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Aims You should

1. understand the relationship between directional derivatives on a manifold and the vectors
in the tangent plane;
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2. understand the relationship between covariant differentiation in flat and curved spaces;

3. understand the significance of the geodesic equation;

Objectives You should be able to demonstrate that you can

1. obtain the components of the basis transformation matrix ƒ, given the algebraic relation-
ship between the corresponding coordinates;

2. calculate expressions for the connection coefficients � i
jk

, given the metric (though you do
not need to memorise Eq. (3.29)), and use these to calculate the components of covariant
derivatives;

3. quote the expressions Eq. (3.15) and Eq. (3.21) for the covariant derivatives of vectors
and one-forms;

4. explain why parallel transport and the connection are important in the definition of
differentiation on a curved space (that is, give a summary account of the argument in
Sect. 3.2);

5. use the geodesic equation (in its differential equation form, Eq. (3.37)) to obtain equations
for geodesics in coordinate form, in simple cases, and for given metrics or connection
coefficients;

6. calculate the Riemann and Ricci tensors corresponding to a given metric or set of
connection coefficients, in simple cases (note that ‘in simple cases’ is important: this task
is generally algebraically unwieldy unless the problem is constructed to have a good deal
of symmetry, and unless you can recognise and exploit this – it is this latter ability that is
the real objective here);

7. apply the geodesic deviation equation, Eq. (3.54) in simple cases.
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1 The tangent vector

In the previous part, we carefully worked out the various things we can do with a set of vectors,
one-forms and tensors, once we have identified those objects. Identifying those objects on a
curved surface is precisely what we are about to do now. We discover that we have to take a
rather roundabout route to them.
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1.1 Manifolds and functions

The arena on which everything happens is the manifold , which is a very primitive concept. manifold
A manifold is a set of points, with the only extra structure being enough to allow continuous
functions to be defined on it. In particular, a manifold does not have a metric defined.

A chart is a set of functions fx1; : : : ; xng which together map points on the manifold chart
to Rn. In other words, it is a coordinate system . The fact that the range of this map is (flat) Rn coordinate sys-

temallows us to say that the manifold is locally Euclidean.
Now consider a path on the manifold – this is just a continuous sequence of points. We path

distinguish this from a curve , �.t/, say, which is a mapping from a parameter t to points on curve
a path – two mappings which map to the same path but with different parametrisation are
different curves.

If we put these ideas together, and think of the functions x1
�
�.t/

�
; : : : ; xn

�
�.t/

�
, then

we have a set of mappings from the curve parameter to the coordinates. The properties of the
manifold tell us that these are smooth functions xi .t/, so we can differentiate with respect to
the parameter.
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1.2 Defining the tangent vector

Now think of a function f W M ! R which is defined on the manifold M , and therefore at
every point along the curve �. The function f is a function of �.t/, so it is also a function
(Rn ! R) of the coordinates of the points along that curve, or

f D f
�
�.t/

�
D f

�
x1
�
�.t/

�
; : : : ; xn

�
�.t/

��
;

which we can write as just (R! R)

f D f
�
x1.t/; : : : ; xn.t/

�
:

So how does f vary as we move along the curve? Easy:

df
dt
D

nX
iD1

@xi

@t

@f

@xi
:

However, since this is true of any function f , we can write instead

d
dt
D

X
i

@xi

@t

@

@xi
: (3.1)

Now consider the same path parameterised by ta D t=a. We have

df
dta
D

X
i

@xi

@ta

@f

@xi

D a
X
i

@xi

@t

@f

@xi

D a
df
dt

(3.2)
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Consider another curve �.s/, which crosses curve �.t/ at point P . We can therefore write,
at P ,

a
df
ds
C b

df
dt
D

X
i

�
a
@xi

@s
C b

@xi

@t

�
@f

@xi
D

X
i

@xi

@r

@f

@xi
D

df
dr
; (3.3)

for some further curve �.r/ which also passes through point P .
But now look what we have discovered. Whatever sort of thing d=dt is, ad=dt is the same

type of thing (from Eq. (3.2)), and so is ad=ds C bd=dt . But we look at Sect. 1.1 of part 2, and
realise that these derivative-things at P , which we’ll write .d=dt /P , satisfy the axioms of a
vector space. Thus the things .d=dt /P are another example of things which can be regarded as
vectors, or .10/ tensors. The thing .d=dt /P is referred to as a tangent vector . tangent vector

A vector V D .d=dt /P has rather a double life. Viewed as a derivative, V is just an
operator which acts on a function f to give

V f D

�
d
dt

�
P

f D
df
dt

ˇ̌̌̌
t.P /

;

the rate of change of f along the curve �.t/, evaluated at P . There’s nothing particularly
exotic there. What we have just discovered, however, is that this object .d=dt /P can also,
separately, be regarded as a vector in a vector space TP .M/, and as such is a .10/ tensor, which
is to say a thing which takes a one-form as an argument, to produce a number which we will
write as

˝e!; V ˛, for some one-form e! (we will see in a moment what this one-form is; it is not
the function f ). This dual aspect does seem confusing, and makes the object V seem more
exotic than it really is, but it will (should be!) always clear from context which facet of the
vector is being referred to at any point.

We’ll refer to the set of these directional derivatives as TP .M/, the tangent plane of the
manifold M at the point P . It is very important to note that TP .M/ and, say, TQ.M/ – the tangent plane
tangent planes at two different points of the manifold – are different spaces, and have nothing
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to do with one another a priori (though this is ultimately why we introduce the connection in
Sect. 2).

With this in mind, we can reread Eq. (3.1) as a vector expression, identifying the vectors

ei D

�
@

@xi

�
P

(3.4)

as a basis for the tangent-space, and the numbers @xi=@t as the components of the vector V D
.d=dt /P in this basis, or�

d
dt

�
P

D

X
i

@xi

@t

�
@

@xi

�
P

V D V iei :

So, I’ve shown you that we can regard the .d=dt /P as vectors; the rest of this part of the
course should convince you that this is additionally a useful thing to do.
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1.3 The gradient one-form

[Schutz discusses these ideas in the opposite order, defining the gradient one-form before the
tangent vector. See his §§3.3 and 5.2. Which do you think works better?]

Consider a function f , defined on the manifold. This is a field , which is to say it is a rule
which associates an object – in this case the number which is the value of the function – with
each point on the manifold (see Sect. 2.3 of part 2). Given this function, there is a particular
one-form field which we can define (that is, a rule for associating a one-form with each point
in the manifold), namely the gradient one-formedf . Given a vector V D .d=dt /P , the tangent gradient

one-formto a curve �.t/, the gradient one-form is defined by its contraction with this vector:

e̋df; V ˛ D �edf; d
dt

�
Dedf � d

dt

�
�

df
dt

ˇ̌̌̌
P

: (3.5)

The first two equalities here simply express notational equivalences; it is the third equality
which is the definition of the gradient one-form’s action. Ex.3.1

Now consider the gradient one-form associated with, not f , but one of the coordinate
functions xi (from Sect. 1.1, recall that the coordinates are just a set of functions on the
manifold, and in this sense not importantly different from an arbitrary function f ). We write
these as simplyedxi : what is their action on the basis vectors ei D @=@xi (from Eq. (3.4))?
Directly from Eq. (3.5),

edxi � @

@xj

�
D
@xi

@xj
D ıi j ; (3.6)

so that, comparing this with Eq. (2.3a), we see that the set e!i D edxi forms a basis for the
one-forms which is dual to the vector basis ei D @=@xi . dual basis
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1.4 Basis transformations

What does a change of basis look like in this new notation? If we decide that we do not like
the coordinate functions xi and decide to use instead functions xN{ , how does this appear in our
formalism, and how does it compare to Sect. 2.7 of part 2?

The new coordinates will generate a set of basis vectors

eN{ D
@

@xN{
: (3.7)

This new basis will be related to the old one by a linear transformation

eN{ D ƒ
j
N{ ej ;

and the corresponding one-form basis will be related via the inverse transformation

e!N{ D ƒN{je!j
(recall example 2.8 of part 2). Thus, from Eq. (2.13),

ƒN{j D e! N{.ej / DedxN{ � @

@xj

�
D
@xN{

@xj
(3.8a)

ƒ
j
N{ D e!j .eN{/ Dedxj � @

@xN{

�
D
@xj

@xN{
: (3.8b)

Ex.3.2
Ex.3.3
Ex.3.4� Note that the transformation matrix is defined as transforming the basis vectors and

one-forms; as an immediate consequence it can transform the vector and one-form
components also (as discussed in Sect. 2.7). Because of the above choice of basis vectors as the
differentials of the coordinate functions, the transformation matrix also describes a transformation
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between coordinate systems. This choice of basis vectors is a coordinate basis – see Schutz §5.5
for discussion of non-coordinate bases.
� If we consider a curve �.t/, which is such that @x1

�
�.t/

�
=@t D 1 and xi

�
�.t/

�
D ci

for i > 1 (ie this is a ‘grid line’), then simply comparing with Eq. (3.1) we see that
d=dt D @=@x1. Thus in a coordinate basis, where ei D @=@xi , the i -th basis vector at any point is
tangent to the i -th ‘grid line’, which matches the intuition we have for the basis vectors ex , ey , and
so on, in ordinary plane geometry.
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2 Covariant differentiation in flat spaces

We are now finally in a position to move on to the central tool of this part, the ideas of
coordinate-independent differentiation of tensors, parallel transport, and curvature. We will
make this move in two steps: first, we will learn how to handle the situation where the basis
vectors of the space of interest are different at different points in the space, but confining
ourselves to flat (euclidean) space, where we already know how to do most of the calculations;
secondly, we will discover the rather simple step involved in transferring this knowledge to
the case of fully curved spaces.

� There are other ways of introducing the covariant derivative, which are very insightful,
but more than a little abstract. Stewart [1, §1.7] introduces it in an axiomatic way which

makes clear the tensorial nature of the covariant derivative from the very outset, as well as its
linearities and some of its other properties. ‘Blue Schutz’ [2, ch.6] introduces it in a typically
elegant way, via parallel transport, and emphasising the ultimate arbitrariness of the precise
differentiation rule. Both of these routes define a connection which is more general than the one
we are led to here, and only later specialise it to the metric connection which we are led to below.
Chapter 10 of MTW [3] gives a very good, and visual, introduction to covariant differentiation,
though approaching it from a somewhat different direction.

The point of this – the goal we are aiming for – is this: given some geometrical object V
of physical interest (such as an electric field in a space, or a strain tensor in some medium), we
want to know how it varies as we move around a space, in a way which doesn’t depend on the
coordinates we have chosen.



GRG I, part 3 – Manifolds, vectors and differentiation 2.1 – Differentiation of basis vectors

2.1 Differentiation of basis vectors

This section is to some extent another notation section, in that it is describing something you
already know how to do, but in more elaborate and powerful language.

You will in the past have dealt with calculus in curvilinear coordinate systems and
produced such results as the Laplacian in spherical polar coordinates being

r
2
D

1

r2
@

@r

�
r2
@

@r

�
C

1

r2 sin �
@

@�

�
sin �

@

@�

�
C

1

r2 sin2 �
@2

@�2
:

We are now aiming for much the same destination, but by a slightly different route. This
follows Schutz §§5.3–5.5 quite closely.

We will proceed by examining the basis vectors of (plane) polar coordinates, as expressed
in terms of the cartesian basis vectors ex and ey . In the next section we will see that our
formalism is not restricted to this route.

The basis vectors of polar coordinates are

er D cos �ex C sin �ey (3.9a)
e� D �r sin �ex C r cos �ey : (3.9b)

A little algebra shows that

@

@r
er D 0 (3.10a)

@

@�
er D

1

r
e� (3.10b)

@

@r
e� D

1

r
e� (3.10c)

@

@�
e� D �rer ; (3.10d)
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so that we can see how the basis vectors change as we move to different points in the plane,
unlike the cartesian basis vectors.

At any point in the plane, a vector V has components .V r ; V � / in the polar basis at that
point. We can differentiate this vector with respect to, say, r , in the obvious way

@V

@r
D

@

@r
.V rer C V

�e� /

D
@V r

@r
er C V

r @er

@r
C
@V �

@r
e� C V

� @e�

@r
;

or, in index notation, with ˛ running over the ‘indexes’ r and � ,

@V

@r
D

@

@r
.V ˛e˛/

D
@V ˛

@r
e˛ C V

˛ @e˛

@r
:

If, finally, we realise that there is nothing special about the coordinate r , and that we could
write a similar expression involving xˇ , which is either of the coordinates r and � , we can
write the perfectly general form (which we could in fact have written down directly),

@V

@xˇ
D
@V ˛

@xˇ
e˛ C V

˛ @e˛

@xˇ
: (3.11)

In cartesian coordinates, the second term in this expression is identically zero, since the basis
vectors are the same everywhere on the plane, and so we can obtain the differential of a vector
by simply differentiating its components (the first term above); this is not true when we are
using curvilinear coordinates, and the second term comes in when we worry about how the
basis vectors are different at different points on the plane.
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Now, the second term above, @e˛=@xˇ , is itself a vector, so that it is a linear combination
of the basis vectors, with coefficients ��

˛ˇ
:

@e˛

@xˇ
D �

�

˛ˇ
e�: (3.12)

This set of symbols ��
˛ˇ

are called the Christoffel symbols , and this set of n � n � n numbers Christoffel sym-
bolsencodes all the information we need about how the coordinates, and their associated basis

vectors, change within the space. The object � is not a tensor – it is merely a collection of
numbers – so its indexes are not staggered (just like the transformation matrix ƒ).

We have done all the work to calculate the Christoffel symbol(s) for polar coordinates. If
we compare Eq. (3.10) with Eq. (3.12), we see

��r� D �
�
�r D 1=r; �r�� D �r; (3.13)

with all other components zero. Ex.3.5
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2.2 The covariant derivative in flat spaces

Importantly, there is nothing in the definition of the Christoffel symbols, Eq. (3.12), or their
calculated values, Eq. (3.13), which refers to the cartesian basis which we (incidentally) used
when working them out in Eq. (3.10). That is, we are at this point free of any dependence on a
particular coordinate system.

Notation: If we rewrite Eq. (3.11) including Eq. (3.12), relabel and reorder, we find

@V

@xˇ
D

�
@V ˛

@xˇ
C V ��˛�ˇ

�
e˛: (3.14)

For each ˇ this is a vector at each point in the space – that is to say, it is a vector field – with
components given by the term in brackets. We denote these components of the vector field by
the notation V ˛ Iˇ , with the semicolon denoting covariant differentiation. If we further denote
the derivative of the component @V ˛=@xˇ D V ˛;ˇ , then we can write

@V

@xˇ
D V ˛ Iˇe˛ (3.15a)

V ˛ Iˇ D V
˛
;ˇ C V

��˛�ˇ : (3.15b)

It is important to be clear about what you are looking at, here. The objects V ˛ Iˇ are numbers
which are the components, indexed by ˛, of a set of vectors, indexed by ˇ. They look rather
like tensor components, however, and we are about to deduce that that is exactly what they are
in fact. But components of which tensor? Ex.3.6

Ex.3.7
Ex.3.8

Final step: Look back at Eq. (3.7), and notice that the differential @=@xˇ in Eq. (3.14) is
associated with the basis vector eˇ . Indeed, the (vector) differential @=@xˇ is a linear function
of the vector eˇ (if you doubled the length of eˇ , you would halve the values of xˇ , and
thus double @=@xˇ ). Another way of saying that is that there exists a .11/ tensor, which we
shall call rV , which we shall define by saying that the action of it on the vector eˇ is the
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vector @V =@xˇ in Eq. (3.14). Using the notation of part 2, we could write

.rV /.e� I eˇ / � @V

@xˇ
.e� / (3.16)

as the definition of the tensor rV . For notational convenience, we prefer to write this as

reˇV D
@V

@xˇ
: (3.17)

This tensor rV is called the covariant derivative of V , and its components are covariant
derivative

.rV /˛ˇ � .rV /.e!˛I eˇ / � .reˇV /˛ � .rˇV /˛ D V ˛ Iˇ ; (3.18)

where the first equivalence is what we mean by the components of a tensor, the second is
the definition of the tensor, restated from the text above Eq. (3.16), the third is a notational
convenience, which applies in the case where the argument vector is a basis vector, and the
equality indicates the numerical value of this object – the ˛-th component of the vector rˇV –
via Eq. (3.17) and Eq. (3.15a).

You will also sometimes see an expression such as rXV . This is the covariant derivative
of V , contracted with X . In component form, this is

rXV D rV . � ; X/ D X
˛
rV . � ; e˛/ D X

˛
r˛V D X

˛V ˇ I˛eˇ : (3.19)

We have introduced a blizzard of notations here. Remember that they are all notational variants
of the same underlying object, namely the tensor rV . Make sure you understand how to go
from one variant to the other, and why they relate in the way they do.

Here’s where we’ve got to: we’ve managed to define a tensor field related to V , called
the covariant derivative, and written rV , which (since it is a tensor) is independent of any
coordinate system, and so doesn’t depend on any coordinate system, and doesn’t pick out
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any coordinate system as special. If we need its components in a particular system fx�g,
however, because we need to do some calculations, we can find them easily, via Eq. (3.15), or
by transforming the components from a system where we already know them (such as cartesian
coordinate) into the system fx�g – we know we can do this because we know that rV is a
tensor, so we know how its components transform.

Finally, here, note that a scalar is independent of any coordinate system, therefore all the
complications of this section, which essentially involve dealing with the fact that basis vectors
are different at different points on the manifold, disappear, and the covariant derivative of a
scalar is simply the partial derivative (cf Schutz eq. 5.53):

rˇf D
@f

@xˇ
: (3.20)

Comparing this with Eq. (3.5) (with eˇ D @=@xˇ instead of V ), we see that we can identify
the covariant derivative of a function with the gradient one-form:

rf Dedf:
From this we can deduce the expression for the covariant derivative of a one-form, which we
shall simply quote as:

.rˇep/˛ � .rep/˛ˇ � p˛Iˇ D p˛;ˇ � p���˛ˇ ; (3.21)

(note the sign difference from Eq. (3.15)). The derivative of a .11/ tensor is

rˇT
�
� � T

�
�Iˇ D T

�
�;ˇ C �

�

˛ˇ
T ˛� � �

˛
�ˇT

�
˛: (3.22)

Note how systematic this expression is, and that it is systematically extensible to higher orders
of tensor – there is one C� term for each upper tensor index, and one �� term for each lower
index. The expression looks hard to remember, but is easier than it looks.



GRG I, part 3 – Manifolds, vectors and differentiation2.2 – The covariant derivative in flat spaces

Also, the product rule applies

rˇ .p�V
�/ D p�IˇV

�
C p�V

�
Iˇ : (3.23)

See Schutz §5.3 for details.

� In this discussion of vector differentiation, built up since the beginning of Sect. 2.1, we
have not had to recall anything other than that the vectors e˛ are the basis vectors of a

vector space. That is, there is no complication arising from our definition of the vectors as tangent
vectors, associated with the derivative of a function along a curve; there is no meaningful sense in
which this is a ‘second derivative’.
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2.3 The metric and the Christoffel symbol

The covariant derivative, and the Christoffel symbols, give us information about how, and how
quickly, the basis vectors change as we move about a space. It is therefore no surprise to find
that there is a deep connection between these and the metric, which gives information about
distances within a space.

Remember that the metric (a .02/ tensor) allows us to identify a particular one-form
associated with a given vector:eV D g.V ; � /: (3.24)

Note that this is a purely geometrical (ie, coordinate-independent) equation. Recall that in
cartesian coordinates (a) the components of a vector and its associated one-form are equal,
and (b) the basis vectors are constant, so that covariant differentiation is just straight partial
differentiation of the components, so that (c) in cartesian coordinates the components of
the covariant derivative (with respect to a basis vector eˇ ) of a vector and of its associated
one-form are equal:

rˇ
eV D g.rˇV ; � /: (3.25)

But this is also a purely geometrical equation; so that, even though we justified it using a
particular (cartesian) coordinate system, it must be true in all coordinate systems.

In components (and in all coordinate systems),

V˛ D g˛�V
� (3.26)

V˛Iˇ D g˛�V
�
Iˇ : (3.27)

Note that the latter equation (which we obtained by comparing Eq. (3.25) and Eq. (3.21)) is
not trivial. From the properties of the metric we know that there exists some tensor which has
components A˛ˇ D g˛�V �Iˇ : what this expression tells us is the non-trivial statement that
this A˛ˇ is exactly V˛Iˇ . Ex.3.9
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That is to say that we did not get Eq. (3.27) by differentiating Eq. (3.26), though it looks
rather as if we did. What do we get by differentiating Eq. (3.26)? By the product rule Eq. (3.23)

V˛Iˇ D g˛�IˇV
�
C g˛�V

�
Iˇ :

But comparing this with Eq. (3.27), we see that the first term on the right-hand side must be
zero, for arbitrary V . Thus, in all coordinate systems (and relabelling)

g˛ˇ I� D 0: (3.28)

We have not exhausted the link between covariant differentiation and the metric. The two
are related via

�



ˇ�
D 1

2g
˛
 .g˛ˇ;� C g˛�;ˇ � gˇ�;˛/: (3.29)

The proof is in Schutz §5.4, leading up to his equation (5.75); it is not hard to follow, just
a little tedious. It depends on first proving that

�
�

˛ˇ
D �

�

ˇ˛
; in all coordinate systems: (3.30)

Equation (3.29) completely cuts the link between the Christoffel symbol and cartesian coordi-
nates, which might have lingered in your mind after Sect. 2.2 – once we have a metric, we can
work out the Christoffel symbol’s components immediately. Ex.3.10

Ex.3.11
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3 The covariant derivative in curved spaces

Having done all this work to develop covariant differentiation in flat space, but in purely
geometrical terms, it might be a surprise to discover that there is actually rather little to do to
bring this over to the most general case of curved spaces. See Schutz §§6.2–4.

The first step is to define carefully the notion of a local inertial frame.
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3.1 Local inertial frames – the local flatness theorem

Recall from Sect. 1.1 that a manifold is little more than a collection of points. What gives this
manifold shape is the metric tensor g, which is a symmetric .02/ tensor which, in a particular
coordinate system, has the components g˛ˇ , which we can choose more-or-less how we
like. In a different coordinate system, this same tensor will have different components g

N̨ Ň
.

The question is, can we find a coordinate system in which the metric has the particular
form �

N̨ Ň
D diag.�1; 1; 1; 1/? That is, can we find a coordinate transformation ƒ N̨˛ which

transforms the coordinates x˛ into the coordinates x N̨ in which the metric is diagonal?
If the matrix g˛ˇ does not have three positive and one negative eigenvalues (ie, a signature

ofC3� 1 D C2) then no, we cannot, and the metric in question is uninteresting to us because
it cannot describe our universe. If the metric does have a signature ofC2, however, then it is a
theorem of linear algebra that we can indeed find a transformation to coordinates in which the
metric is diagonal at a point.

But we can do better than this. Recall that both g˛ˇ and ƒ N̨˛ are continuous functions of
position; within the constraints that g be symmetric and ƒ be invertible, they are arbitrary. By
choosing the numbers ƒ N̨˛ and their first derivatives, we can find coordinates which have their
origin at P and in which

g
N̨ Ň
.x N�/ D �

N̨ Ň
CO

�
.x N�/2

�
;

(compare Taylor’s theorem) or

g
N̨ Ň
.P / D �

N̨ Ň
(3.31a)

g
N̨ Ň; N
 .P / D 0 (3.31b)

g
N̨ Ň; N
 Nı.P / ¤ 0: (3.31c)

This is the local flatness theorem , and the coordinates x N� represent a local inertial frame , or local flatness
theorem
local inertial
frame

LIF.
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These coordinates are also known as ‘normal’ or ‘geodesic’ coordinates, and geodesics
expressed in these coordinates have a particularly simple form. Also, in these coordinates, it
turns out that � i

jk
D 0 at a point, which is just another way of saying that this space is locally

flat.
Schutz’s proof of the theorem at the end of his §6.2 is very illuminating.
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3.2 Covariant derivatives in curved spaces

You know how to differentiate things. For some function f W R! R,

df
dx
D lim
h!0

f .x C h/ � f .x/

h
: (3.32)

That’s straightforward because it’s obvious what f .x C h/ � f .x/ means, and how we
divide that by a number. Surely we can do a similar thing with vectors on a manifold. Not
trivially, because remember that the vectors at P are not defined on the manifold but on
the tangent plane TP .M/ at a point P , and so the vectors at a different point Q are in a
completely different space TQ.M/, so it’s not obvious how to ‘subtract’ one vector from the
other. Differentiation on the manifold consists of finding ways to define just that ‘subtraction’.

There are several ways to do this. One produces the ‘Lie derivative’, which is important
in many respects, but which we will not examine.

� The Lie derivative is a coordinate-independent derivative defined in terms of a vector
field. A vector field X has integral curves such that, at each point p on the integral curve,

the curve’s tangent vector is X.p/. As an example, stream lines in a fluid are integral curves of the
fluid’s velocity vector field.
� The Lie derivative of a function at a point p, written .£

X
f /p , is defined as the rate

of change of the function along the (unique) integral curve of X going through p, and
Lie derivatives of higher-order tensors are defined in an analogous way. The disadvantage of this
type of derivative is that it clearly depends on an auxiliary vector field X ; but the compensating
advantage is that it does not depend on a metric tensor, or any other definition of distance. These
make it less useful than the covariant derivative for most GR applications, but it remains useful in
other contexts, such as those where there is already an important vector field present, including
applications in fluid dynamics. For details, see [1] or [2]; or look at exercise 39 in Schutz’s §6.9.

The other way to define this ‘subtraction’ uses the notion of ‘parallel transport’, which
we define and examine now.



GRG I, part 3 – Manifolds, vectors and differentiation3.2 – Covariant derivatives in curved spaces

You parallel transport a vector along a curve if the vectors at any two infinitesimally parallel trans-
portseparated points are deemed parallel, in the sense of having the same length and pointing in

the same direction (a diagram helps here). The rule for deciding whether two such vectors are
parallel isn’t specified here, and is broadly up to you, but we’ll come back to that.

This gives us a way of talking about ‘subtraction’. Take a vector field V on the manifold,
and two points P and Q which are both on some curve �.t/, with tangent vector U . We can
take the vector V .Q/ at Q and parallel transport it back to P ; at that point it is in the same
space TP .M/ as the vector V .P / so we can unambiguously subtract them to give another
vector in TP .M/. These two points are a parameter distance t .Q/ � t .P / apart, so we can
divide the difference vector by that distance (which is a number), find the limit as that distance
goes to zero, and thus reconstruct all the components we need to define a differential just like
Eq. (3.32). The differential we get by this process is the covariant derivative of V along U , covariant

derivativewritten rUV .
The covariant derivative depends on using parallel transport as a way of connecting

vectors in two different tangent planes. The covariant derivative is sometimes also called the
connection , and the Christoffel symbols the connection coefficients. connection

If V .Q/ starts off as just the parallel-transported version of V .P /, then when we parallel-
transport it back to P we’ll get just V .P / again, so that this covariant derivative will be zero;
thus

rUV D 0, (V is parallel transported along U ): (3.33)

The crucial thing here is that nowhere in this account of the covariant derivative have we
mentioned coordinates at all.

� Writing down the details of the construction of this derivative would be notationally
intricate and take us a little too far afield. If you want details, they’re in blue-Schutz or

Stewart. Also, the definition of parallelism via the LIF, below, is not the only one possible, but
picks out a particular derivative and set of connection coefficients, called the ‘metric connection’.
Only with this connection are Eq. (3.34) and Eq. (3.35) true.
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We’ve actually said rather little, here, because although this has, I hope, made clear
how closely linked are the ideas of the covariant derivative and parallel transport, we haven’t
said anything about exactly how we go about choosing a definition of parallelism, and we
haven’t seen how this links to the covariant derivative we introduced in Sect. 2. The link is
the locally-flat local inertial frame. Although the general idea of parallel transport, and in
particular the definition we introduce below, may seem obvious or intuitive, do remember that
there is a good deal of arbitrariness in its actual definition. Ex.3.12

Consider the coordinates representing the LIF at the point P . This is a flat cartesian space
(but not euclidean, remember, since it does not have a euclidean metric). That means that the
basis vectors are constant – their derivatives are zero. A definition of parallelism now jumps
out at us: two nearby vectors are parallel if their components in the LIF are the same. But this
is the definition of parallelism that was implicit in the differentiations we used in sections 2.1
and 2.2, leading up to Eq. (3.11), and so the covariant derivative we end up with is the same
one: the tensor rV as defined in this section is the same as the tensor rV of Eq. (3.18). In
other words, in this cartesian frame, covariant differentiation as defined in this section is the
same as ordinary differentiation, and

V ˛ Iˇ D V
˛
;ˇ in LIF:

Now, this is true for any tensor, so specifically

g˛ˇ I� D g˛ˇ;� D 0 at P ;

by Eq. (3.31a). But this is a tensor equation, so it is true in any coordinate system, and since
there is nothing special about the point P , it is true at all points of the manifold:

g˛ˇ I� D 0 in any coordinate system: (3.34)

As mentioned at the end of Sect. 2.3, from Eq. (3.34) we can, if ��
˛ˇ
D �

�

ˇ˛
(which is the case

for this definition of covariant differentiation), deduce that

�˛�� D
1
2g
˛ˇ .gˇ�;� C gˇ�;� � g��;ˇ /: (3.35)
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See also Schutz’s discussion of geodesics on his pp.156–157 (pp.166–7 in the first
edition), which elaborates the idea of parallelism introduced here.
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4 Geodesics

Consider a curve �.t/ and its tangent vectors U (that is, the set of vectors U is a field which
is defined at least at all the points along the curve �). If we have another vector field V ,
then the vector rUV tells us how much V changes as we move along the curve � which U is
the tangent to. What happens if, instead of the arbitrary vector field V we take the covariant
derivative of U itself? In general, rUU will not be zero – if the curve ‘turns a corner’, then
the tangent vector after the corner will no longer be parallel to the tangent before the corner.
The meaning of ‘parallel’ here is exactly the same as the meaning of ‘parallel’ which was built
in to the definition of the covariant derivative in the passage after Eq. (3.33). Curves which do
not do this – that is, curves such that all the tangent vectors are parallel to each other – are the
nearest thing to a straight line in the space, and indeed are a straight line in a flat space. A
curve such as this is called a geodesic . Thus the definition of a geodesic is: geodesic

rUU D 0:, (U is the tangent to a geodesic) (3.36)

Equation (3.36) has a certain spartan elegance, but if we are to do any calculations to
discover what the path of the geodesic actually is, we need to unpack it.

The object r.�/U is a .11/ tensor, as you will recall, with its vector argument denoted by
the .�/ (a peculiar notation, I know, and only for this section). Since it is a tensor, it is linear
in this argument. That is, for any vector A and scalar a, raAU D arAU , and specifically
rA�e�U D A

�re�U � A
�r�U . The vector U has components

U D U ˇeˇ ;

and so Eq. (3.36) can be written

U ˇrˇU D U
ˇU ˛ Iˇe˛ D 0

(recalling Eq. (3.18)). The ˛-component of this equation is, using Eq. (3.15b),

U ˇU ˛ Iˇ D U
ˇU ˛;ˇ C U

ˇU��˛ˇ� D 0:
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Let t be the parameter along the geodesic (that is, there is a parameterisation of the geo-
desic, �.t/, with parameter t , which U is the tangent to). Then (using Eq. (3.5)) U ˇ D
U.edxˇ / D dxˇ=dt and U ˛;ˇ D @=@xˇ .dx˛=dt /, and pretty immediately we find

d
dt

�
dx˛

dt

�
C �˛ˇ�

dxˇ

dt
dx�

dt
D 0: (3.37)

This is the geodesic equation . For each ˛ it is a second order differential equation with initial geodesic
equationconditions comprising the initial position x˛0 D x˛.tP / (if the parameter t has value tP at

point P ) and initial direction/speed U ˛0 D dx˛=dt jtP . The theory of differential equations
tells us that this equation does have a unique solution.

A parameter t for which we can write down the geodesic equation Eq. (3.37) is termed an
affine parameter , and if t is an affine parameter, it is easy to confirm that � D at C b, where a affine

parameterand b are constants, is an affine parameter also.
An affine parameter is one which, in MTW’s words [3, §1.5], is ‘defined so that motion

looks simple’. You can reasonably measure time in seconds since midnight, or minutes
(seconds=60), or minutes since noon (seconds=60� 720). These are all affine transformations,
and they share the property that unaccelerated motion is a linear function of time. If you
were reckless enough to measure time in units of seconds-squared, then unaccelerated (that
is, simple) motion would look very complicated indeed. Another way of saying this is that
an affine parameter is the time coordinate of some inertial system, and all that means it that
an affine parameter is the time shown on some free-falling ‘good’ clock. There are further
remarks about affine parameters in Sect. 4.1. Ex.3.13

� The connection (or rather the class of connections) we have defined here (see Sect. 3.2)
is constructed in such a way as to preserve parallelism. Such a connection is an affine

connection – the word ‘affine’ comes from a Latin root meaning ‘neighbouring’. Other types of
connection are possible; see blue-Schutz [2, §6.14] if you’re very keen.

A geodesic is a curve of extremal length. In a space with a metric with the signature of
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GR, it is a curve of maximal length; in a euclidean space it is a curve of minimal length: for
Euclid, a straight line is the shortest distance between two points.

�� Note on metric connections (extremely non-examinable) : in other of these asides I have
emphasised that this metric connection is not the only one definable. Since geodesics are

defined in terms of the connection, it does indeed follow that the geodesics implied by these other
connections are different from the geodesics of the metric connection, and specifically are not the
curves of extremal length. This is bound up with the property Eq. (3.34), and the observation that
only with the metric connection is the dot product g.A;B/ invariant under parallel transport. This
is one reason why the metric connection is so important, to the point of being essentially ubiquitous
in general relativity.
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4.1 The variational principle and the geodesic equation
�

We can prove directly that the geodesic is a curve of extremal length, by deriving the geodesic
equation explicitly from a variational principle.

For a given curve through spacetime, parameterised by �, the length of the curve is given
by

l D

Z
curve

ds D
Z

curve

ˇ̌
g˛ˇdx˛dxˇ

ˇ̌1=2
D

Z �1

�0

ˇ̌
g˛ˇ Px

˛
Pxˇ
ˇ̌1=2d�;�

Z �1

�0

Psd�;

where

Ps D
ˇ̌
g˛ˇ Px

˛
Pxˇ
ˇ̌1=2

expresses the relationship between parameter distance and proper distance, and where dots
indicate d=d�. We wish to find a curve which is extremal, in the sense that its length l is
unchanged under first-order variations in the curve, for fixed �0 and �1. The calculus of
variations (which as physicists you are most likely to have met in the context of classical
mechanics) tells us that such an extremal curve x�.�/ is the solution of the Euler-Lagrange
equations

d
d�

�
@Ps

@ Px�

�
�

@Ps

@x�
D 0:

Have a go, yourself, at deriving the geodesic equation from this, before reading the discussion
below (at an appropriate point, you will need to restrict the argument to parameterizations of
s.�/ which are such that Rs D 0).

For Ps as given above, we find fairly directly that

�
1

2

Rs

Ps2
2g�ˇ Px

ˇ
C
1

2Ps

d
d�

�
2g�ˇ Px

ˇ
�
�
1

2Ps
g˛ˇ;� Px

˛
Pxˇ D 0: (3.38)
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To simplify this, we can choose at this point to restrict ourselves to parameterizations of the
curve which are such that ds=d� is constant along the curve, so that Rs D 0; this � is an affine
parameter as described above. With this choice, and multiplying overall by Ps, we find

g�ˇ;� Px
ˇ
Px� C g�ˇ Rx

ˇ
� 1

2g˛ˇ;� Px
˛
Pxˇ D 0

which, after relabelling and contracting with g�� , and comparing with Eq. (3.35), reduces to

Rx� C �
�

˛ˇ
Px˛ Pxˇ D 0; (3.39)

the geodesic equation of Eq. (3.37).
As well as showing the direct connection between the geodesic equation and this deep

variational principle, and thus making clear the idea that a geodesic is a ‘shortest distance’,
this also confirms the significance of affine parameters which was touched on in Sect. 4. There
is a ‘geodesic equation’ for non-affine parameters (namely Eq. (3.38)), but only when we
choose an affine parameter �, does this equation take the relatively simple form of Eq. (3.37)
or Eq. (3.39). The general solution of Eq. (3.38) is the same path as the geodesic, but because
of the non-affine parameterisation it is not the same curve, and is not, formally, a geodesic.

Schutz discusses this at the very end of his §6.4, and the exercises corresponding to it.
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5 Curvature

We now come, finally, to the coordinate-independent description of curvature . We approach it curvature
through the idea of parallel transport, as described in Sect. 3.2, and specifically through the
idea of transporting a vector round a closed path. This section follows Schutz §6.5. MTW [3]
chapter 11 is good on this.
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5.1 The Riemann tensor

eσ

eλ

A

B

C

D

xλ = b

xλ = b+ δb

xσ = a+ δa

xσ = a

Figure 1

Consider the path following lines of constant coordinate, in an arbitrary coordinate system.
Figure 1 shows a loop in the plane of two coordinates x� and x� The line joining A and B ,
and the line from D to C , have coordinate x� varying along a line of constant x�, and lines
B–C and A–D have x� varying along a line of constant x� . We have a vector V at A, which
we parallel-transport to B , C , D and back to A, and we want to find out how different the
vector is after its circuit from how it was when it started.

Parallel-transporting the vector from A to B involves transporting V along the vector
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field e� . From Eq. (3.33), this means that r�V D 0, or V ˛ I� D 0. That is (from Eq. (3.15b)),

@V ˛

@x�
D V ˛;� D ��

˛
��V

�: (3.40)

Now, the components of the vector at B are

V ˛.B/ D V ˛.A/C

Z B

A

@V ˛

@x�
dx�

D V ˛.A/ �

Z B

A

�˛��V
�dx�

D V ˛.A/ �

Z aCıa

x�Da

�˛��V
�
ˇ̌
x�Db

dx� ;

where the integrand is evaluated along the line fx� D bg from x� D a to x� D aC ıa. Doing
the same thing for the other sides of the curve, we find:

ıV ˛ D V ˛.Afinal/ � V
˛.Ainit/ D �

Z aCıa

x�Da

�˛ˇ�V
ˇ
ˇ̌̌
x�Db

dx�

�

Z bCıb

x�Db

�˛ˇ�V
ˇ
ˇ̌̌
x�DaCıa

dx�

C

Z aCıa

x�Da

�˛ˇ�V
ˇ
ˇ̌̌
x�DbCıb

dx�

C

Z bCıb

x�Db

�˛ˇ�V
ˇ
ˇ̌̌
x�Da

dx�: (3.41)

At this point we can take advantage of the fact that ıa and ıb are small, by construc-
tion, ignore terms in ıa2 and ıb2, and thus take the integrands to be constant along the
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interval of integration (by expanding the integrand in a taylor series, convince yourself
that

R aCıa
a

f .x/dx D ıaf .a/ C O.ıa2/). We don’t know what the �˛
ˇ�
V ˇ jx�DaCıa

and �˛
ˇ�
V ˇ jx�DbCıb are (of course, since we are doing this calculation for perfectly gen-

eral �), but since ıa is small, we can estimate them using Taylor’s theorem, finding

�˛ˇ�V
ˇ
ˇ̌
x�DaCıa

D �˛ˇ�V
ˇ
ˇ̌
x�Da

C ıa
@

@x�
�˛ˇ�V

ˇ

ˇ̌̌̌
x�Da

CO.ıa2/

(the @=@x� is a derivative with respect to a single coordinate, which is why the � index is
correctly unmatched). Inserting this, and the similar expression involving ıb, into Eq. (3.41),
and ignoring terms of O.ıa2; ıb2/, we have

ıV ˛ � C

Z aCıa

x�Da

ıb
@

@x�
�˛ˇ�V

ˇ

ˇ̌̌̌
x�Da;x�Db

dx�

�

Z bCıb

x�Db

ıa
@

@x�
�˛ˇ�V

ˇ

ˇ̌̌̌
x�Da;x�Db

dx�:

However, the integrands here are now constant with respect to the variable of integration, so
the integrals are easy:

ıV ˛ � ıaıb

�
@

@x�

�
�˛ˇ�V

ˇ
�
�

@

@x�

�
�˛ˇ�V

ˇ
��
;

with all quantities evaluatated at the point A. If we now use Eq. (3.40) to get rid of the
differentials of V ˇ , we find, to first order

ıV ˛ D ıx�ıx�
h
�˛ˇ�;� � �

˛
ˇ�;� � �

˛
���

�

ˇ�
C �˛���

�

ˇ�

i
V ˇ ; (3.42)

where we have written ıa and ıb as ıx� and ıx� respectively.
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Let us examine this result. The left-hand side is the ˛ component of a vector ıV (we
know this is a vector since it is the difference of two vectors located at the same point A;
recall the vector-space axioms); we obtain that component ıV ˛ by acting on the vector ıV
with the basis one-form e!˛ . The right-hand side clearly depends on the vector V (also at the
point A), whose components are V ˇ . The construction in Fig. 1, which crucially has the area
enclosed by constant-coordinate lines, depends on multiples of the basis vectors, ıae� and
ıbe�. We can see that the number ıV ˛ depends linearly on each of these four objects – one
one-form and three vectors. This leads us to identify the numbers within the square brackets
of Eq. (3.42) as the components of a .13/ tensor

R˛ˇ�� D �
˛
ˇ�;� � �

˛
ˇ�;� C �

˛
���

�
ˇ� � �

˛
���

�
ˇ�; (3.43)

(after some relabelling) called the Riemann curvature tensor (this notation is consistent with Riemann
curvature tensorSchutz; numerous other conventions exist – see the discussion in part 1). Thus Eq. (3.42)

becomes

ıV ˛ D R˛ˇ��V
ˇ ıx�ıx�: D R.e!a; V ; ıx�e� ; ıx�e�/: (3.44)

This tensor tells us how the vector V varies after it is parallel-transported on an arbitrary
excursion in the area local to point A (that is, for small ıa and ıb); that is, it encodes all the
information about the local shape of the manifold.

Another way to see the significance of the Riemann tensor is to consider the effect
of taking the covariant derivative of a vector with respect to first one then another of the
coordinates, r˛rˇV . Defining the commutator commutator�

r˛;rˇ
�
V � � r˛rˇV

�
� rˇr˛V

�; (3.45)

we find that�
r˛;rˇ

�
V � D R��˛ˇV

� : (3.46)
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This, or something like it, might not be a surprise. We discovered the Riemann tensor by taking Ex.3.14
a vector for a walk round the circuit ABCDA in Fig. 1 and working how how it changed as
a result. The commutator Eq. (3.45) is effectively the result of taking a vector from A to C
via B and via D, and asking how the two resulting vectors are different.

The Riemann tensor has a number of symmetries. In a locally inertial frame,

R˛ˇ�� D 1
2g
˛� .g��;ˇ� � g��;ˇ� C gˇ�;�� � gˇ�;��/; (3.47)

and so Ex.3.15

R˛ˇ�� � g˛�R
�
ˇ�� D

1
2 .g˛�;ˇ� � g˛�;ˇ� C gˇ�;˛� � gˇ�;˛�/: (3.48)

Note that this is not a tensor equation, even in these coordinates: in such inertial coordinates
V ˛;ˇ D V

˛
Iˇ and so an expression involving single partial derivatives of inertial coordinates

can be trivially rewritten as a (covariant) tensor equation by simply rewriting the commas as
semicolons; however the same is not true of second derivatives, so that Eq. (3.48) does not
trivially correspond to a covariant expression.

By simply permuting indexes in Eq. (3.48), you can see that

R˛ˇ�� D �Rˇ˛�� D �R˛ˇ�� D R��˛ˇ (3.49a)
R˛ˇ�� CR˛�ˇ� CR˛��ˇ D 0: (3.49b)

These are tensor equations so that (as usual) although we worked them out in a particular
coordinate system, they are true in all coordinate systems, and tell us about the symmetry
properties of the underlying geometrical object. Ex.3.16
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5.2 Geodesic deviation

In Sect. 2.1 of part 1, we briefly imagined two objects in free fall near the earth (Fig. 2), and
noted that the distance between them would decrease as they both moved towards the centre
of the earth. We are now able to state that these free-falling objects are following geodesics in
the spacetime surrounding the earth, which is curved as a result of the earth’s mass (though
we cannot say much more than this without doing the calculation, which is a bit of physics we
do not know before the next part). We see, then, that the effect of the curvature of spacetime
is to cause the distance between these two geodesics to decrease; this is known as geodesic
deviation , and we are now in a position to see how it relates to curvature. geodesic

deviation

Figure 2

Schutz covers this at the end of his section 6.5. I plan to describe it a different way, partly
because I find his explanation somewhat confusing, but also because a more geometrically-
minded explanantion makes rather a change from continuous components.

First, some useful formulae. (i) Marginally rewriting Eq. (3.46), we find�
rX ;rY

�
V D XˇY �

�
rˇ ;r�

�
V �e� D R

�
˛ˇ�V

˛XˇY �e�: (3.50)
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(ii) Using the commutator
�
A;B

�
� AB � BA, we find

rAB � rBA D
�
A;B

�
; (3.51)

which is proved in example 3.17. Ex.3.17

X

Xξ

ξ

λ(t)
µ(s)

λ(t)
µ(s+δs)

λ(t+δt)
µ(s)

λ(t+δt)
µ(s+δs)

Figure 3

Consider two sets of curves, �.t/ corresponding to a field of tangent vectors X , and �.s/
with tangent vectors � , and suppose that, in some region of the manifold, they cross each other
(see Fig. 3). Choose the curves and their parameterisation such that each of the � curves is a
curve of constant s and each of the � curves is a curve of constant t . Thus, specifically, the �
vector – known as the ‘connecting vector’ – joins points on two � curves which have the same
parameter t . What we have actually described, here, is (part of) a set of coordinate functions;
you will see that the curves � and � have exactly the properties that the conventionally-written
coordinate functions x˛ have. Because of this construction, it does not matter which order we
take the derivatives d=dt and d=ds, so that

d
dt

d
ds
D

d
ds

d
dt
,

�
d
dt
;

d
ds

�
D 0;
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or, since X D d=dt and � D d=ds,h
X; �

i
D 0:

Thus, referring to Eq. (3.51),

rX� D r�X: (3.52)

Now suppose particularly that the curves �.t/ are geodesics, which means that rXX D 0.
Then the vector � joins points on the two geodesics which have the same affine parameter.

That means that the second derivative of � carries information about how quickly the two
geodesics are accelerating apart (note that this is ‘acceleration’ in the sense of ‘second deriva-
tive of position coordinate’, and not anything that would be measured by an accelerometer –
observers on the two geodesics would of course experience zero physical acceleration). With
the work above, the calculation is easy. The second derivative is

rXrX� D rXr�X D r�rXX CR
�
˛ˇ�X

˛Xˇ ��e�; (3.53)

where the first equality comes from Eq. (3.52) and the second from Eq. (3.50). The first term
on the right-hand side disappears since rXX D 0 along a geodesic. Now, the covariant
derivative with respect to the vector X is just the derivative with respect to the geodesic’s
parameter t (since � is part of a coordinate system, see Sect. 2.2), so that this equation turns
into  

d2�
dt2

!�
D R�˛ˇ�X

˛Xˇ �� : (3.54)

Thus the amount by which two geodesics diverge depends on the curvature of the space they are
passing through. Note that the left-hand side here is the �-component of the second derivative
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of the vector �, and is a conventional shortcut for rXrX ; it is not the second derivative of
the �� component d2��=dt2, though some books (eg, [1, §1.9]) rather confusingly write it this
way. Ex.3.18

Ex.3.19
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Examples

Some of the examples below are taken from the earlier presentations of this course by Martin
Hendry; these are noted by “[MAH]” and the example sheet where they occurred. Most of the
exercises in Schutz’s §6.8 should be accessible.
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Example 3.1 (section 1.3)

By considering the contraction of the gradient with a vector ad=dt C bd=ds, show that the
gradient one-form defined by Eq. (3.5) is a linear function of its argument, and therefore a
valid one-form.
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Example 3.2 (section 1.4)

In the fx; yg cartesian coordinate system (with basis vectors @=@x and @=@y), the metric is
simply diag.1; 1/. Consider a new coordinate system fu; vg, (with basis @=@u and @=@v),
defined by

u D 1
2 .x

2
� y2/

v D xy:
(i)

You might also want to look back at the ‘dangerous bend’ paragraphs below Eq. (2.19).
(a) Write x1 D x, x2 D y, x N1 D u, x N2 D v, and thus, referring to Eq. (3.8), calculate

the matrices ƒN{j and ƒi
N| [the easiest way of doing the latter calculation is to calculate @u=@u,

@u=@v, . . . , and solve for @x=@u, @x=@v, . . . , ending up with expressions in terms of x, y and
r2 D x2 C y2].

(b) From Eq. (2.17),

gN{ N| D ƒ
i
N{ƒ

j
N|gij :

Thus calculate the components gN{ N| of the metric in terms of the coordinates fu; vg [you can
end up with expressions in terms of u and v, via 4.u2 C v2/ D r4].

(c) A one-form has cartesian coordinates .Ax ; Ay/ and coordinates .Au; Av/ in the new
coordinate system. Show that

Au D
xAx � yAy

x2 C y2
;

and derive the corresponding expression for Av [based ultimately on MAH, 3.7; Objective 1].
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Example 3.3 (section 1.4)

(a) Write down the expressions for cartesian coordinates fx; yg as functions of polar coordi-
nates fr; �g, thus calculate @x=@r , @x=@� , @y=@r and @y=@� , and thus find the components of
the transformation matrix from cartesian to polar coordinates, Eq. (3.8b).

(b) The inverse transformation is

r2 D x2 C y2; � D arctan
�y
x

�
:

Differentiate these, and thus obtain the inverse transformation matrix Eq. (3.8a). Verify that
the product of these two matrices is indeed the identity matrix. Compare Sect. 3.2 of part 2.

(c) Let V be a vector with cartesian coordinates fx; yg, so that

V D xex C yey :

Show that PV and RV have components f Px; Pyg and f Rx; Ryg in this basis.
(d) Using the relations x D r cos � and y D r sin � , write down expressions for Px, Py, Rx

and Ry in terms of polar coordinates r and � and their time derivatives.
(e) Now use the general transformation law Eq. (3.8a)

V N{ D ƒN{jV
j
D
@xN{

@xj
V j

to transform the components of the vectors PV and RV which you obtained in (c), into the polar
basis fer ; e�g, and show that

PV D Prer C P�e�

RV D
�
Rr � r P�2

�
er C

�
R� C

2

r
Pr P�

�
e� :

[MAH, 2.1; Objective 1]
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Example 3.4 (section 1.4)

Define a scalar field, �, by

�.x; y/ D x2 C y2 C 2xy;

for cartesian coordinates fx; yg.
(a) From Eq. (3.5), the i -th component of the gradient one-formed� is obtained by taking

the contraction of the gradient with the basis vector ei D @=@xi . Thus write down the
components of the gradient one-form with respect to the cartesian basis.

(b) The result of example 2.8 of part 2 says that the transformation law for the components
of a one-form is

AN{ D ƒ
j
N{ Aj D

@xj

@xN{
Aj :

Thus determine the components ofed� in polar coordinates fr; �g.
(c) By expressing � in terms of r and � , obtain directly the polar components ofed� and

verify that they agree with those obtained in (b).
(d) Write down the components of the metric tensor in cartesian coordinates, gxx , gxy ,

gyx , gyy , and by examining Eq. (2.10), write down the components of the metric tensor with
raised indexes, gxx , gxy , gyx , gyy . Hence determine the cartesian components of the vector
gradient d� (ie, with raised index).

(e) Recall the metric for polar coordinates, and thus the components grr , gr� , g�r and
g�� . Hence determine the polar components of d�. Comment on the answers to parts (d)
and (e). [MAH, 2.2]
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Example 3.5 (section 2.1)

In Eq. (3.13) we see, for example, two lowered �s on the left-hand side with no � on the
right-hand side. Why isn’t this this an einstein summation convention error?
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Example 3.6 (section 2.2)

Consider a vector field V with cartesian components fV x ; V yg D fx2 C 3y; y2 C 3xg.
(a) Using the transformation law for a .10/ tensor, and the result of example 3.3, determine

fV r ; V �g, the components of the same vector field V with respect to the polar basis fer ; e�g.
(b) Write down the components of the covariant derivative V i Ij in cartesian coordinates.
(c) Using the fact that V i Ij transforms as a .11/ tensor, compute the components of

the covariant derivative with respect to the polar coordinate basis by transforming the V i Ij
obtained in part (b).

(d) Now, taking a different tack, compute the polar components of the covariant derivative
of V , by differentiating the polar coordinates obtained in (a). That is, use Eq. (3.15b) and the
Christoffel symbols for polar coordinates, Eq. (3.13).

(e) Verify that the polar components obtained in (c) and (d) are the same. [MAH, 4.5]
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Example 3.7 (section 2.2)

Do example 3.6 again, but this time working with the one-form field eA, with cartesian
components fx2 C 3y; y2 C 3xg. [MAH, 4.6]
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Example 3.8 (section 2.2)

Comparing example 3.6 and example 3.7, verify that in both cartesian and polar coordinates

gikV
k
Ij D Ai Ij :

[MAH, 4.7]
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Example 3.9 (section 2.3)

Derive Eq. (3.26) from Eq. (3.24) (one-liner). Derive Eq. (3.27) from Eq. (3.25) (few lines).
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Example 3.10 (section 2.3)

Let Aj be the components of an arbitrary one-form. Write down the transformation law for Aj
and for its covariant derivative Aj Ik . By considering the expression for A

N| I Nk , in a transformed
coordinate system, show that the transformation law for the Christoffel symbols has the form

� N{
N| Nk
D
@xN{

@xi
@xj

@x N|
@xk

@x
Nk
� ijk C

@xN{

@xl
@2xl

@x N|@x
Nk
:

The fact that this does not look anything like Eq. (2.17) further demonstrates that the Christoffel
symbols are not the components of a tensor. [MAH, 4.1]
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Example 3.11 (section 2.3)

Suppose that in one coordinate system the Christoffel symbols are symmetric in their lower in-
dexes, � i

jk
D � i

kj
. By considering the transformation law for the Christoffel symbols, obtained

in example 3.10, show that they will be symmetric in any coordinate system. [MAH, 4.2]
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Example 3.12 (section 3.2)

Things to think about: Why have you never had to learn about covariant differentiation before
now? The glib answer is, of course, that you weren’t learning GR; but what was it about
the vector calculus that you did learn that meant you never had to know about connection
coefficients? Or, given that you did effectively learn about them, but didn’t know that was
what they were called, why do we have to go into so much more detail about them now? There
are a variety of answers to these questions, at different levels.
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Example 3.13 (section 4)

(a) On the surface of a sphere, we can pick coordinates � and �, where � is the colatitude,
and � is the azimuthal coordinate. The components of the metric in these coordinates are

g�� D 1; g�� D sin2 �; others zero:

Show that the components of the metric with raised indexes are

g�� D 1; g�� D
1

sin2 �
; others zero:

[4 marks]
(b) The Christoffel symbols are defined as

�˛�� D
1
2g
˛ˇ .gˇ�;� C gˇ�;� � g��;ˇ /;

and the geodesic equation is

d
dt

�
dx˛

dt

�
C �˛ˇ�

dxˇ

dt
dx�

dt
D 0;

for a geodesic with parameter t . Using these find the Christoffel symbols for these coordinates
(ie, ��

��
, ��

��
and so on), and thus show that the geodesic equations for these coordinates are

R� � sin � cos � P�2 D 0 (i)

R� C 2
cos �
sin �

P� P� D 0; (ii)

where dots indicate differentiation with respect to the parameter t . [12 marks]
(c) Using the result of part (b), or any other properties of geodesics which you know,

explain, giving reasons, which of the following curves are geodesics, for affine parameter t .
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1. � D t , � D �=2 2. � D t , � D �=4 3. � D t , � D 0
4. � D t , � D t 5. � D �0, � D t 6. � D �0, � D 2t � 1
7. � D �0, � D t2

[6 marks]
(d) If U is the tangent vector to a geodesic, so that

rUU D 0;

prove that V D aU is also tangent to a geodesic, for any constant number a. [8 marks]
[MAH 5.1, originally, later Class Test 2002, with additions; Objective 2, Objective 5]
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Example 3.14 (section 5.1)

Prove Eq. (3.46). Writer˛rˇV � D r˛.V �Iˇ / D .V �Iˇ /I˛ , and use the expression Eq. (3.22)
to expand the derivative with resepect to x˛ . At this point, decide to work in LIF coordinates,
in which all the ��

˛ˇ
D 0, making the algebra easier. Thus deduce that r˛rˇV � D V �;ˇ˛ C

�
�

�ˇ;˛
V � . You can then immediately write down an expression for rˇr˛V �. Subtract

these two expressions (to form Œr˛;rˇ �V
�), noting that the usual partial differentiation of

components commutes: V �;˛ˇ D V �;ˇ˛ . Compare the result with the definition of the
Riemann tensor in Eq. (3.43), and arrive at Eq. (3.46). If you get stuck with the algebra, the
proof’s in Schutz §6.5.
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Example 3.15 (section 5.1)

Prove Eq. (3.47). Recall that in a locally inertial frame, at a point P , the components of the
connection are zero: �˛�� D 0. The derivatives, however, are not, so use Eq. (3.35) straightfor-
wardly to find �˛��;� . Recall Eq. (3.31a), and that partial derivatives always commute.



GRG I, part 3 – Manifolds, vectors and differentiation Examples

Example 3.16 (section 5.1)

In example 3.13 you calculated the Christoffel symbols for the surface of the unit sphere.
Calculate the components of the curvature tensor for these coordinates, plus the Ricci tensor
Rˇ
 D R

˛
ˇ˛
 and the Ricci scalar R D gˇ
Rˇ
 (see part 4).

You can most conveniently do this by calculating selected components of the curvature
tensor R˛ˇ�� obtained by lowering the first index on Eq. (3.43); you can cut down the number
of calculations you need to do by using the symmetry relations Eq. (3.49) heavily. Why should
you not use Eq. (3.48), which appears to be more straightforward?

This question is long-winded rather than terribly hard. It’s worthwhile slogging through it,
however, since it gives valuable practice handling indices, and makes the idea of the curvature
tensor rather more tangible. [Objective 6]
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Example 3.17 (section 5.2)

Prove Eq. (3.51), by writing it in component form. Recall Eq. (3.30). The last step is the tricky
bit, but recall that for a (tangent) vector A, Af D A�e�f D A�f;�, where f is any function,
including a vector component.
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Example 3.18 (section 5.2)

Consider coordinates on a sphere, as you did in example 3.13, and consider the geodesics �.t/
in Fig. 4 with affine parameter t and tangent vectors X – these are great circles through the
poles. The curves �.s/ with tangent vectors � are connecting curves as discussed in Sect. 5.2.

X µ(s)

λ(t)

θ

φ

Figure 4

We can parameterise the curve �.t/ using the coordinates .�; �/, as

�.t/ W �
�
�.t/

�
D t I �

�
�.t/

�
D �0

(compare Sect. 1.2), and you verified in example 3.13 that this does indeed satisfy the geodesic
equation.

(a) Using Eq. (3.1), show that the components of X are

X� D 1; X� D 0:

(b) Write Eq. (3.54) as

g��.rXrX�/
�
� g��R

�
˛ˇ�X

˛Xˇ �� D 0 (i)
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and, by using the components of the curvature tensor which you worked out in example 3.16,
show that

.rXrX�/
�
D 0 (iia)

.rXrX�/
�
C �� D 0: (iib)

This tells us that the connecting vector – the tangent vector to the family of curves �.s/,
connecting points of equal affine parameter along the geodesics �.t/ – does not change its �
component, but does change its � component. Which isn’t much of a surprise.

(c) Can we get more out of this? Yes, but to do that we have to calculate rXrX� , which
isn’t quite as challenging as it might look. From Eq. (3.18) we write

rX� D X
˛
r˛� D X

˛eˇ �
ˇ
I˛ D X

˛eˇ

 
@�ˇ

@x˛
C �ˇ˛
�




!
: (iii)

You have worked out the Christoffel symbols for these coordinates in example 3.13, so we
could trundle on through this calculation, and find expressions for the components of the
connecting vector � from Eq. (ii). In order to illustrate something useful in a reasonable
amount of time, however, we will short-circuit that by using our previous knowledge of this
coordinate system.

The curve

�.s/ W �.s/ D �0; �.s/ D s

is not a geodesic (it is a small circle at colatitude �0), but it does connect points on the
geodesics �.t/ with equal affine parameter t ; it is a connecting curve for this family of
geodesics. Convince yourself of this and, as in part (a) above, satisfy yourself that the tangent
vector to this curve, � D d=ds, has components �� D 0 and �� D 1; and use this together with
the components of the tangent vector X and the expression Eq. (iii) to deduce that

P
� � rX� D 0e� C cot �e� ;



GRG I, part 3 – Manifolds, vectors and differentiation Examples

(where P� is simply a convenient – and conventional – notation for rX�) or P�� D 0, P�� D cot � .

(d) So far so good. In exactly the same way, take the covariant derivative of P�, and
discover that

rX
P
� D rXrX� D 0e� � 1e� D ��;

and note that this � does in fact accord with the geodesic deviation equation of Eq. (ii).
Note that this example is somewhat fake, in that, in (c), we set up the curve �.s/ as a

connecting curve, and all we have done here is verify that this was consistent. If we were
doing this for real, we would not know (all of) the components of � beforehand, but would
carry on differentiating � as we started to do in (c), put the result into the differential equation
Eq. (ii) and thus deduce expressions for the components ��.

As a final point, note that the length of the connecting vector � is just

g.�; �/ D g˛ˇ �
˛�ˇ D sin2 �;

which you could possibly have worked out from school trignometry (but it wouldn’t have been
half so much fun).

[Objective 5, Objective 7]
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Example 3.19 (section 5.2)

(a) Describe the relationship between geodesic deviation and the metric of a spacetime,
referring in your answer both to the equation of geodesic deviation (Eq. (ii) below), and to the
behaviour of test particles in free fall near the Earth’s surface. [5]

(b) In the newtonian limit, the metric can be written as

g�� D ��� C h�� (i)

where

��� D diag.�1; 1; 1; 1/

h�� D

(
�2� � D �

0 � ¤ �
;

and � is the newtonian gravitational potential �.r/ D GM=r . In this limit, and with this
metric, the curvature tensor can be written as

2R˛ˇ�� D h˛�;ˇ� C hˇ�;˛� � h˛�;ˇ� � hˇ�;˛�:

The equation for geodesic deviation is

d2�˛

dt2
D R˛ˇ��U

ˇU��� ; (ii)

where the vectors U are tangent to geodesics, and we can take them to be velocity vectors.
Consider two particles in free fall just above the Earth’s north pole, so that their (cartesian)

coordinates are both approximately x D y D 0, z D R, where R is the radius of the Earth.
Take them to be separated by a separation vector � D .0; �x ; 0; 0/, where �x � R. Since they
are falling along geodesics, their velocity vectors are both approximately U D .U t ; 0; 0; U z/.
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With this information, show that the two particles accelerate towards each other such that

d2�x

dt2
D �

GM

r3
�x (iii)

to first order in � (given values for G, M and R, why can we take �2 � 0?).
[ Since these are non-relativistic particles, you may assume, at the appropriate point, that

jU t j � jU zj, and thus that jU t j2 � �1. ] [20]
(c) If we had used a different metric to describe the same newtonian spacetime, rather than

that in Eq. (i), would we have obtained a different result for the geodesic deviation, Eq. (iii)?
Explain your answer. [5] [Objective 5, Objective 7; based on degree exam, 2003]
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