
almost any host+target permutation. All of these configurations can be installed
concurrently. They can even be configured to share host independent files across
hosts. Imake doesn’t address these issues.
Imake templates are a form of standardization. The gnu coding standards
address the same issues without necessarily imposing the same restrictions.

Here is some further explanation, written by Per Bothner:
One of the advantages of Imake is that it easy to generate large Makefiles using
cpp’s ‘#include’ and macro mechanisms. However, cpp is not programmable:
it has limited conditional facilities, and no looping. And cpp cannot inspect its
environment.
All of these problems are solved by using sh instead of cpp. The shell is fully pro-
grammable, has macro substitution, can execute (or source) other shell scripts,
and can inspect its environment.

Paul Eggert elaborates more:
With Autoconf, installers need not assume that Imake itself is already installed
and working well. This may not seem like much of an advantage to people
who are accustomed to Imake. But on many hosts Imake is not installed or the
default installation is not working well, and requiring Imake to install a package
hinders the acceptance of that package on those hosts. For example, the Imake
template and configuration files might not be installed properly on a host, or
the Imake build procedure might wrongly assume that all source files are in
one big directory tree, or the Imake configuration might assume one compiler
whereas the package or the installer needs to use another, or there might be a
version mismatch between the Imake expected by the package and the Imake
supported by the host. These problems are much rarer with Autoconf, where
each package comes with its own independent configuration processor.

Chapter 17: Frequent Autoconf Questions, with answers 205

Also, Imake often suffers from unexpected interactions between make and the
installer’s C preprocessor. The fundamental problem here is that the C pre-
processor was designed to preprocess C programs, not ‘Makefile’s. This is
much less of a problem with Autoconf, which uses the general-purpose prepro-
cessor M4, and where the package’s author (rather than the installer) does the
preprocessing in a standard way.

Finally, Mark Eichin notes:
Imake isn’t all that extensible, either. In order to add new features to Imake,
you need to provide your own project template, and duplicate most of the
features of the existing one. This means that for a sophisticated project, using
the vendor-provided Imake templates fails to provide any leverage—since they
don’t cover anything that your own project needs (unless it is an X11 program).
On the other side, though:
The one advantage that Imake has over configure: ‘Imakefile’s tend to be
much shorter (likewise, less redundant) than ‘Makefile.in’s. There is a fix to
this, however—at least for the Kerberos V5 tree, we’ve modified things to call in
common ‘post.in’ and ‘pre.in’ ‘Makefile’ fragments for the entire tree. This
means that a lot of common things don’t have to be duplicated, even though
they normally are in configure setups.

17.5 How Do I #define Installation Directories?
My program needs library files, installed in datadir and
similar. If I use

AC_DEFINE_UNQUOTED([DATADIR], [$datadir],
[Define to the read-only architecture-independent
data directory.])

I get

#define DATADIR "${prefix}/share"

As already explained, this behavior is on purpose, mandated by the gnu Coding Stan-
dards, see Section 4.7.2 [Installation Directory Variables], page 22. There are several means
to achieve a similar goal:
− Do not use AC_DEFINE but use your ‘Makefile’ to pass the actual value of datadir via

compilation flags, see Section 4.7.2 [Installation Directory Variables], page 22, for the
details.

− This solution can be simplified when compiling a program: you may either extend the
CPPFLAGS:

CPPFLAGS = -DDATADIR=\"$(datadir)\" @CPPFLAGS@

or create a dedicated header file:
DISTCLEANFILES = datadir.h
datadir.h: Makefile

echo ’#define DATADIR "$(datadir)"’ >$@

206 Autoconf

− Use AC_DEFINE but have configure compute the literal value of datadir and others.
Many people have wrapped macros to automate this task. For instance, the macro
AC_DEFINE_DIR from the Autoconf Macro Archive1.
This solution does not conform to the gnu Coding Standards.

− Note that all the previous solutions hard wire the absolute path to these directo-
ries in the executables, which is not a good property. You may try to compute the
paths relatively to prefix, and try to find prefix at runtime, this way your pack-
age is relocatable. Some macros are already available to address this issue: see adl_
COMPUTE_RELATIVE_PATHS and adl_COMPUTE_STANDARD_RELATIVE_PATHS on the Au-
toconf Macro Archive2.

17.6 What is ‘autom4te.cache’?
What is this directory ‘autom4te.cache’? Can I safely remove it?

In the gnu Build System, ‘configure.ac’ plays a central role and is read by many tools:
autoconf to create ‘configure’, autoheader to create ‘config.h.in’, automake to create
‘Makefile.in’, autoscan to check the completeness of ‘configure.ac’, autoreconf to
check the gnu Build System components that are used. To “read ‘configure.ac’” actually
means to compile it with M4, which can be a very long process for complex ‘configure.ac’.

This is why all these tools, instead of running directly M4, invoke autom4te (see Sec-
tion 8.2.1 [autom4te Invocation], page 103) which, while answering to a specific demand,
stores additional information in ‘autom4te.cache’ for future runs. For instance, if you run
autoconf, behind the scenes, autom4te will also store information for the other tools, so
that when you invoke autoheader or automake etc., re-processing ‘configure.ac’ is not
needed. The speed up is frequently of 30, and is increasing with the size of ‘configure.ac’.

But it is and remains being simply a cache: you can safely remove it.

Can I permanently get rid of it?
The creation of this cache can be disabled from ‘~/.autom4te.cfg’, see Section 8.2.2

[Customizing autom4te], page 107, for more details. You should be aware that disabling the
cache slows down the Autoconf test suite by 40%. The more gnu Build System components
are used, the more the cache is useful; for instance running ‘autoreconf -f’ on the Coreutils
is twice slower without the cache although ‘--force’ implies that the cache is not fully
exploited, and eight times slower than without ‘--force’.

17.7 Header Present But Cannot Be Compiled

The most important guideline to bear in mind when checking for features is to mimic
as much as possible the intended use. Unfortunately, old versions of AC_CHECK_HEADER
and AC_CHECK_HEADERS failed to follow this idea, and called the preprocessor, instead of
the compiler, to check for headers. As a result, incompatibilities between headers went
unnoticed during configuration, and maintainers finally had to deal with this issue elsewhere.

As of Autoconf 2.56 both checks are performed, and configure complains loudly if the
compiler and the preprocessor do not agree. For the time being the result used is that of

1 Autoconf Macro Archive, http://www.gnu.org/software/ac-archive/.
2 Autoconf Macro Archive, http://www.gnu.org/software/ac-archive/.

Chapter 17: Frequent Autoconf Questions, with answers 207

the preprocessor, to give maintainers time to adjust their ‘configure.ac’, but in the near
future, only the compiler will be considered.

Consider the following example:
$ cat number.h

typedef int number;
$ cat pi.h

const number pi = 3;
$ cat configure.ac

AC_INIT
AC_CHECK_HEADERS(pi.h)
$ autoconf -Wall

$./configure

checking for gcc... gcc
checking for C compiler default output... a.out
checking whether the C compiler works... yes
checking whether we are cross compiling... no
checking for suffix of executables...
checking for suffix of object files... o
checking whether we are using the GNU C compiler... yes
checking whether gcc accepts -g... yes
checking for gcc option to accept ANSI C... none needed
checking how to run the C preprocessor... gcc -E
checking for egrep... grep -E
checking for ANSI C header files... yes
checking for sys/types.h... yes
checking for sys/stat.h... yes
checking for stdlib.h... yes
checking for string.h... yes
checking for memory.h... yes
checking for strings.h... yes
checking for inttypes.h... yes
checking for stdint.h... yes
checking for unistd.h... yes
checking pi.h usability... no
checking pi.h presence... yes
configure: WARNING: pi.h: present but cannot be compiled
configure: WARNING: pi.h: check for missing prerequisite headers?
configure: WARNING: pi.h: proceeding with the preprocessor’s result
configure: WARNING: ## ------------------------------------ ##
configure: WARNING: ## Report this to bug-autoconf@gnu.org. ##
configure: WARNING: ## ------------------------------------ ##
checking for pi.h... yes

The proper way the handle this case is using the fourth argument (see Section 5.6.3 [Generic
Headers], page 53):

$ cat configure.ac

AC_INIT

208 Autoconf

AC_CHECK_HEADERS(number.h pi.h,,,
[[#if HAVE_NUMBER_H
include <number.h>
#endif
]])
$ autoconf -Wall

$./configure

checking for gcc... gcc
checking for C compiler default output... a.out
checking whether the C compiler works... yes
checking whether we are cross compiling... no
checking for suffix of executables...
checking for suffix of object files... o
checking whether we are using the GNU C compiler... yes
checking whether gcc accepts -g... yes
checking for gcc option to accept ANSI C... none needed
checking for number.h... yes
checking for pi.h... yes

See Section 5.6.2 [Particular Headers], page 49, for a list of headers with their prerequi-
site.

Chapter 18: History of Autoconf 209

18 History of Autoconf

You may be wondering, Why was Autoconf originally written? How did it get into its
present form? (Why does it look like gorilla spit?) If you’re not wondering, then this
chapter contains no information useful to you, and you might as well skip it. If you are
wondering, then let there be light. . . .

18.1 Genesis

In June 1991 I was maintaining many of the gnu utilities for the Free Software Foundation.
As they were ported to more platforms and more programs were added, the number of
‘-D’ options that users had to select in the ‘Makefile’ (around 20) became burdensome.
Especially for me—I had to test each new release on a bunch of different systems. So I
wrote a little shell script to guess some of the correct settings for the fileutils package, and
released it as part of fileutils 2.0. That configure script worked well enough that the next
month I adapted it (by hand) to create similar configure scripts for several other gnu
utilities packages. Brian Berliner also adapted one of my scripts for his cvs revision control
system.

Later that summer, I learned that Richard Stallman and Richard Pixley were developing
similar scripts to use in the gnu compiler tools; so I adapted my configure scripts to
support their evolving interface: using the file name ‘Makefile.in’ as the templates; adding
‘+srcdir’, the first option (of many); and creating ‘config.status’ files.

18.2 Exodus

As I got feedback from users, I incorporated many improvements, using Emacs to search
and replace, cut and paste, similar changes in each of the scripts. As I adapted more gnu
utilities packages to use configure scripts, updating them all by hand became impractical.
Rich Murphey, the maintainer of the gnu graphics utilities, sent me mail saying that the
configure scripts were great, and asking if I had a tool for generating them that I could
send him. No, I thought, but I should! So I started to work out how to generate them.
And the journey from the slavery of hand-written configure scripts to the abundance and
ease of Autoconf began.

Cygnus configure, which was being developed at around that time, is table driven;
it is meant to deal mainly with a discrete number of system types with a small number
of mainly unguessable features (such as details of the object file format). The automatic
configuration system that Brian Fox had developed for Bash takes a similar approach. For
general use, it seems to me a hopeless cause to try to maintain an up-to-date database of
which features each variant of each operating system has. It’s easier and more reliable to
check for most features on the fly—especially on hybrid systems that people have hacked
on locally or that have patches from vendors installed.

I considered using an architecture similar to that of Cygnus configure, where there
is a single configure script that reads pieces of ‘configure.in’ when run. But I didn’t
want to have to distribute all of the feature tests with every package, so I settled on having
a different configure made from each ‘configure.in’ by a preprocessor. That approach
also offered more control and flexibility.

210 Autoconf

I looked briefly into using the Metaconfig package, by Larry Wall, Harlan Stenn, and
Raphael Manfredi, but I decided not to for several reasons. The Configure scripts it
produces are interactive, which I find quite inconvenient; I didn’t like the ways it checked
for some features (such as library functions); I didn’t know that it was still being maintained,
and the Configure scripts I had seen didn’t work on many modern systems (such as System
V R4 and NeXT); it wasn’t very flexible in what it could do in response to a feature’s
presence or absence; I found it confusing to learn; and it was too big and complex for my
needs (I didn’t realize then how much Autoconf would eventually have to grow).

I considered using Perl to generate my style of configure scripts, but decided that
M4 was better suited to the job of simple textual substitutions: it gets in the way less,
because output is implicit. Plus, everyone already has it. (Initially I didn’t rely on the gnu
extensions to M4.) Also, some of my friends at the University of Maryland had recently
been putting M4 front ends on several programs, including tvtwm, and I was interested in
trying out a new language.

18.3 Leviticus

Since my configure scripts determine the system’s capabilities automatically, with no
interactive user intervention, I decided to call the program that generates them Autoconfig.
But with a version number tacked on, that name would be too long for old unix file systems,
so I shortened it to Autoconf.

In the fall of 1991 I called together a group of fellow questers after the Holy Grail of
portability (er, that is, alpha testers) to give me feedback as I encapsulated pieces of my
handwritten scripts in M4 macros and continued to add features and improve the techniques
used in the checks. Prominent among the testers were François Pinard, who came up with
the idea of making an Autoconf shell script to run M4 and check for unresolved macro calls;
Richard Pixley, who suggested running the compiler instead of searching the file system to
find include files and symbols, for more accurate results; Karl Berry, who got Autoconf to
configure TEX and added the macro index to the documentation; and Ian Lance Taylor,
who added support for creating a C header file as an alternative to putting ‘-D’ options in
a ‘Makefile’, so he could use Autoconf for his uucp package. The alpha testers cheerfully
adjusted their files again and again as the names and calling conventions of the Autoconf
macros changed from release to release. They all contributed many specific checks, great
ideas, and bug fixes.

18.4 Numbers

In July 1992, after months of alpha testing, I released Autoconf 1.0, and converted many
gnu packages to use it. I was surprised by how positive the reaction to it was. More people
started using it than I could keep track of, including people working on software that
wasn’t part of the gnu Project (such as TCL, FSP, and Kerberos V5). Autoconf continued
to improve rapidly, as many people using the configure scripts reported problems they
encountered.

Autoconf turned out to be a good torture test for M4 implementations. unix M4 started
to dump core because of the length of the macros that Autoconf defined, and several bugs
showed up in gnu M4 as well. Eventually, we realized that we needed to use some features

Chapter 18: History of Autoconf 211

that only gnu M4 has. 4.3bsd M4, in particular, has an impoverished set of builtin macros;
the System V version is better, but still doesn’t provide everything we need.

More development occurred as people put Autoconf under more stresses (and to uses I
hadn’t anticipated). Karl Berry added checks for X11. david zuhn contributed C++ support.
François Pinard made it diagnose invalid arguments. Jim Blandy bravely coerced it into
configuring gnu Emacs, laying the groundwork for several later improvements. Roland
McGrath got it to configure the gnu C Library, wrote the autoheader script to automate
the creation of C header file templates, and added a ‘--verbose’ option to configure. Noah
Friedman added the ‘--autoconf-dir’ option and AC_MACRODIR environment variable. (He
also coined the term autoconfiscate to mean “adapt a software package to use Autoconf”.)
Roland and Noah improved the quoting protection in AC_DEFINE and fixed many bugs,
especially when I got sick of dealing with portability problems from February through
June, 1993.

18.5 Deuteronomy

A long wish list for major features had accumulated, and the effect of several years of
patching by various people had left some residual cruft. In April 1994, while working for
Cygnus Support, I began a major revision of Autoconf. I added most of the features of
the Cygnus configure that Autoconf had lacked, largely by adapting the relevant parts of
Cygnus configure with the help of david zuhn and Ken Raeburn. These features include
support for using ‘config.sub’, ‘config.guess’, ‘--host’, and ‘--target’; making links
to files; and running configure scripts in subdirectories. Adding these features enabled
Ken to convert gnu as, and Rob Savoye to convert Dejagnu, to using Autoconf.

I added more features in response to other peoples’ requests. Many people had asked
for configure scripts to share the results of the checks between runs, because (particularly
when configuring a large source tree, like Cygnus does) they were frustratingly slow. Mike
Haertel suggested adding site-specific initialization scripts. People distributing software
that had to unpack on MS-DOS asked for a way to override the ‘.in’ extension on the file
names, which produced file names like ‘config.h.in’ containing two dots. Jim Avera did
an extensive examination of the problems with quoting in AC_DEFINE and AC_SUBST; his
insights led to significant improvements. Richard Stallman asked that compiler output be
sent to ‘config.log’ instead of ‘/dev/null’, to help people debug the Emacs configure
script.

I made some other changes because of my dissatisfaction with the quality of the program.
I made the messages showing results of the checks less ambiguous, always printing a result.
I regularized the names of the macros and cleaned up coding style inconsistencies. I added
some auxiliary utilities that I had developed to help convert source code packages to use
Autoconf. With the help of François Pinard, I made the macros not interrupt each others’
messages. (That feature revealed some performance bottlenecks in gnu M4, which he
hastily corrected!) I reorganized the documentation around problems people want to solve.
And I began a test suite, because experience had shown that Autoconf has a pronounced
tendency to regress when we change it.

Again, several alpha testers gave invaluable feedback, especially François Pinard, Jim
Meyering, Karl Berry, Rob Savoye, Ken Raeburn, and Mark Eichin.

212 Autoconf

Finally, version 2.0 was ready. And there was much rejoicing. (And I have free time
again. I think. Yeah, right.)

Appendix A: Copying This Manual 213

Appendix A Copying This Manual

A.1 GNU Free Documentation License
Version 1.2, November 2002

Copyright c© 2000,2001,2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.
This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.
A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.
A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

214 Autoconf

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, sgml or xml using a publicly
available dtd, and standard-conforming simple html, PostScript or pdf designed for
human modification. Examples of transparent image formats include png, xcf and
jpg. Opaque formats include proprietary formats that can be read and edited only
by proprietary word processors, sgml or xml for which the dtd and/or processing
tools are not generally available, and the machine-generated html, PostScript or pdf
produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

Appendix A: Copying This Manual 215

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.
You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.
If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.
It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:
A. Use in the Title Page (and on the covers, if any) a title distinct from that of the

Document, and from those of previous versions (which should, if there were any,

216 Autoconf

be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other

copyright notices.
F. Include, immediately after the copyright notices, a license notice giving the public

permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item

stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their

Appendix A: Copying This Manual 217

titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

218 Autoconf

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included an aggregate, this License does not apply to the other works
in the aggregate which are not themselves derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warrany Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.
If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

http://www.gnu.org/copyleft/

Appendix A: Copying This Manual 219

A.1.1 ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with...Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

220 Autoconf

Appendix B: Indices 221

Appendix B Indices

B.1 Environment Variable Index

This is an alphabetical list of the environment variables that Autoconf checks.

C
CDPATH . 129
CONFIG_COMMANDS . 173
CONFIG_FILES . 173
CONFIG_HEADERS . 173
CONFIG_LINKS . 173
CONFIG_SHELL . 172
CONFIG_SITE . 165
CONFIG_STATUS . 172

E
ENV . 131

I
IFS . 129

L
LANG . 129
LANGUAGE . 129
LC_ADDRESS . 129
LC_ALL . 129
LC_COLLATE . 129
LC_CTYPE . 129
LC_IDENTIFICATION . 129
LC_MEASUREMENT . 129
LC_MESSAGES . 129
LC_MONETARY . 129
LC_NAME . 129
LC_NUMERIC . 129
LC_PAPER . 129

LC_TELEPHONE . 129
LC_TIME . 129
LINENO . 130

M
MAIL . 131
MAILPATH . 131

N
NULLCMD . 131

P
PATH_SEPARATOR . 132
PS1 . 131
PS2 . 131
PS4 . 131
PWD . 132

R
RANDOM . 132

S
SIMPLE_BACKUP_SUFFIX. 174
status . 132

W
WARNINGS . 11, 13, 29, 104

B.2 Output Variable Index

This is an alphabetical list of the variables that Autoconf can substitute into files that
it creates, typically one or more ‘Makefile’s. See Section 7.2 [Setting Output Variables],
page 90, for more information on how this is done.

A
abs_builddir . 22

abs_srcdir . 22

abs_top_builddir . 22

abs_top_srcdir . 22

ALLOCA . 41

AWK . 35

B
bindir . 22
build . 158
build_alias . 158
build_cpu . 158
build_os . 158
build_vendor . 158
builddir . 22

222 Autoconf

C
CC . 60, 63, 76
CFLAGS . 20, 60
configure_input . 20
CPP . 60
CPPFLAGS . 21
cross_compiling . 157
CXX . 63
CXXCPP . 63
CXXFLAGS . 21, 63

D
datadir . 22
DEFS . 21

E
ECHO_C . 21
ECHO_N . 21
ECHO_T . 21
EGREP . 35
exec_prefix . 23
EXEEXT . 58, 177

F
F77 . 64
FC . 65
FCFLAGS . 21, 65
FCLIBS . 65
FFLAGS . 21, 64
FGREP . 35
FLIBS . 65

G
GETGROUPS_LIBS . 43
GETLOADAVG_LIBS . 43

H
host . 158
host_alias . 158
host_cpu . 158
host_os . 158
host_vendor . 158

I
includedir . 23
infodir . 23
INSTALL . 35
INSTALL_DATA . 35
INSTALL_PROGRAM . 35
INSTALL_SCRIPT . 35

K
KMEM_GROUP . 43

L
LDFLAGS . 22

LEX . 35

LEX_OUTPUT_ROOT . 35

LEXLIB . 35

libdir . 23

libexecdir . 23

LIBOBJS . 43, 44, 47, 48, 55

LIBS. 22, 77, 182, 185

LN_S . 36

localstatedir . 23

M
mandir . 23

N
NEED_SETGID . 43

O
OBJEXT . 58, 180

oldincludedir . 23

P
PACKAGE_BUGREPORT . 15

PACKAGE_NAME . 15

PACKAGE_STRING . 15

PACKAGE_TARNAME . 15

PACKAGE_VERSION . 15

POW_LIB . 45

prefix . 23

program_transform_name 164

R
RANLIB . 36

S
sbindir . 23

SET_MAKE . 17

sharedstatedir . 23

srcdir . 22

subdirs . 31

sysconfdir . 23

Appendix B: Indices 223

T
target . 158
target_alias . 158
target_cpu . 158
target_os . 158
target_vendor . 158
top_builddir . 22
top_srcdir . 22

U

U . 191

X
X_CFLAGS . 76
X_EXTRA_LIBS . 76
X_LIBS . 76
X_PRE_LIBS . 76

Y
YACC . 36

B.3 Preprocessor Symbol Index

This is an alphabetical list of the C preprocessor symbols that the Autoconf macros define.
To work with Autoconf, C source code needs to use these names in #if directives.

__CHAR_UNSIGNED__ . 62
__PROTOTYPES . 62
_ALL_SOURCE . 77
_FILE_OFFSET_BITS . 76
_GNU_SOURCE . 77
_LARGE_FILES . 76
_LARGEFILE_SOURCE . 42
_MINIX . 77
_POSIX_1_SOURCE . 77
_POSIX_SOURCE . 77
_POSIX_VERSION . 52

C
C_ALLOCA . 41
C_GETLOADAVG . 43
CLOSEDIR_VOID . 42
const . 61

D
DGUX . 43
DIRENT . 177

F
F77_DUMMY_MAIN . 66
F77_FUNC . 67
F77_FUNC_ . 67
F77_MAIN . 67
F77_NO_MINUS_C_MINUS_O . 65
FC_FUNC . 67
FC_FUNC_ . 67
FC_MAIN . 67
FC_NO_MINUS_C_MINUS_O . 65

G
GETGROUPS_T . 56
GETLODAVG_PRIVILEGED . 43
GETPGRP_VOID . 43
gid_t . 57
GWINSZ_IN_SYS_IOCTL . 53

H
HAVE__BOOL . 50
HAVE_ALLOCA_H . 41
HAVE_CONFIG_H . 27
HAVE_DECL_STRERROR_R . 45
HAVE_DECL_symbol . 54
HAVE_DIRENT_H . 49
HAVE_DOPRNT . 46
HAVE_function . 46
HAVE_GETMNTENT . 43
HAVE_header . 53
HAVE_LONG_DOUBLE . 62
HAVE_LONG_FILE_NAMES . 77
HAVE_LSTAT_EMPTY_STRING_BUG 45
HAVE_MALLOC . 44
HAVE_MBRTOWC . 44
HAVE_MMAP . 44
HAVE_NDIR_H . 49
HAVE_NLIST_H . 43
HAVE_OBSTACK . 45
HAVE_REALLOC . 45
HAVE_RESTARTABLE_SYSCALLS 183
HAVE_ST_BLKSIZE . 55
HAVE_ST_BLOCKS . 55
HAVE_ST_RDEV . 55
HAVE_STAT_EMPTY_STRING_BUG 45
HAVE_STDBOOL_H . 50
HAVE_STRCOLL . 45
HAVE_STRERROR_R . 45
HAVE_STRFTIME . 46

224 Autoconf

HAVE_STRINGIZE . 62
HAVE_STRNLEN . 46
HAVE_STRUCT_STAT_ST_BLKSIZE 55
HAVE_STRUCT_STAT_ST_BLOCKS 55
HAVE_STRUCT_STAT_ST_RDEV 55
HAVE_SYS_DIR_H . 49
HAVE_SYS_NDIR_H . 49
HAVE_SYS_WAIT_H . 52
HAVE_TM_ZONE . 56
HAVE_TZNAME . 56
HAVE_UTIME_NULL . 46
HAVE_VFORK_H . 42
HAVE_VPRINTF . 46
HAVE_WAIT3 . 178
HAVE_WORKING_FORK . 42
HAVE_WORKING_VFORK . 42

I
inline . 62
INT_16_BITS . 179

L
LONG_64_BITS . 180
LSTAT_FOLLOWS_SLASHED_SYMLINK 43

M
MAJOR_IN_MKDEV . 50
MAJOR_IN_SYSMACROS . 50
malloc . 44
mbstate_t . 57
mode_t . 57

N
NDIR . 177
NEED_MEMORY_H . 180
NEED_SETGID . 43
NLIST_NAME_UNION . 43
NO_MINUS_C_MINUS_O . 60

O
off_t . 57

P
PACKAGE_BUGREPORT . 15
PACKAGE_NAME . 15
PACKAGE_STRING . 15
PACKAGE_TARNAME . 15
PACKAGE_VERSION . 15

PARAMS . 62
pid_t . 57
PROTOTYPES . 62

R
realloc . 45
restrict . 61
RETSIGTYPE . 57

S
SELECT_TYPE_ARG1 . 45
SELECT_TYPE_ARG234 . 45
SELECT_TYPE_ARG5 . 45
SETPGRP_VOID . 45
SETVBUF_REVERSED . 45
size_t . 57
STDC_HEADERS . 51
STRERROR_R_CHAR_P . 45
SVR4 . 43
SYS_SIGLIST_DECLARED. 177
SYSDIR . 177
SYSNDIR . 177

T
TIME_WITH_SYS_TIME . 52
TM_IN_SYS_TIME . 56

U
uid_t . 57
UMAX . 43
UMAX4_3 . 43
USG . 184

V
vfork . 42
volatile . 62

W
WORDS_BIGENDIAN . 61

X
X_DISPLAY_MISSING . 76

Y
YYTEXT_POINTER . 35

Appendix B: Indices 225

B.4 Autoconf Macro Index

This is an alphabetical list of the Autoconf macros. To make the list easier to use, the
macros are listed without their preceding ‘AC_’.

A
AC_FC_CHECK_HEADERS . 70
AC_FC_CHECK_INTRINSICS . 70
AC_FC_FIXEDFORM . 68
AC_FC_HAVE_BOZ . 70
AC_FC_HAVE_OLD_TYPELESS_BOZ 70
AC_FC_HAVE_PERCENTLOC . 70
AC_FC_HAVE_PERCENTVAL . 70
AC_FC_HAVE_TYPELESS_BOZ 70
AC_FC_HAVE_VOLATILE . 71
AC_FC_LITERAL_BACKSLASH 71
AC_FC_MOD_PATH_FLAG . 71
AC_FC_OPEN_SPECIFIERS . 71
AC_FC_RECL_UNIT . 71
AC_FPP_FIXEDFORM . 72
AC_FPP_FREEFORM . 72
AC_PROG_FPP . 72
AH_BOTTOM . 30
AH_TEMPLATE . 29
AH_TOP . 30
AH_VERBATIM . 29
AIX . 77
ALLOCA . 175
ARG_ARRAY . 175
ARG_ENABLE . 162
ARG_PROGRAM . 164
ARG_VAR . 91
ARG_WITH . 161
AU_DEFUN . 115

B
BEFORE . 114

C
C_BIGENDIAN . 61
C_CHAR_UNSIGNED . 62
C_CONST . 61
C_CROSS . 175
C_INLINE . 62
C_LONG_DOUBLE . 62
C_PROTOTYPES . 62
C_RESTRICT . 61
C_STRINGIZE . 62
C_VOLATILE . 62
CACHE_CHECK . 92
CACHE_LOAD . 94
CACHE_SAVE . 94
CACHE_VAL . 92
CANONICAL_BUILD . 158
CANONICAL_HOST . 158

CANONICAL_SYSTEM . 175
CANONICAL_TARGET . 158
CHAR_UNSIGNED . 175
CHECK_DECL . 54
CHECK_DECLS . 54
CHECK_FILE . 38
CHECK_FILES . 38
CHECK_FUNC . 46
CHECK_FUNCS . 46
CHECK_HEADER . 53
CHECK_HEADERS . 53
CHECK_LIB . 38
CHECK_MEMBER . 56
CHECK_MEMBERS . 56
CHECK_PROG . 37
CHECK_PROGS . 37
CHECK_SIZEOF . 58
CHECK_TOOL . 37
CHECK_TOOLS . 37
CHECK_TYPE . 57, 176
CHECK_TYPES . 57
CHECKING . 176
COMPILE_CHECK . 176
COMPILE_IFELSE . 85
CONFIG_AUX_DIR . 16
CONFIG_COMMANDS . 30
CONFIG_FILES . 19
CONFIG_HEADERS . 27
CONFIG_LIBOBJ_DIR . 47
CONFIG_LINKS . 30
CONFIG_MACRO_DIR . 17
CONFIG_SRCDIR . 16
CONFIG_SUBDIRS . 31
CONFIG_TESTDIR . 201
CONST . 176
COPYRIGHT . 16
CROSS_CHECK . 176
CYGWIN . 177

D
DECL_SYS_SIGLIST . 177
DECL_YYTEXT . 177
DEFAULT_INCLUDES . 34
DEFINE . 89
DEFINE_UNQUOTED . 89
DEFUN . 111, 115
DIAGNOSE . 112
DIR_HEADER . 177
DYNIX_SEQ . 177

226 Autoconf

E
EGREP_CPP . 85
EGREP_HEADER . 84
EMXOS2 . 177
ENABLE . 163
ERROR . 178
EXEEXT . 177

F
F77_DUMMY_MAIN . 66
F77_FUNC . 68
F77_LIBRARY_LDFLAGS . 65
F77_MAIN . 67
F77_WRAPPERS . 67
FATAL . 113
FC_FREEFORM . 69
FC_FUNC . 68
FC_LIBRARY_LDFLAGS . 65
FC_MAIN . 67
FC_MAIN_IS_MAIN . 67
FC_SRCEXT . 69
FC_WRAPPERS . 67
FIND_X . 178
FIND_XTRA . 178
FUNC_ALLOCA . 41
FUNC_CHECK . 178
FUNC_CHOWN . 42
FUNC_CLOSEDIR_VOID . 42
FUNC_ERROR_AT_LINE . 42
FUNC_FNMATCH . 42
FUNC_FNMATCH_GNU . 42
FUNC_FORK . 42
FUNC_FSEEKO . 42
FUNC_GETGROUPS . 43
FUNC_GETLOADAVG . 43
FUNC_GETMNTENT . 43
FUNC_GETPGRP . 43
FUNC_LSTAT . 45
FUNC_LSTAT_FOLLOWS_SLASHED_SYMLINK 43
FUNC_MALLOC . 44
FUNC_MBRTOWC . 44
FUNC_MEMCMP . 44
FUNC_MKTIME . 44
FUNC_MMAP . 44
FUNC_OBSTACK . 45
FUNC_REALLOC . 45
FUNC_SELECT_ARGTYPES . 45
FUNC_SETPGRP . 45
FUNC_SETVBUF_REVERSED . 45
FUNC_STAT . 45
FUNC_STRCOLL . 45
FUNC_STRERROR_R . 45
FUNC_STRFTIME . 46
FUNC_STRNLEN . 46
FUNC_STRTOD . 45
FUNC_UTIME_NULL . 46
FUNC_VPRINTF . 46

FUNC_WAIT3 . 178

G
GCC_TRADITIONAL . 178
GETGROUPS_T . 178
GETLOADAVG . 178
GNU_SOURCE . 77

H
HAVE_C_BACKSLASH_A . 61
HAVE_FUNCS . 178
HAVE_HEADERS . 178
HAVE_LIBRARY . 178
HAVE_POUNDBANG . 178
HEADER_CHECK . 178
HEADER_DIRENT . 49
HEADER_EGREP . 178
HEADER_MAJOR . 50
HEADER_STAT . 50
HEADER_STDBOOL . 50
HEADER_STDC . 51
HEADER_SYS_WAIT . 52
HEADER_TIME . 52
HEADER_TIOCGWINSZ . 53
HELP_STRING . 163, 178

I
INIT . 15, 179
INLINE . 179
INT_16_BITS . 179
IRIX_SUN . 179
ISC_POSIX . 77

L
LANG_ASSERT . 80
LANG_C . 179
LANG_CALL . 83
LANG_CONFTEST . 82
LANG_CPLUSPLUS . 179
LANG_FORTRAN77 . 179
LANG_FUNC_LINK_TRY . 83
LANG_POP . 80
LANG_PROGRAM . 82
LANG_PUSH . 80
LANG_RESTORE . 179
LANG_SAVE . 179
LANG_SOURCE . 82
LANG_WERROR . 59
LIBOBJ . 47
LIBSOURCE . 47
LIBSOURCES . 47
LINK_FILES . 179
LINK_IFELSE . 85
LN_S . 179

Appendix B: Indices 227

LONG_64_BITS . 180
LONG_DOUBLE . 180
LONG_FILE_NAMES . 180

M
MAJOR_HEADER . 180
MEMORY_H . 180
MINGW32 . 180
MINIX . 77
MINUS_C_MINUS_O . 180
MMAP . 180
MODE_T . 180
MSG_CHECKING . 95
MSG_ERROR . 95
MSG_FAILURE . 95
MSG_NOTICE . 95
MSG_RESULT . 95
MSG_WARN . 96

O
OBJEXT . 180
OBSOLETE . 180
OFF_T . 180
OUTPUT . 17, 181
OUTPUT_COMMANDS . 181
OUTPUT_COMMANDS_POST . 30
OUTPUT_COMMANDS_PRE . 30

P
PACKAGE_BUGREPORT . 15
PACKAGE_NAME . 15
PACKAGE_STRING . 15
PACKAGE_TARNAME . 15
PACKAGE_VERSION . 15
PATH_PROG . 37
PATH_PROGS . 38
PATH_TOOL . 38
PATH_X . 76
PATH_XTRA . 76
PID_T . 181
PREFIX . 181
PREFIX_DEFAULT . 32
PREFIX_PROGRAM . 32
PREPROC_IFELSE . 84
PREREQ . 15
PROG_AWK . 35
PROG_CC . 60
PROG_CC_C_O . 60
PROG_CC_STDC . 181
PROG_CPP . 60
PROG_CPP_WERROR . 60
PROG_CXX . 63
PROG_CXXCPP . 63
PROG_EGREP . 35
PROG_F77 . 64

PROG_F77_C_O . 65
PROG_FC . 65
PROG_FC_C_O . 65
PROG_FGREP . 35
PROG_GCC_TRADITIONAL . 63
PROG_INSTALL . 35
PROG_LEX . 35
PROG_LN_S . 36
PROG_MAKE_SET . 17
PROG_RANLIB . 36
PROG_YACC . 36
PROGRAM_CHECK . 181
PROGRAM_EGREP . 181
PROGRAM_PATH . 182
PROGRAMS_CHECK . 181
PROGRAMS_PATH . 181

R
REMOTE_TAPE . 182
REPLACE_FNMATCH . 46
REPLACE_FUNCS . 48
REQUIRE . 113
REQUIRE_CPP . 80
RESTARTABLE_SYSCALLS. 182
RETSIGTYPE . 182
REVISION . 16
RSH . 182
RUN_IFELSE . 86

S
SCO_INTL . 182
SEARCH_LIBS . 39
SET_MAKE . 182
SETVBUF_REVERSED . 182
SIZE_T . 182
SIZEOF_TYPE . 182
ST_BLKSIZE . 182
ST_BLOCKS . 182
ST_RDEV . 182
STAT_MACROS_BROKEN . 50, 182
STDC_HEADERS . 182
STRCOLL . 182
STRUCT_ST_BLKSIZE . 55
STRUCT_ST_BLOCKS . 55
STRUCT_ST_RDEV . 55
STRUCT_TIMEZONE . 56
STRUCT_TM . 56
SUBST . 90
SUBST_FILE . 90
SYS_INTERPRETER . 76
SYS_LARGEFILE . 76
SYS_LONG_FILE_NAMES . 77
SYS_POSIX_TERMIOS . 77
SYS_RESTARTABLE_SYSCALLS 183
SYS_SIGLIST_DECLARED. 183

228 Autoconf

T
TEST_CPP . 183
TEST_PROGRAM . 183
TIME_WITH_SYS_TIME . 183
TIMEZONE . 183
TRY_COMPILE . 183
TRY_CPP . 183
TRY_LINK . 183
TRY_LINK_FUNC . 184
TRY_RUN . 184
TYPE_GETGROUPS . 56
TYPE_MBSTATE_T . 57
TYPE_MODE_T . 57
TYPE_OFF_T . 57
TYPE_PID_T . 57
TYPE_SIGNAL . 57
TYPE_SIZE_T . 57
TYPE_UID_T . 57

U
UID_T . 184
UNISTD_H . 184
USG . 184

UTIME_NULL . 184

V
VALIDATE_CACHED_SYSTEM_TUPLE 184
VERBOSE . 184
VFORK . 184
VPRINTF . 184

W
WAIT3 . 184
WARN . 185
WARNING . 113
WITH . 162
WORDS_BIGENDIAN . 185

X
XENIX_DIR . 185

Y
YYTEXT_POINTER . 185

B.5 M4 Macro Index

This is an alphabetical list of the M4, M4sugar, and M4sh macros. To make the list easier
to use, the macros are listed without their preceding ‘m4_’ or ‘AS_’.

B
bpatsubst . 108
bregexp . 108

D
defn . 108
DIRNAME . 110
dnl . 108
dquote . 109

E
exit . 108

I
if . 108
IF . 110

M
MKDIR_P . 110

P
pattern_allow . 110

pattern_forbid . 109

popdef . 108

Q
quote . 109

S
SET_CATFILE . 110

U
undefine . 108

W
wrap . 108

Appendix B: Indices 229

B.6 Autotest Macro Index

This is an alphabetical list of the Autotest macros. To make the list easier to use, the
macros are listed without their preceding ‘AT_’.

C
CHECK . 199
CLEANUP . 198

D
DATA . 198

I
INIT . 198

K

KEYWORDS . 198

S
SETUP . 198

T
TESTED . 198

X
XFAIL_IF . 198

B.7 Program and Function Index

This is an alphabetical list of the programs and functions which portability is discussed in
this document.

!
! . 132

.

. 132

/
/usr/bin/ksh on Solaris . 120
/usr/dt/bin/dtksh on Solaris 120
/usr/xpg4/bin/sh on Solaris 120

A
alloca . 41
‘alloca.h’ . 41
awk . 139

B
break . 132

C
case . 133
cat . 139
cd . 132
chown . 42
closedir . 42
cmp . 140

cp . 140
‘ctype.h’ . 51

D
date . 140
diff . 141
‘dirent.h’ . 49
dirname . 141

E
echo . 133
egrep . 141
error_at_line . 42
exit . 39
exit . 134
export . 134
expr . 141, 142
expr (‘|’) . 141

F
false . 134
fgrep . 142
‘float.h’ . 51
fnmatch . 42, 46
‘fnmatch.h’ . 46
for . 134
fork . 42
fseeko . 42

230 Autoconf

G
getgroups . 43
getloadavg . 43
getmntent . 43
getpgid . 43
getpgrp . 43
grep . 143

I
if . 135
‘inttypes.h’ . 48

K
Korn shell . 120
Ksh . 120
‘ksh88’ . 120
‘ksh93’ . 120

L
‘linux/irda.h’ . 48
‘linux/random.h’ . 48
ln . 143
ls . 143
lstat . 43, 45

M
malloc . 44
mbrtowc . 44
memcmp . 44
mkdir . 143
mktime . 44
mmap . 44
mv . 143

N
‘ndir.h’. 49
‘net/if.h’ . 48
‘netinet/if_ether.h’ . 49
‘nlist.h’ . 43

P
‘pdksh’ . 120
printf . 135
putenv . 39
pwd . 135

R
realloc . 45

S
sed . 144
sed (‘t’) . 145
select . 45
set . 136
setpgrp . 45
setvbuf . 45
shift . 136
signal . 39
‘signal.h’ . 57
snprintf . 39
source . 136
sprintf . 40
sscanf . 40
stat . 45
‘stdarg.h’ . 51
‘stdbool.h’ . 50
‘stdint.h’ . 48
‘stdlib.h’ . 49, 51, 56
strcoll . 45
strerror_r . 45
strftime . 46
‘string.h’ . 51
‘strings.h’ . 51
strnlen . 40, 46
strtod . 45
‘sys/dir.h’ . 49
‘sys/ioctl.h’ . 53
‘sys/mkdev.h’ . 50
‘sys/mount.h’ . 49
‘sys/ndir.h’ . 49
‘sys/socket.h’ . 49
‘sys/stat.h’ . 50
‘sys/sysmacros.h’ . 50
‘sys/time.h’ . 52, 56
‘sys/types.h’ . 56
‘sys/ucred.h’ . 49
‘sys/wait.h’ . 52
sysconf . 40
‘system.h’ . 50

T
‘termios.h’ . 53
test . 136
‘time.h’ . 52, 56
touch . 146
trap . 137
true . 138

U
‘unistd.h’ . 52
unlink . 40
unset . 138
unsetenv . 40
utime . 46

Appendix B: Indices 231

V
va_copy . 40
va_list . 40
vfork . 42
‘vfork.h’ . 42
vprintf . 46
vsnprintf . 39
vsprintf . 40

W

‘wchar.h’ . 57

X

‘X11/extensions/scrnsaver.h’ 49

B.8 Concept Index

This is an alphabetical list of the files, tools, and concepts introduced in this document.

"
‘"$@"’ . 125

$
$(commands) . 127
$<, explicit rules, and VPATH 150
${var=expanded-value} . 126
${var=literal} . 125
$U . 191

@
‘@&t@’ . 101
‘@S|@’ . 101

_m4_divert_diversion. 189

‘
‘commands‘ . 127

A
‘acconfig.h’ . 174
‘aclocal.m4’ . 5
Ash. 119
autoconf . 10
autoheader . 28
Autom4te Library . 107
‘autom4te.cache’ . 105
‘autom4te.cfg’ . 107
Automake . 3
automatic rule rewriting and VPATH 150
autoreconf . 12
autoscan . 9
Autotest . 195
AUTOTEST_PATH . 199
autoupdate . 174

B
Back trace . 11, 104
Bash . 120
Bash 2.05 and later . 120
BSD make and ‘obj/’ . 149

C
Cache . 91
Cache variable . 93
Cache, enabling . 170
Command Substitution . 127
Comments in ‘Makefile’ rules 149
‘config.h’ . 26
‘config.h.bot’ . 174
‘config.h.in’ . 27
‘config.h.top’ . 174
config.status . 171
config.sub . 157
Configuration Header . 26
Configuration Header Template 27
configure . 5, 167
‘configure.ac’ . 5
‘configure.in’ . 5
Copyright Notice . 16

D
Darwin . 87
Declaration, checking . 54
dnl . 111, 115
double-colon rules and VPATH 150

E
Endianness . 61
explicit rules, $<, and VPATH 150

F
FDL, GNU Free Documentation License 213
File, checking . 38
Function, checking . 41

232 Autoconf

H
Header, checking . 48

I
ifnames . 10

Includes, default . 33

Instantiation . 17

L
Language . 79

Library, checking . 38

Libtool . 3

Links . 30

Listing directories . 143

M
M4sugar . 108

Macro invocation stack 11, 104

make -k . 149

make and SHELL . 148

‘Makefile’ rules and comments 149

Making directories . 143

Messages, from autoconf . 112

Messages, from configure . 94

Moving open files . 143

O
‘obj/’, subdirectory . 149

obstack . 45

P
‘package.m4’ . 200

POSIX termios headers . 77

prerequisite directories and VPATH 152

Previous Variable . 91

Programs, checking . 35

Q
qnx 4.25 . 87
quadrigraphs . 101
quotation . 7, 97

R
Revision . 16
Rule, Single Suffix Inference 155

S
Separated Dependencies . 155
SHELL and make . 148
Single Suffix Inference Rule 155
Structure, checking . 55
Symbolic links . 143

T
termios POSIX headers . 77
test group . 195
testsuite . 195, 199
timestamp resolution 140, 146, 156
Tru64 . 87

U
undefined macro . 189
Unix version 7 . 87

V
V7. 87
Variable, Precious . 91
Version . 15
VPATH . 150
VPATH and automatic rule rewriting 150
VPATH and double-colon rules 150
VPATH and prerequisite directories 152
VPATH, explicit rules, and $< 150
VPATH, resolving target pathnames 153

Z
Zsh . 120

	Introduction
	The GNU Build System
	Automake
	Libtool
	Pointers

	Making configure Scripts
	Writing configure.ac
	A Shell Script Compiler
	The Autoconf Language
	Standard configure.ac Layout

	Using autoscan to Create configure.ac
	Using ifnames to List Conditionals
	Using autoconf to Create configure
	Using autoreconf to Update configure Scripts

	Initialization and Output Files
	Initializing configure
	Notices in configure
	Finding configure Input
	Outputting Files
	Performing Configuration Actions
	Creating Configuration Files
	Substitutions in Makefiles
	Preset Output Variables
	Installation Directory Variables
	Build Directories
	Automatic Remaking

	Configuration Header Files
	Configuration Header Templates
	Using autoheader to Create config.h.in
	Autoheader Macros

	Running Arbitrary Configuration Commands
	Creating Configuration Links
	Configuring Other Packages in Subdirectories
	Default Prefix

	Existing Tests
	Common Behavior
	Standard Symbols
	Default Includes

	Alternative Programs
	Particular Program Checks
	Generic Program and File Checks

	Files
	Library Files
	Library Functions
	Portability of C Functions
	Particular Function Checks
	Generic Function Checks

	Header Files
	Portability of Headers
	Particular Header Checks
	Generic Header Checks

	Declarations
	Particular Declaration Checks
	Generic Declaration Checks

	Structures
	Particular Structure Checks
	Generic Structure Checks

	Types
	Particular Type Checks
	Generic Type Checks

	Compilers and Preprocessors
	Specific Compiler Characteristics
	Generic Compiler Characteristics
	C Compiler Characteristics
	C++ Compiler Characteristics

	Compiling and preprocessing Fortran
	Fortran Compiler Characteristics
	Fortran features and extensions supported
	Preprocessing Fortran

	System Services
	UNIX Variants

	Writing Tests
	Language Choice
	Writing Test Programs
	Guidelines for Test Programs
	Test Functions
	Generating Sources

	Running the Preprocessor
	Running the Compiler
	Running the Linker
	Checking Run Time Behavior
	Systemology
	Multiple Cases

	Results of Tests
	Defining C Preprocessor Symbols
	Setting Output Variables
	Caching Results
	Cache Variable Names
	Cache Files
	Cache Checkpointing

	Printing Messages

	Programming in M4
	M4 Quotation
	Active Characters
	One Macro Call
	Quotation and Nested Macros
	changequote is Evil
	Quadrigraphs
	Quotation Rule Of Thumb

	Using autom4te
	Invoking autom4te
	Customizing autom4te

	Programming in M4sugar
	Redefined M4 Macros
	Evaluation Macros
	Forbidden Patterns

	Programming in M4sh

	Writing Autoconf Macros
	Macro Definitions
	Macro Names
	Reporting Messages
	Dependencies Between Macros
	Prerequisite Macros
	Suggested Ordering

	Obsoleting Macros
	Coding Style

	Portable Shell Programming
	Shellology
	Here-Documents
	File Descriptors
	File System Conventions
	Shell Substitutions
	Assignments
	Parentheses in Shell Scripts
	Special Shell Variables
	Limitations of Shell Builtins
	Limitations of Usual Tools
	Limitations of Make

	Manual Configuration
	Specifying the System Type
	Getting the Canonical System Type
	Using the System Type

	Site Configuration
	Working With External Software
	Choosing Package Options
	Making Your Help Strings Look Pretty
	Configuring Site Details
	Transforming Program Names When Installing
	Transformation Options
	Transformation Examples
	Transformation Rules

	Setting Site Defaults

	Running configure Scripts
	Basic Installation
	Compilers and Options
	Compiling For Multiple Architectures
	Installation Names
	Optional Features
	Specifying the System Type
	Sharing Defaults
	Defining Variables
	configure Invocation

	Recreating a Configuration
	Obsolete Constructs
	Obsolete config.status Invocation
	acconfig.h
	Using autoupdate to Modernize configure.ac
	Obsolete Macros
	Upgrading From Version 1
	Changed File Names
	Changed Makefiles
	Changed Macros
	Changed Results
	Changed Macro Writing

	Upgrading From Version 2.13
	Changed Quotation
	New Macros
	Hosts and Cross-Compilation
	AC_LIBOBJ vs.@spacefactor =1000 LIBOBJS
	AC_FOO_IFELSE vs.@spacefactor =1000 AC_TRY_FOO

	Generating Test Suites with Autotest
	Using an Autotest Test Suite
	testsuite Scripts
	Autotest Logs

	Writing testsuite.at
	Running testsuite Scripts
	Making testsuite Scripts

	Frequent Autoconf Questions, with answers
	Distributing configure Scripts
	Why Require GNU M4?
	How Can I Bootstrap?
	Why Not Imake?
	How Do I #define Installation Directories?
	What is autom4te.cache?
	Header Present But Cannot Be Compiled

	History of Autoconf
	Genesis
	Exodus
	Leviticus
	Numbers
	Deuteronomy

	Copying This Manual
	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents

	Indices
	Environment Variable Index
	Output Variable Index
	Preprocessor Symbol Index
	Autoconf Macro Index
	M4 Macro Index
	Autotest Macro Index
	Program and Function Index
	Concept Index

