:py:mod:`nessai.gw.reparameterisations` ======================================= .. py:module:: nessai.gw.reparameterisations .. autoapi-nested-parse:: Specific reparameterisations for gravitational-wave inference. .. !! processed by numpydoc !! Module Contents --------------- Classes ~~~~~~~ .. autoapisummary:: nessai.gw.reparameterisations.DistanceReparameterisation Functions ~~~~~~~~~ .. autoapisummary:: nessai.gw.reparameterisations.get_gw_reparameterisation Attributes ~~~~~~~~~~ .. autoapisummary:: nessai.gw.reparameterisations.logger nessai.gw.reparameterisations.default_gw .. py:data:: logger .. !! processed by numpydoc !! .. py:function:: get_gw_reparameterisation(reparameterisation) Get a reparameterisation from the default list plus specific GW classes. :Parameters: **reparameterisation** : str, :obj:`nessai.reparameterisations.Reparameterisation` Name of the reparameterisations to return or a class that inherits from :obj:`~nessai.reparameterisations.Reparameterisation` :Returns: :obj:`nessai.reparameteristaions.Reparameterisation` Reparameterisation class. dict Keyword arguments for the specific reparameterisation. .. !! processed by numpydoc !! .. py:class:: DistanceReparameterisation(parameters=None, allowed_bounds=['upper'], allow_both=False, converter_kwargs=None, prior=None, prior_bounds=None, **kwargs) Bases: :py:obj:`nessai.reparameterisations.RescaleToBounds` Reparameterisation for distance. If the prior is specified and is one of the known priors then a rescaling is applied such that the resulting parameter has a uniform prior. If the prior is not specified, then the distance is rescaled an inversion is allowed on only the upper bound. :Parameters: **parameters** : str Name of distance parameter to rescale. **prior** : {'power-law', 'uniform-comoving-volume'}, optional Prior used for the distance parameter **prior_bounds** : tuple Tuple of lower and upper bounds on the prior **converter_kwargs** : dict, optional Keyword arguments parsed to converter object that converts the distance to a parameter with a uniform prior. **allowed_bounds** : list, optional List of the allowed bounds for inversion **kwargs** Additional kwargs are parsed to the parent class. .. !! processed by numpydoc !! .. py:attribute:: requires_bounded_prior :annotation: = True .. !! processed by numpydoc !! .. py:data:: default_gw .. !! processed by numpydoc !!