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1 Overview

In previouspartsof this coursewe have implicitly usedassumptiongabouttheunder
lying functionswe aretrying to recover (for example,thatthey are smooth). These
have beenvital to themethodsve have examined since(asdiscusseatthebeginning
of part3) they helplimit theinfinite numberof solutionswhich arein principle com-
patiblewith the finite numberof datapointswe have. The problemis that, because
theseassumptionsire implicit, they enterour deliberationsuncontrollably Thatis,
quadratureandthe productintegrationmethodwork well if the underlyingfunction
really is smooth,andpolynomialexpansionworksif the underlyingfunctionis well-
fitted by the expansion. You can play gamesandfiddle with the detailsof eitherof
thesemethods,but if theres a real mismatchbetweenyour assumptionsboutthe
underlyingfunctionandthereality, thenyou’re on a hiding to nothing.

SVD doesnt have this problem— it really is model-free but it doesrequiresome
insightinto the problemwhenmakingthedecisionaboutwhereto cut off the singular
values. Thereare very sophisticatedjuidesto this decision,and choiceswhich are
optimalin varioustechnicalsenseshut thesearebasecbn informationbroughtto the
problemfrom outside.

Non-classicaimethodsexplicitly addin otherinformation, by allowing you to
specifyquitegenerakonstraintsYou bothchoosehe constrainandcancontrolhow
strongto makeiit.

Non-classicamethodsoil down to aminimisationof some'goodnes®f fit' mea-
surejin averygenerakensesubjecto aboundonanequallygeneralreasonableness’
constraint.In the methodof regularisation we minimise (the norm of) the residual
K4 — g subjectto aquadratidunctionalof 4 having abound(hered represents par
ticular recovery of the underlyingfunction,dependingn a particularrealisationg of
thedata—thisis in contrasto u, whichis theunknavable‘real’ underlyingfunction);
in Backus-Gilbertwe simultaneouslynaximisethe resolutionandstability of anesti-
mateof therecoveredfunction;andin Maximum Entropy, we minimisethe residual,
subjectto aboundon a particularnon-linearfunctionalof 4.

At one level, thereare very strongconnectionsetweenthe classicaland non-
classicalapproachesSVD, for example,is very stronglylinkedto zerothorderregu-
larisation(wheretheprior assumptioris thattheunderlyingfunctionis zerounlesshe
datademand®stherwise) put crucially thelatternon-classicahpproacttcomesrom a
differentpoint of view.

Without becomingoverly philosophicalaboutit, non-classicahpproachespring
from, and SVD fits into, an approachwhich doesnt attemptto recover the solution
whichis ‘really’ there,but insteadattemptsto find (a setof propertiesof) a solution
whichis consistentith the data, acknavledgingthatthe factthata residualis small
doesnot imply, and shouldnot be taken as a proxy for, the claim that ||u — 4| is
small. The Backus-Gilberimethodmalkesthis explicit, to someextent, by discussing
functionalsof the solution, andthe resolutionand stability with which thesecanor
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cannotberecovered. To someextent, the proces®f finding the meanof a setof data
canberegardedasa very unambitiousnverseproblem,obtaininga potentiallyvery
high-quality estimateof a propertyof the underlyingfunction. Onceyou've found
the mean,you cango on to find the varianceand highermomentsandworry about
whetherthey provide usefulinformationaboutyour function.

2 Regularisation

Oneway of statingthe classicalapproacho the solutionis to decidethata solution
is acceptableprovided [|K4 — g|| < ||dg]|, wheredg is somemeasureof the error
betweeng and g. This might obtain the grosspropertiesof the solution, but fail
to recover the high-frequenyg propertieswith ary plausibility, producingspurious,
wildly-oscillating, solutionswhich fit the dataascloselyasyou mightwish.

We canremove suchhigh-frequeng artefactsby forming an appropriatdinear
functional of the underlyingfunction, Hu, and finding the « which minimisesthe
residual||Ku — g|| subjectto the constraint||Hu|| having someparticularvalue or,
equivalently minimising||Hu|| subjectto a boundon thevalueof theresidual.Using
lagrangemultipliers, this turnsinto the prescriptiorthatwe take asourrecoverytheu
which minimises

1Ku — glI7 + X[ Hull?, (4.1)

with A termedthe regularisationparameterThe choiceof the stabilisingoperatori
is wherewe feedin our prior suppositiongboutthe natureof theunderlyingfunction.
Thesimplestchoicefor  is theidentity operatoysothatthe prescriptiorin Eqn.(4.1)
minimisesthe sizeof v andsoin effect presumeghatthe solutionwill be approxi-
matelyzero— this is zerothorderregularisation. First orderregularisationpresumes
thatthe solutionwill beapproximatelyconstan{minimisingthe derivative), andsec-
ond orderregularisation(the original, andstill common)minimisesthe norm of the
secondderivative:

b
a2 = [l |3 = / ()P dy, @.2)

subjectto theclassical|Ka — g|| = ||dg||- Theconstrainneednotbeanintegral one,
but mightweightthe solutiontowardssomeprior estimate.

Upondiscretisatiorof theproblem we againfind oursehessolvingamatrixequa-
tion, this time finding the solutionof the equation

(KTK + AH)u = KTg, (4.3)

whereH is a smoothingmatrix dependingon the functional’ . WhenX = 0 we
recoverthe classicalksolution,andas\ increasesve force the solutionmoretowards
our prior estimate.Thereis no mechanicaprescriptionfor choosingthe valueof the
smoothingparameten\; therearechoiceswhich areoptimalin technicalsensesbut
few robustimprovementon the brute-forcemethodof choosinghevalueof A which
bestrecorerssimulateddata.

3 Other non-classical techniques

Variantsof regularisationdominate,but do not exhaust,the rangeof non-classical
inversiontechniquesThe Backus-Gilberimethod,andthe methodof MaximumEn-
tropy have the samegeneralapproachin thatbothaim to minimisesomemeasuref
goodness-of-fisubjectto somecriterionon theacceptabilityof therecovery.
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3.1 Backus-Gilbert

The Backus-Gilberimethod concentratespot on finding estimatedor the underly-
ing function, assuch,but insteadon finding integrals of that function which canbe
recoveredwith confidence.Becauseof its differentapproacthit allows us a qualita-
tive understandingf, andthusan explicit quantitatve control over, the compromise
betweerbiasandstability in ourinversion.

Theunderlyingfunctionu(r) is relatedto thedatag; though

gi = /K dZ/ + ng, (4.4)

wheren; is arandomadmixtureof noise.For the Backus-Gilbertmethod we suppose
thatthe underlyingfunction andour estimated of it arerelatedby an averaging
kernelo(r, r'), through

- / 5y, y'yu(y’) dy' . 4.5)

Sincewe do not know the underlyingfunction, the averagingkernelis of no useto
usdirectly; however we canstudyits propertiesanduseour datag; in suchaway as
to optimisethosepropertiesandso optimisethe dependencef the estimateii(y) on
theunderlyingfunctionandthenoise.Specifically we will aimto minimisethewidth
of 8(y, '), andso maximiseits resolution subjectto the conflictingdemandhatthe
averagingkernelbe wide enoughthat the estimateis not unduly sensitve to noise.
We seeka setof responséernelsg;(y), which producean estimateof the underlying

functionthrough
= a(y)g:. (4.6)

By substituting=qn.(4.4)into Eqn.(4.6)andcomparingvith Eqn.(4.5),weobtain
anexpressiorfor d(y, y') in termsof ¢;(y) and K;(y). Usingthis, we canform some
measuref thewidth of 6(y, y') suchas

A= /y y')2 [0y, ¥ dy', (4.7)

whichdepend®n ¢; and K;; andwe canform ameasuref the stability of Eqn.(4.6)
suchasB = Var 4(y), whichdepend®n ¢; andthe covariancematrix of thenoisen;;.
TheBackus-Gilbermethodconsistof finding thoseg; (y) which minimise

A+ 2B = /(y — )2y, y)]? dy’ + A Var a(y), (4.8)

for someselectedparameterh. The natureof the trade-of is clear: in orderto

improve the stability of the recovery, we chooseresponsekernelsg; which make
0(y,y") broaderandsoextendtheweightedaverageoveragreatemumberof thedata
pointsg;. The costof this is thatthe estimateof the recoseredpoint will be biased
by the inclusionof the extra data,andthis will be more marked whenthe underly-
ing functionis rapidly varying. The minimisationproblemEqn. (4.8) hasan explicit

analyticsolutionfor g, (y) in termsof the parameten\, the noisecovariancematrix,

andintegralsof the K;, andthesedifferentsolutions whencombinedwith thedatag;

usingEqn.(4.6),give differentreconstructiong  (y).

TheBackus-Gilbertnethods expensve,becauseachminimisationrecoversu(y)
atonly asinglepointy. It alsosuffersfrom bias,becaus®f the spreadf theaverage
in Egn.(4.6). Bothof theseproblemscanbeaddresselly sophisticatedariantsof the
method but the methodis rarely usedfor actualdatarecovery. The approachs most
valuableasatheoreticatool — it is supremelyaluablefor exploring the problem and
allowing you to make statementaboutwhich featuresof the underlyingfunctionare
andarenotreliably recoverable.

1G E BackusandF Gilbert, Geophysicalournal of theRoyalAstronomicalSociety 16, 169—2051968)
and G E Backusand F Gilbert, PhilosophicalJournal of the Royal Societyof London A266, 123-192
(1970).
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3.2 Maximum entropy

The Maximum Entropy Method (ME) is simply stated:it is regularisationwith the
regularisingfunctionalHu = Y u; In u; (with a slight abuseof notation: here{u;}
is the setof recoveredpoints),andtheconstrainthat || (Xd — g)/dg||2 = N, whichis
the constrainthatx? (1) be equalto its statisticalexpectationV, the numberof data
points.

This choiceof regularisatiorhasseveralconsequence®neis thatHu divergesas
ary u; goeso zero,sothatthisfunctionalimplicitly imposegositiity onthesolution.
Secondlybecausé{u is non-linearit is muchharderto solve, andthe solutionmust
be obtainediteratively. Thirdly, the functionalis by itself maximisedwhenu is flat,
sothatthisis theprior informationexpressedn this choice.

ME is mostoftenusedin imageprocessingwhenthew; referto pixels). It hasthe
goodfeatureghatit very effectively removeshigh-frequenyg noise,whilst enhancing
theresolutionof featureswithin theimage(‘superresolution’) The costof thisis that
it suffers significantlyfrom bias,andthatit canbe difficult to obtainestimate®f the
uncertaintiesn, for example recoveredintensity

3.3 Bayes theorem

Bayes'Theoremstatedfor aninverseproblem,is

Prob(u)
P =P — 4,
tob(ulg) = Prob(glu) (4.9)
anda Bayesianapproacho inverseproblemsconsistsof finding that« which max-
imisesthis posteriorprobability, givensomeestimateor theprior probability Prob(u).

This is anilluminating approachto inverseproblemsin general,but it fits par
ticularly naturallyinto a discussiorof ME. If you have a certainnumberof photons
which you know arrived at your CCD, thenthereis a large numberof possiblear-
rangementsf thosephotonson the CCD consistentvith that,just asthereis a large
numberof arrangementsf atomsin configurationspace,consistentwith a box of
atomshaving a certaintemperature This canbe usedto form a measureof the ‘en-
tropy’ of yourimageu, andthusswiftly to ameasuref thatimages prior probability
asProb(u) « Y u; Inw;.

This argumenthasbeenusedto suggesthatME is theonly ‘consistent’approach
to inverseproblems. The claim is interestingand usefulto examine, but probably
overstated.
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Examples

Section 2

Considetthe problemg = Eu, where
1 1—e¢
E_<1 1+e)
_ a b 1 _ 1 d _b
m=(Ca)=mem( 7).

write down theinversematrixE~1, andhencetheu whichresultsfrom thedatavectors
g = (1,1)T andg = (1,1 + 6)T. Thelatteris the vectorg with noise.Notethatthe
recoveryis unstabldf e is small. You shouldobtain

s e (7))
Elg:g( 1+2{j€—1/e>‘

Using

=13
|

Now considerusingzeroth-orderegularisationto recover the vectora. Thatis,
from Eqgn.(4.3)
a=(ETE+ A7) 'ETg.
Shaow that
T (24 2
AY=BTE+AT = ( 2 21+e)+ A )’

which hasinverse

Al L (20+e)+x =2
A A -2 2+ )7

where
AN = (262 + X)(2+ A) + .

Showv thatA;lET reducego E~! when\ = 0, andpersuadgourselfthatyou ex-
pectedhat.
Thus,the sourcevectorrecoveredfrom a datavectorg is

iy =AETg.

Givena datavectorg = (1,1 + §)7, with noised (thereis no significanceto the
first componenbeingnoise-free- | justwantyour calculationgo fit on onereamof
paper) shav that

a _ 1 [ 2(240)e® —20e+ (24 0)A
AN 20€ + (2 + 6 + de)A ‘

As checks,shav that i1y—¢ is the unstableii obtainedabove, andthatfor 6 = 0,
iy = (1,0)7, asabove. Notethat

N 0
u,\—><0), asi — oo,

illustratingthe way thatzeroth-orderegularisationpulls a solutiontowardsthe prior
estimate(0,0) 7.

Evaluatet, fore = 0.1, § = 0.1 andX = 0.01, 0.1, and1. Note thatnone
of theseproducea particularly good recovery with this level of noise,but that the
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onewith A ~ ¢ is probablyleastunreasonable Evaluateii; againwith e = 0.1,
0 = 0.01 andX = 0.01, 0.1and1. Again, the recosery with A ~ € appeardo
be the bestcompromisebetweenresolutionand stability, with the A = 0.01 being
undersmoothe@ndthe A = 1 oversmoothed.

If you wish, try rewriting Ay, substitutingh = M\e. Take ¢ small (ie, discard
positive powersof €), and X' ~ 1 (ie, taking A\ ~ ¢€), andobtainan expressionfor
6 = A'ETSg, wheredg = (0,0)T. You canthus seethat, in this particular
problem theerrorin therecoveryis of ordertheerrorin thedatawhen\ of ordere.

In arealproblem,youwould chooseanappropriateralueof A for yourproblemby
somemore sophisticatedechnique.Also, remembethatthe explicit inversionused
hereis for illustration only; you would not do this in areal problem,but insteaduse
anappropriatenumericatechniqgue SeeNumericalRecipedor suitablealgorithms.
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