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Aims You should

1. understand the role of the various forms of the equivalence principle in the
develoment of Einstein’s theory of gravity;

2. understand how we can derive Newton’s theory of gravity as the weak-field limit
of Einstein’s theory.

Objectives You should be able to demonstrate that you can

1. quote the various forms of the equivalence principle, explaining the significance
of the terms in them;

2. equivalently, explain the ‘comma-goes-to-semicolon’ rule;

3. perform some dynamical calculations, and manipulate indexes confidently.

Proving that nothing ever changes:

[. . . ] For Aristotle divides theoretical philosophy too, very fittingly, into
three primary categories, physics, mathematics and theology. [. . . ] Now
the first cause of the first motion of the universe, if one considers it simply,
can be thought of as an invisible and motionless deity; the division [of
theoretical philosophy] concerned with investigating this [can be called]
‘theology’, since this kind of activity, somewhere up in the highest reaches
of the universe, can only be imagined, and is completely separated from
perceptible reality. The division which investigates material and ever-moving

Copyright 2002–13, Norman Gray.



GRG I, part 4 – Physics

nature, and which concerns itself with ‘white’, ‘hot’, ‘sweet’, ‘soft’ and
suchlike qualities one may call ‘physics’; such an order of being is situated
(for the most part) amongst corruptible bodies and below the lunar sphere.
That division which determines the nature involved in forms and motion
from place to place, and which serves to investigate shape, number, size, and
place, time and suchlike, one may define as ‘mathematics’. [. . . ]

From all this we conclude: that the first two divisions of theoretical
philosophy should rather be called guesswork than knowledge, theology
because of its completely invisible and ungraspable nature, physics because
of the unstable and unclear nature of matter; hence there is no hope that
philosophers will ever be agreed about them; and that only mathematics
can provide sure and unshakeable knowledge to its devotees, provided one
approaches it rigorously. For its kind of proof proceeds by indisputable
methods, namely arithmetic and geometry. [. . . ] As for physics, mathematics
can make a significant contribution. For almost every peculiar attribute
of material nature becomes apparent from the peculiarities of its motion
from place to place. Preface to Book 1 of Ptolemy’s Almagest, between
150–161 CE [2]

Ptolemy is right, here (though some of the details of his cosmology have been adjusted
since he wrote this, and what he refers to as ‘theology’ is now more often referred to as
‘Quantum Gravity’): mathematics we can know all about, with certainty; for physics we
have to make guesses. He’s dead right about mathematics’ contribution, though, and
we’ll discover that our first insights in this section do indeed come from considering
the peculiarities of the material world’s motion from place to place.

1 The energy-momentum tensor

The point of this whole course is to describe how gravity, in the form of the curvature
of spacetime, is determined by the presence of mass. In newtonian physics, the
relationship is straightforward, since the notion of mass is unproblematic. In relativity,
however, we know that what matters is not mass alone, but energy-momentum, and
so it is not unreasonable that what matters in GR is not mass, but the distribution of
energy-momentum, and so we must find a way of describing this in an acceptably
geometrical fashion. In this section we are confining ourselves to special relativity, and
in the next section we discover that this is not, physically, a restriction in fact. This
section largely follows Schutz ch. 4.

We start (as we all end) with dust.

1.1 Dust, fluid and flux

A fluid in GR and cosmology is, not surprisingly, something which flows; that is, a
substance where the forces perpendicular to an imaginary surface (ie, pressure) are
much greater than the forces parallel to it (ie, stress, arising from viscosity). The limit
of this, a perfect fluid is a substance which has pressure but zero stresses. An evenperfect fluid
simpler substance is termed dust , which denotes an idealised form of matter, consistingdust
of a collection of non-interacting particles which are not moving relative to each other,
so that the collection has zero pressure. That is to say that there is a frame, called the
momentarily comoving reference frame , MCRF, with respect to which all the particlesMCRF
in a given volume have zero velocity1.

We can suppose for the moment that all the dust particles have the same (rest)
massm, but that different parts of the dust cloud may have different number densities n.
Just as the particle massm is the mass in the particle’s rest frame, the number density n
is always that measured in the MCRF.

1This is also, interchangeably, sometimes called the Instantaneously Comoving Reference Frame (ICRF)
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If we lorentz-transform to a frame which is moving with velocity v with respect to
the MCRF, a (stationary) volume element of size �x�y�z will be lorentz-contracted
into a (moving) element of size �x0�y0�z0 D .�x=
/�y�z, where 
 is the familiar
lorentz factor 
 D .1 � v2/�1=2, supposing that the frames are chosen such that the
relative motion is along the x-axis. That means that the number density of particles,
as measured in the frame relative to which the dust is moving, goes up to 
n. What,
then, is the flux of particles through an area �y�z in the y0–z0 plane? The particles in
the volume all pass through the area �y0�z0 in a time �t 0, where �x0 D v�t 0, and so
this total number of particles is .
n/.v�t 0/�y0�z0. Thus the total number of particles
per unit time and per unit area, which is the flux in the x0-direction, is 
nv. Writing
N x for this x-directed flux, and vx for the velocity along the x-axis, v, this is

N x
D 
nvx : (4.1)

We can generalise this, and guess that we can reasonably define a flux vector

N D nU ; (4.2)

where again n is the dust number density in its MCRF, and U is the 4-velocity vec-
tor .
; 
vx ; 
vy ; 
vz/. Since the velocity vector has the property g.U ; U / D �1
(remember your SR, and that the 4-velocity vector U D .1; 0/ in MCRF), we have
g.N ;N / D N˛N ˛ D �n2. The components of the flux vector N in this frame are

.
n; 
nvx ; 
nvy ; 
nvz/: (4.3)

This flux vector is a geometrical object, because U is, and so although its components
are frame-dependent, the vector as a whole is not.

It is obvious how to recover, from Eq. (4.3), the fluxes N x across surfaces of
constant coordinate (they’re just the components in Eq. (4.3)), but we will need to be
more general than this. Any function defined over spacetime, �.t; x; y; z/, defines a
surface � D constant, and its gradient one-formed� acts as a normal to this surface
(think of the planes in our visualisation of one-forms). The unit gradient one-formen �ed�=jed�j points in the same direction but has unit magnitude (the notational clash
with the number density n is unfortunate but conventional). Consider specifically the
coordinate function x: the gradient one-form corresponding to this,edx, has components
.0; 1; 0; 0/ (and so is already unit). If we contract this one-form with the flux vector,
we find

e̋dx;N ˛ � N.edx/ D N x ;

(where the last expression denotes the x-component of N , rather than the whole set of
components). That is, contracting the flux vector with a gradient one-form produces
the flux across the corresponding surface; this is true in general, so that N.en/ produces
the flux across the surface � D constant, whereen Ded�=jed�j. The vector N D nU is
manifestly geometrical; it is our ability to recover the flux in this way that justifies our
naming this the ‘flux vector’.

1.2 The energy-momentum tensor

[We’ll switch from .t; x; y; z/ to general .x0; x1; x2; x3/, now, but we’re still confining
ourselves to special relativity.]

We know from our study of special relativity that energy and mass are intercon-
vertible. For our dust particles of mass m, therefore, the energy density of the dust, energy density
in the MCRF, is mn. In our moving frame, however, as well as the number density
rising to 
n, the total energy of each particle, as measured in the ‘stationary frame’,
goes up to 
m. Thus the energy density of the dust as measured in a moving frame
is 
2mn. This double factor of 
 cannot result from a lorentz boost of a vector, and is
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the first indication that to describe the energy-momentum of the dust we will need to
use a higher-order tensor.

What geometrical objects do we have to play with? We have the momenta of the
dust particles, p D mU , and we have the flux vector N D nU . As mentioned above,
we also have the gradient one-forms corresponding to the coordinate functions,edx˛ .
By contracting the vectors with these one-forms we can extract the particles’ energy
p0 D p.edx0/ or spatial momenta pi D p.edxi /, or the number density N 0 D N.edx0/
(which we can interpret as the number crossing a surface of constant time, into the
future) or number flux N i D N.edxi /.

Let us form the .2
0/ tensor

T D p ˝N D �U ˝ U ; dust (4.4)

(writing � D mn for the mass density, and recalling the definition of outer productmass density
in Sect. 2.2 of part 2) – this is known as both the energy-momentum tensor and theenergy-momentum tensor
stress-energy tensor. We now examine the components of this tensor, obtained bystress-energy tensor
contracting it with the basis one-forms e!˛ Dedx˛ , where the coordinate functions xi

are those corresponding to a frame with respect to which the dust is moving. These
components are, of course,

T ˛ˇ D T.edx˛;edxˇ / D p.edx˛/ �N.edxˇ /:
The 0-0 component T 00 is just 
2mn, which we can recognise as the energy

density of the dust, or the flow of the zeroth component of momentum across a surface
of constant time.

The 0-i component T 0i D 
m�
nvi (after comparing with Eq. (4.3)). Given that
nv has the dimensions of (per-unit-area per-unit-time), and that mass and energy are
interconvertible in relativity, this is identifiable as the flux of energy across a (spatial)
surface of constant xi .

The i -0 component T i0 D pi�N 0 D m
vi�
n is the flux of the i -th component
of momentum across a surface of constant time, into the future. By analogy with the
energy density, this is known as (the i -th component of) the momentum density of themomentum density
dust. Now, energy flux across a surface is an amount of energy-per-unit-time, per unit
area or, since energy and mass are the same thing, mass-per-unit-time, per unit area.
However, momentum density is the amount of momentum per unit volume, which is
mass-times-speed per unit volume, which is dimensionally the same as energy flux.
Another way of getting to the same place (in Schutz’s words this time) is that energy
flux is the density of mass-energy times the speed it flows at, whereas momentum
density is the mass density times the speed the mass flows at, which is the same thing.
Thus the identity of T i0 and T 0i in this case is not coincidental or special to dust, but
quite general:

T i0 D T 0i :

Finally the i-j component of the energy-momentum tensor, T ij D piN j D


mvi � 
nvj , is the flux of i-momentum across a surface of constant xj . It has the
dimensions of momemtum per unit time, per unit area, leading us to identify it as force
per unit area, or pressure.

In general, therefore, we can interpret the component T.edx˛;edxˇ / as the flow of
the ˛-th component of momentum across a surface of constant coordinate xˇ .

By considering the torques acting on a fluid element we can show (Schutz §4.5)
that the tensor T is symmetric in general,

T ˛ˇ D T ˇ˛; or T.ep;eq/ D T.eq;ep/; 8ep;eq: (4.5)

In a perfect fluid, there is no preferred direction, so the spatial part of the energy-
momentum tensor must be proportional to the spatial part of the metric, which is ıij in
SR. Since there is no viscosity, the only momentum transport possible is perpendicular
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to the surface of a fluid element, in the form of pressure p (which is force per unit area,
remember), giving the constant of proportionality (see Schutz §4.6 for an expanded
version of this argument), and so

T ij D pıij ; [perfect fluid]: (4.6)

From there it is a short step to show that the energy-momentum tensor for a perfect
fluid, as a geometrical object, is

T D .�C p/U ˝ U C pg; [perfect fluid]: (4.7)

See example 4.1
Dust has no pressure, so its energy-momentum tensor in the MCRF is

T D diag.�; 0; 0; 0/; [dust, MCRF]: (4.8)

The final important property of this tensor is its conservation law. If energy is
to be conserved, then the amount of energy-momentum entering an arbitrary four-
dimensional box must be the same as the amount leaving it. From this we promptly
deduce that

@

@x0
T ˛0 C

@

@x1
T ˛1 C

@

@x2
T ˛2 C

@

@x3
T ˛3 D 0;

or

T ˛ˇ ;ˇ D 0: (4.9)

By a similar sort of argument, requiring that under any flow of a fluid or of dust the
total number of particles is unchanged, we can show that

N ˛
;˛ D .nU

˛/;˛ D 0: (4.10)

1.3 Maxwell’s equations
�

For completeness, here are Maxwell’s equations in the form appropriate for General
Relativity. For fuller details, see exercise 25 in Schutz’s §4.10.

Given electromagnetic fields .Ex ; Ey ; Ez/ and .Bx ; By ; Bz/, we can define the
antisymmetric Faraday tensor Faraday tensor

F D

0BB@
0 Ex Ey Ez

�Ex 0 Bz �By

�Ey �Bz 0 Bx

�Ez By �Bx 0

1CCA : (4.11)

We can also define the current vector J D .�; j x ; j y ; j z/ corresponding to a charge
density � and current 3-vector j. With these definitions, Maxwell’s equations in special
relativity become

F ��;� D 4�J
� (4.12a)

F��;� C F��;� C F��;� D 0: (4.12b)

The Faraday tensor F and the energy-momentum tensor T together form the source for
the gravitational field. Notwithstanding that, we shall not explicitly include the Faraday
tensor in the discussion below.

2 The laws of physics in curved spacetime

So we now have a way to describe the energy-momentum contained within an arbitrary
distribution of matter and electromagnetic fields. What we now want to know is how
these relate to the curvature of the spacetime they lie within.
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2.1 Ricci and Bianchi

First we need to establish useful contractions of the curvature tensor. See Schutz §6.6
for further details of this brief relapse into mathematics.

These contractions are the Ricci tensor , obtained by contracting the full curvatureRicci tensor
tensor over its first and third indexes,

Rˇ� � g
˛�R˛ˇ�� D R

�
ˇ�� ; (4.13)

and the Ricci scalar obtained by further contracting the Ricci tensor,Ricci scalar

R � gˇ�Rˇ� D g
ˇ�g˛�R˛ˇ�� : (4.14)

Note, from Eq. (3.49a), that the Ricci tensor is symmetric: R˛ˇ D Rˇ˛ .
By differentiating Eq. (3.48), we can find

2R˛ˇ��;� D g˛�;ˇ�� � g˛�;ˇ�� C gˇ�;˛�� � gˇ�;˛��; (4.15)

and noting that partial derivatives commute, deduce

R˛ˇ��;� CR˛ˇ��;� CR˛ˇ��;� D 0: (4.16)

Recall that Eq. (3.48) was evaluated in LIF coordinates; however, since in these coordi-
nates ��

˛ˇ
D 0, partial differentiation and covariant differentiation are equivalent, and

Eq. (4.16) can be rewritten

R˛ˇ��I� CR˛ˇ��I� CR˛ˇ��I� D 0; (4.17)

which is a tensor equation, known as the Bianchi identities .Bianchi identities
If we perform the Ricci contraction of Eq. (4.13) on the Bianchi identities, we

obtain

Rˇ�I� �Rˇ�I� CR
�
ˇ��I� D 0; (4.18)

and if we contract this in turn, we find the contracted Bianchi identity

G˛ˇ Iˇ D 0; (4.19)

where the (symmetric) Einstein tensor G is defined asEinstein tensor

G˛ˇ � R˛ˇ � 1
2g
˛ˇR: (4.20)

From its name, and the alluring property Eq. (4.19), you can guess that this tensor turns
out to be particularly important for us.

Anyway, back to the physics.

2.2 The equivalence principle

Back in part 1, we mentioned the equivalence principle (EP). It is now finally time to
use this, and to restate it in terms that take advantage of the mathematical work we
have done. The material in this section is well-discussed in Schutz §7.1; as well as in
Rindler [3], at the end of his chapter 1 and in §§8.9–8.10. It is discussed, one way or
another, in essentially every GR textbook, with more or less insight, so you can really
take your pick.

One statement of the principle (Einstein’s, in fact) is

The Equivalence Principle: All local, freely falling, nonrotating
laboratories are fully equivalent for the performance of all physical
experiments
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(Rindler refers to this as the ‘strong’ equivalence principle, and discusses it under that
title with characteristic care, distinguishing it from the ‘semistrong’ EP, and the ‘weak’
EP, which is the statement that inertial and gravitational mass are the same).

The EP gives us a route from the physics we understand to the physics we don’t
(yet). That is, given that we understand how to do physics in the inertial frames of
special relativity, we can import this understanding into the apparently very different
world of curved – possibly completely round the twist – spacetimes, since the EP
tells us that physics works locally in exactly the same way in any local inertial frame,
free-falling in a curved spacetime.

So that tells us that an electric motor, say, will work as happily as we free-fall
into a black hole, as it would work in any less doomed SR frame. It does immediately
constrain the general form of physical laws, since it requires that, whatever their form
in general, they must reduce to the SR version when expressed in the coordinates of a
LIF. For example, whatever form Maxwell’s equations take in a curved spacetime, they
must reduce to the SR form, Eq. (4.12), when expressed in the coordinates of any LIF.
The same goes for conservation laws such as Eq. (4.9) or Eq. (4.10). This form of the
EP doesn’t, however, rule out the possibility that the curved-spacetime law is (much)
more complicated in general, and simply (and even magically) reduces to a simple
SR form when in a LIF. Specifically, it doesn’t rule out the possibility of curvature
coupling, where the general form of a conservation law such as Eq. (4.9) has some
dependence on the local curvature, which disappears in a LIF.

For that, we need a slightly stronger wording of the EP as quoted above (see
Schutz §7.1; Rindler §8.9 quotes this as a ‘reformulation’ of the EP):

The Strong Equivalence Principle: Any physical law which can be
expressed in tensor notation in SR has exactly the same form in a locally
inertial frame of a curved spacetime.

The difference here is that this says, in effect, that only geometrical statements count
(this is why we’ve been making such a fuss about the primacy of geometrical objects
and the relative unimportance of their components, all the way throughout the course).
That is, it says that a SR conservation law such as Eq. (4.9), T ��;� D 0, has the same
form in a LIF, and as a result, because covariant differentiation reduces to partial
differentiation in the LIF, the partial derivative here is really just the LIF form of a
covariant derivative, and so the general form of this law is

T �� I� D 0; (4.21)

with the comma turning straight into a semicolon, and no extra curvature terms ap-
pearing on the right hand side. That is why this form of the equivalence principle is
sometimes referred to as the ‘comma-goes-to-semicolon’ rule.

Note that this comma-goes-to-semicolon is emphatically not what happened in
the step between, for example, Eq. (4.16) and Eq. (4.17), and in numerous other similar
moves throughout part three. What was happening there was a mathematical step:
covariant differentiation of a geometrical object is equivalent to partial differentiation
when in a LIF; we have a true statement about partial differentiation in Eq. (4.16), so the
same statement must be true of covariant differentiation; such a statement in one frame
is true in any frame, hence the generality. The Strong EP comma-goes-to-semicolon
rule, on the other hand, is making a physical statement, namely that the statement
of a physical law in a LIF directly implies a fully covariant law which is no more
complicated. See example 4.2

It is possibly not obvious, but the Strong EP also tells us how matter is affected by
spacetime. In SR, a particle at rest in an inertial frame moves along the time axis of
the Minkowski diagram – that is, along the timelike coordinate direction of the local
inertial frame, which is a geodesic. The Strong EP tells us that the same must be true
in GR, so that this picks out the curves generated by the timelike coordinate of a local
inertial frame, which is to say:
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Space tells matter how to move: Free-falling particles move on timelike
geodesics of the local spacetime. (4.22)

This, like the Strong EP, is a physical statement about our universe, rather than a
mathematical one.

2.3 Geodesics and the link to ‘gravity’

We should say a little more about the rather bald statement (4.22).
This statement describes the motion of a particle in a particular spacetime. If you

want to describe or predict the motion of a particle, you do it in two steps. First, you
work out which geodesic it will travel along: this involves solving Einstein’s equations,
and working out from the initial conditions of the motion which of the large number
of possible geodesics your particle is actually on. Secondly, you work out how to
translate from the simple motion in the inertial coordinates attached to the particle, to
the coordinates of interest (presumably attached to you).

The key thing on the way to the important insight here, is to note that if you’re
moving along a geodesic – if you’re in free fall – you are not being accelerated, in the
very practical sense that if you were carrying an accelerometer, it would register no
acceleration. If you stand still and drop a ball from your hand, the ball is showing the
path you would have taken, were it not for the floor. That is, it is the force exerted by
the floor on your feet that is accelerating you away from your ‘natural’ free-fall path. If
you hold an accelerometer in your hand – for example, a weight on a spring – you can
see your acceleration register as the spring extends beyond the length it would have in
free-fall.

In other words, GR says we’ve always been thinking of this situation backwards.
We’re used to standing-on-the-ground being the normal state and falling being the
exceptional one (we’re primates, after all, and not falling out of trees has been regarded
as a Key Skill). But GR says that we’ve got that inside out: inertial motion, which
in the presence of masses we recognise as free-fall, is the simplest, or normal, state,
requiring no explanation, and it’s not-falling that has to be explained. The equivalence
principle says that the force of gravity doesn’t just feel like being forced upwards by
the floor, it is being accelerated upwards by the floor.

2.4 Einstein’s equations

We have now worked out how spacetime affects the motion of matter. We now have to
work out how matter affects spacetime – where does ‘gravity’ come from? We can’t
deduce this from anywhere; we can simply make intelligent guesses about this, based
on our experience of other parts of physics – see Ptolemy’s remarks about this at the
beginning of this part – and hope that our (mathematical) deductions from these are
corroborated, or not, by experiment. Thus our goal in this section is to make Einstein’s
equations plausible. Schutz does this in his §§8.1–2; Rindler does it very well in his
§§8.2 and 8.10.

Newton’s theory of gravity can be expressed in terms of a gravitational field �.
The gravitational force f on a test particle of mass m is a three-vector with components
fi D �m�;i , and the source of the field is mass density �, with the field equation
connecting the two being

�;i ;i D 4�G� (4.23)

(with the sum being taken over the three space indexes, and where �;i ;i D gij�;ij D
gij @2�=@xi@xj ). This is Poisson’s equation. In a region which does not contain any
matter – for example an area of space which is not inside a star or a planet or a person,
the mass density � D 0, and the vacuum field equations are

�;i ;i D 0: (4.24)
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Now cast your mind back to part one, and the expression in the notes there for the
acceleration towards each other of two free-falling particles. This expression can be
slightly generalised and rewritten here as

d2� i

dt2
D ��;i ;j �

j : (4.25)

But compare this with Eq. (3.54): they are both equations of geodesic deviation,
suggesting that the tensor represented by R�˛�ˇU ˛U ˇ is analogous to �;i ;j (we’ve
used the symmetries of the curvature tensor to swap two indexes, note, and used U
rather than X to refer to the free-falling particle velocity). Since the particle velocities
are arbitrary, that means, in turn, that the �;i ;i appearing in Poisson’s equation is
analogous to R˛ˇ D R�˛�ˇ , and so a good guess at the relativistic analogue of
Eq. (4.24) is

R�� D 0: (4.26)

This guess turns out to have ample physical support, and Eq. (4.26) are known as
Einstein’s vacuum field equations for GR.

If R�� D 0, then R D g��R�� D 0 and therefore

G�� D R�� �
1

2
Rg�� D 0:

So much for the vacuum equations, but we want to know how spacetime is affected
by matter. We can’t relate it simply to �, since Sect. 1.2 made it clear that this was a
frame-dependent quantity; the field is much more likely to be somehow bound to the
E-M tensor T instead. Looking back at Eq. (4.23), we might guess

R�� D ��T �� (4.27)

as the field equations in the presence of matter, where � is some coupling constant,
analogous to the newtonian gravitational constant G. This looks plausible, but the
conservation law Eq. (4.21) immediately implies that R�� I� D 0 which, using the
Bianchi identity Eq. (4.19), in turn implies that RI� D 0. But if we use Eq. (4.27)
again, this means that .g˛ˇT ˛ˇ /I� D 0 also. If we look back to, for example, Eq. (4.8),
we see that this field equation, Eq. (4.27), would imply that all matter has a constant
density. Which is not the case. So Eq. (4.27) cannot be true.2

So how about

G�� D ��T �� (4.28)

as an alternative? The Bianchi identity Eq. (4.19) tells us that the conservation equation
T �� I� D 0 is satisfied identically. Additionally – and this is the key part of the argument
– numerous experiments tell us that Eq. (4.28) have so-far undisputed physical validity:
they have not been shown to be incompatible with our universe. They are known as the
Einstein field equations , and allow us to complete the other half of the famous slogan Einstein field equations

Space tells matter how to move – the statement (4.22) plus equations (3.36)
or (3.37); matter tells space how to curve – equation (4.28).

Einstein’s equation constitutes ten second-order non-linear differential equations (ten
since there are only ten independent components in the einstein tensor), which reduce
to six independent equations when we take account of the four differential identities
Eq. (4.19). Between them, these determine six of the ten independent components of
the metric g�� , with the remaining four functional degrees of freedom in the metric

2This argument comes from §8.10 of [3]; Schutz has a more mathematical argument in his §8.1. Which
you prefer is a matter of taste, but in keeping with our attempt to talk about physics in this part, we’ll prefer
the Rindler version for now.
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corresponding to coordinate transformations which do not change the geometry. The
non-linearity (meaning that adding together two solutions to the equation does not
produce another solution) is what allows spacetime to couple to itself without the
presence of any curvature terms in the energy-momentum tensor (which acts as the
source of the field); it is also what makes Eq. (4.28) devilishly difficult to solve, and a
good deal of the second part of this course, GRG II, is devoted to examining some of
the solutions which have been derived over the years.

� The identities Eq. (3.49) together reduce the number of independent components
of the curvature tensor from 256 (44) to 20. That corresponds to there being 20

independent second derivatives of the metric g˛ˇ;�� rather than 100 (100 since both the
metric and partial differentiation are symmetric). See the end of Schutz §6.2.See example 4.3

There are two further points to make, both relating to the arbitrariness which is
evident in our justification of Eq. (4.28).

The first is to acknowledge that, although we were forced to go from Eq. (4.27) to
Eq. (4.28) by the observation that the universe is in fact lumpy, there is nothing other
than Occam’s razor which forces us to stop adding complication when we do arrive at
Einstein’s equations, which do so far appear to match the universe we find ourselves in.
There have been various attempts to play with more elaborate theories of gravity, but
almost none so far which have acquired experimental support. Chandrasekhar’s words
on this, quoted in Schutz §8.1, are good:

The element of controversy and doubt, that have continued to shroud the
general theory of relativity to this day, derives precisely from this fact, namely
that in the formulation of his theory Einstein incorporates aesthetic criteria;
and every critic feels that he is entitled to his own differing aesthetic and
philosophic criteria. Let me simply say that I do not share these doubts; and
I shall leave it at that.

The one variation of Einstein’s equation which is now being taken seriously is
one that Einstein himself reluctantly suggested. Since g˛ˇ I� D 0 identically, we can
add any constant multiple of the metric to the einstein tensor without disturbing the
right-hand side of Eq. (4.28). Specifically, we can write

G�� Cƒg�� D ��T �� : (4.29)

The extra term is referred to as the cosmological constant . Einstein introduced it incosmological constant
order to permit a static solution to the field equations, but the experimental evidence
for the big bang showed that this was not in fact a requirement, and the parameter ƒ
was determined to be vanishingly small. Much more recently, however, studies of dark
matter and the cosmic energy budget have shown that the large-scale structure of the
universe is not completely determined by its matter content, and so ƒ, in the form of
‘dark energy’, is now again the subject of feverish study.

The results of NASA’s WMAP mission (see http://map.gsfc.nasa.gov/)
showed in 2003 that such a cosmological term, related to a dark energy field, is a
necessary addition to Einstein’s equations of Eq. (4.28) in order to match the universe
we find ourselves in.

2.5 The field equations from a variational principle
�

The account above, of how we obtain Einstein’s equations, is pragmatic, and broadly
follows Einstein’s own approach to obtaining them. As well, it conveniently introduces
the idea of the energy-momentum tensor, and lets us develop some intuitions about it.
It is not the only way to obtain the equations, however.

In Sect. 4.1 of part 3, we saw, in passing, how we could obtain the geodesic
equation by extremising the integrated length of proper distance between two points,
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ds D jg��dx�dx� j1=2. We can do something very similar with the Einstein-Hilbert
action ,Einstein-Hilbert action

S D
1

16�

Z
�

R.�g/1=2d4x: (4.30)

Here, R is the Ricci curvature scalar of Eq. (4.14), g is the determinant of the metric,
and the volume of integration, � is the region interior to some boundary where we
can take the variation to be zero. The Ricci scalar is a simple object – a scalar field
on spacetime – which characterises the local curvature at each point. Under a change
of basis, the volume element d4x is scaled by a factor of the jacobian j@x N�=@x�j, and
the determinant g by a factor of .jacobian/�2 (these are ‘tensor densities’), so that the
quantity

p
�g d4x is a scalar.

We assume that this action, S , is extremised by the variation ıg�� in the metric.
This is a physical statement, and it is startling that such a simple statement – almost
the simplest non-trivial statement we can make with these raw materials – combined
with the very profound ideas of the calculus of variations, can lead us to the einstein
equations.

Calculating the variation, ıS , resulting from a variation ıg�� , we find

ıS D

Z
d4x
p
�g

�
R�� �

1

2
Rg��

�
ıg�� (4.31)

(the calculation is not long, but is somewhat tricky, and is described in Carroll [4, §4.3],
and in MTW [5, box 17.2 & ch. 21]). You will recognise the term in square brackets
from Eq. (4.20); requiring that ıS D 0 for all variations g�� therefore implies that

G�� D 0;

recovering Einstein’s vacuum field equations.
We can add a second term SM to the action, which depends on the energy-

momentum content of the spacetime volume, then perform the same calculation, and
discover the field equations in the presence of matter. Choosing what that term SM
should be is of course an intricate matter, but if we obtain from it the tensor

T�� D �2
1
p
�g

ıSM

ıg��
;

then we can recover the einstein equations of Eq. (4.28).

3 The newtonian limit

We cannot finish this course without using at least one physical metric, and the one we
shall briefly examine is that in the weak field limit, where spacetime is curved only
slightly, such as round a small object like the earth.

Before we do that we need to get units straight. In special relativity we chose
our unit of time to be the metre, and we followed that convention in this course. That
meant that the speed of light c was dimensionless:

1 D c D 299 792 458m s�1:

In gravitational physics, we use geometrical units, for much the same reason. In SI geometrical units
units, Newton’s gravitational constant has the dimensions ŒG� D kg�1m3s�2, but it is
convenient in GR to have G dimensionless, and to this end we choose our unit of mass
to be the metre, with the conversion factor between this and the other mass unit, kg,
obtained by:

1 D
G

c2
D 7:425 � 10�28 m kg�1:
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See Schutz’s §8.1 for a table of physical values in these units. Measuring masses in
metres turns out unexpectedly intuitive: when you learn about (Schwartzschild) black
holes you discover that the radius of the event horizon of an object has the same value
as the object’s mass expressed in metres. Also, within the solar system, the mass of
the sun is less well-known than the value of the ‘heliocentric gravitational constant’,
GMˇ, which has units of m3 s�2 in SI units, and thus units of metres in natural units.3

In the weak-field approximation, we take the spacetime round a small object to be
nearly minkowskian, with

g˛ˇ D �˛ˇ C h˛ˇ ; (4.32)

where jh˛ˇ j � 1, and the matrix �˛ˇ is the matrix of components of the metric in
minkowski space. Note that Eq. (4.32), defining h˛ˇ , is a matrix equation, not a tensor
one: we are choosing coordinates in which the matrix of components g˛ˇ of the metric
tensor g is approximately equal to �˛ˇ . If we lorentz-transform Eq. (4.32) – using
the ƒ˛

N̨
of SR, for which �

N̨ Ň
D ƒ˛

N̨
ƒˇ Ň�˛ˇ – we get an equation just like Eq. (4.32),

but in the new coordinates; that is, the components h˛ˇ transform as if they were the
components of a tensor in SR. This allows us to expressR˛ˇ�� ,R˛ˇ andG˛ˇ , and thus
Einstein’s equation itself, in terms of h˛ˇ plus corrections of order jh˛ˇ j2. The picture
here is that g˛ˇ is the result of a perturbation on flat (minkowski) spacetime, and that h
(which encodes that perturbation) is a tensor in minkowski space: expressing Einstein’s
equations in terms of h (accurate to first order in h˛ˇ ) gives us a mathematically
tractable problem to solve.

The next step is to observe that in the newtonian limit, which is the limit where
Newton’s gravity works, the gravitational potential j�j � 1 and speeds jvj � 1. This
implies that jT 00j � jT 0i j � jT ij j (because T 00 / m, T 0i / vi and T ij / vivj ,
with vearth � 10

�4). We then identify T 00 D �CO.�v2/. By matching the resulting
form of Einstein’s equation with Newton’s equation for gravity, we fix the constant �
in Eq. (4.28), so that, in geometrical units,

G�� D 8�T �� : (4.33)

The solution to this equation, in this approximation, is

h00 D h11 D h22 D h33 D �2�; (4.34)

which translates into a metric for newtonian spacetime

g! diag.�.1C 2�/; 1 � 2�; 1 � 2�; 1 � 2�/; (4.35a)

which can be alternatively written as the interval

ds2 D �.1C 2�/dt2 C .1 � 2�/.dx2 C dy2 C dz2/: (4.35b)

� See Schutz §§8.3–4 for the slightly intricate details of this derivation to Eq. (4.35),
and see his §7.2 for the derivation of the newtonian geodesics below. Carroll

[4] gives an overlapping account of the same material in §4.1 and (with more technical
background) §7.1. Also, Prof. Hendry goes into this calculation in considerable detail in
Chapter 5 of GRG2, as part of the discussion of gravitational radiation.
� The decomposition of Eq. (4.32) can be viewed either in terms of tensors in a

background (flat) spacetime (as above), or as exploitation of a gauge freedom
in GR. Because of the coordinate invariance of GR, we are free to choose coordinates (ie
choose a gauge) in which the matrix h˛ˇ has desirable (ie simplifying) properties. The
details omitted here are to do with identifying what the desirable simplifications are, and

3GMˇ is known to one part in 1010, but sinceG is known only to one part in 104 or so, the uncertainty
inMˇ has the same value.
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proving that a suitable choice of coordinates is indeed always possible. The solution to
Eq. (4.33) in terms of h can then be fairly directly shown to be Eq. (4.34).

What are the geodesics in this spacetime? The geodesic equation is rUU D 0.
This geodesic curve has affine parameter � , but by rescaling this parameter though
an affine transformation (� ! �=m), we can express this in terms of the momentum
p D mU . This has the advantage that the resulting geodesic equation

rpp D 0 (4.36)

is also valid for photons, which have a well-defined momentum even though they have
no mass m. We shall now solve this equation, to find the path of a free-falling particle
through this spacetime. See example 4.4

The component form of Eq. (4.36) is

p˛p�;˛ C �
�

˛ˇ
p˛pˇ D 0:

If we restrict ourselves to the motion of a non-relativistic particle through this spacetime,
we have jp0j � jpi j, and we reduce this equation to

m
d

d�
p� C �

�
00.p

0/2 D 0: (4.37)

The 0–0 Christoffel symbols for this metric, in this approximation, are

�000 D �;0 CO.�
2/ (4.38)

� i00 D �
1
2 .�2�/;j ı

ij : (4.39)

The 0-th component of Eq. (4.37) then tells us that

dp0

d�
D �m

@�

@�
;

so that the energy of the particle in this frame is conserved in a non-time-dependent
field (the particle picks up kinetic energy as it falls, and loses gravitational potential
energy). The space component is

dpi

d�
D �m�;i

which is simply Newton’s law of gravitation, f D �mr�. See example 4.5
Thus we have come a long way in this course, from Special Relativity back,

through Ptolemy and Newton, to well before the place we started. We have discovered
that the universe is simple (the strong EP and Eq. (4.28)), and that we are now well-
placed to look upward and outward, towards the physical applications of GR II.

I do not know what I may appear to the world, but to myself I seem to have
been only like a boy playing on the sea-shore, and diverting myself in now
and then finding a smoother pebble or a prettier shell than ordinary, whilst
the great ocean of truth lay all undiscovered before me. Isaac Newton, as
quoted in Brewster, Memoirs of the life, writings, and discoveries of Sir Isaac
Newton
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Examples

Example 4.1 (section 1.2)

Deduce Eq. (4.7), given that you have only the tensors U ˝ U and g D � to work with,
that the result must be proportional to both � and p, and that it must be consistent with
both Eq. (4.6), and Eq. (4.4) in the limit p D 0. Thus write down the general expression
T D .a� C bp/U ˝ U C .c� C dp/g and apply the various constraints. Recall that
U D .1; 0/ in the MCRF.

Example 4.2 (section 2.2)

(a) Quote, and describe the significance of, the Equivalence Principle and the Strong
Equivalence Principle. [4]

(b) Explain briefly, and without calculation, how the Equivalence Principle implies
that light will be observed to bend when in a gravitational field. [4]

(c) What would happen to an electric motor in free fall across the event horizon of
a black hole (ignore any tidal effects)? [2]

(d) Explain what is meant by the ‘comma-goes-to-semicolon’ rule in general
relativity, and why it follows from the principles of covariance and equivalence. [Ob-
jective 1, Objective 2; adapted from Degree exam 2003]

Example 4.3 (section 2.4)

Prove that the curvature tensor has only 20 independent components for a 4-dimensional
manifold, when you take equations Eq. (3.49a) and Eq. (3.49b) into account.

Example 4.4 (section 3)

The geodesic equation, in terms of the momentum p, is rpp D 0 or, in components,

p˛pˇ I˛ D 0:

By expanding this, taking advantage of the symmetry of the resulting expression under
index swaps, and using the relation p˛d=dx˛ D md=d� , show that

m
dp˛
d�
D
1

2
gˇ
;˛p

ˇp
 : (i)

You may need the relations

p˛Iˇ D p˛;ˇ � �



˛ˇ
p


�



˛ˇ
D
1

2
g
�.g�˛;ˇ C g�ˇ;˛ � g˛ˇ;�/

[Objective 3, and other objectives from parts 2 and 3; from degree exam 2009, 10
marks]

Example 4.5 (section 3)

The Schwartzschild metric is

gt t D �.1 � a/ grr D .1 � a/
�1

g�� D r
2 g�� D r

2 sin2 �;

where a D 2M=r , M is a constant, and all other metric components are zero.
Calculate the five non-zero derivatives of the metric.
Using Eq. (i), and by considering the relevant components of dp˛=d� , demonstrate

that:

4-15



GRG I, part 4 – Physics

1. if a particle is initially moving in the equatorial plane (that is, with � D �=2 and
p� D 0), then it remains in that plane;

2. if a particle is released from rest in these coordinates (that is, with pr D p� D

p� D 0, and pt ¤ 0), it initially moves radially inwards.

[Objective 3, and other objectives from parts 2 and 3; from degree exam 2009, 15
marks]
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affine parameter, 3-13, 3-14, 3-23, 4-27
basis, 2-5, 3-4

coordinate, 2-13, 3-5
dual, 2-7

basis transformation, 2-9, 3-4
Bianchi identities, 4-13
cartesian space, 2-11
chart, 3-2
Christoffel symbols, 3-6, 3-7, 3-9, 3-20, 3-21,

4-28
commutator, 3-16
components, 2-5–2-7
connecting vector, 3-17, 3-23
connection, 3-11

metric, 3-11, 3-13
contraction, 2-4, 2-5, 2-7

in Special Relativity, 2-13
coordinate system, 3-2
cosmological constant, 4-22
covariant derivative, 3-7, 3-11

of a function, 3-8
curvature, 3-14

and the metric, 2-8
curve, 3-2
direct product, 2-4
dual basis, 3-4
dust, 4-6
Einstein

field equations, 4-19–4-24
summation convention, 2-6
tensor, 4-14

Einstein-Hilbert action, 4-23
energy density, 4-8
energy-momentum tensor, 4-8
equivalence principle, 4-15

strong, 4-16, 4-28
weak, 1-4

euclidean space, 2-11, 3-2
eucliean space, 3-5
falling lift, 1-3
Faraday tensor, 4-11
field, 2-5, 3-4, 3-7, 3-11, 3-12

tensor, 2-8
fluid, 4-6
general covariance, principle of, 1-5
geodesic, 3-12
geodesic coordinates, 3-10
geodesic deviation, 1-4, 3-17, 3-24
geodesic equation, 3-13, 3-14, 3-23, 4-27
geometrical units, 1-6, 4-25
gradient one-form, 2-5, 3-4, 4-7
gravitational redshift, 1-3
index lowering, 2-8
inertial frame, 1-3, 3-13

local, 1-3, 3-9, 3-10, 3-22
inner product, 2-2

Kronecker delta symbol, 2-2
Lie derivative, 3-10
linear independence, 2-2
linearity, 2-2, 3-12
local flatness theorem, 3-10
manifold, 3-2
mass density, 4-8
MCRF, 4-6
metric tensor, 2-8

and the Christoffel symbol, 3-9
Minkowski space, 2-13
momentum density, 4-9
natural units, see geometrical units
Newton’s laws, 1-5, 4-28
norm, 2-2, 2-13
normal coordinates, 3-10
one-form, 2-3
orthogonal, 2-2
orthonormal, 2-2
outer product, 2-4, 4-8
parallel transport, 3-11, 3-14
path, 3-2
polar coordinates, 2-12
positive-definite, 2-2
Ricci

scalar, 4-13
tensor, 4-13

Riemann curvature tensor, 3-16
Schild’s photons, 1-3
sign conventions, 1-8
signature, 3-10
Special Relativity, 2-13
stress-energy tensor, 4-8
tangent plane, 3-3, 3-10
tangent vector, 3-3, 3-4, 3-11, 3-12
Taylor’s theorem, 3-10, 3-15
tensor, 2-3

antisymmetric, 2-4
components, 2-7
symmetric, 2-4

transformation matrix, 2-9
in Special Relativity, 2-13

vector, 2-3
vector space, 2-2, 3-3

basis, 2-2
components, 2-2
dimension, 2-2
span, 2-2
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