Transport of Solar Energetic Particles

Wolfgang Dröge Universität Würzburg, D-97074 Würzburg, Germany

- Multi spacecraft observations of energetic particles
- Interaction of energetic particles with a magnetically turbulent fluid
- Anisotropic three dimensional transport in the Heliosphere
 diffusion parallel and perpendicular to the average magnetic field
- diagnostics for energetic processes at the Sun: nature of acceleration processes ratio of accelerated to escaping particles magnetic structures of the corona emission processes (photons, neutrons)

Collaborators: R. Gomez-Herrero, B. Heber, J. Kartavykh, A. Klassen, B. Klecker, G.A. Kovaltsov, S. Krucker

Solar Eruptive Events: Flares and Coronal Mass Ejections (CMEs)

- both lead to acceleration of energetic particles
- energy sources: magnetic reconnection, turbulence, shock waves

realistic transport models required to reconstruct particle properties at the Sun from spacecraft observations:

acceleration time scales, energy and charge spectra, relation to electromagnetic emission close to the Sun (radio, X-ray, gamma-ray)

are there more than one acceleration processes, stages, phases?

are interacting and escaping particles from the same population?

SOLAR PARTICLE PROPAGATION

COMBINATION OF:

- AZIMUTHAL TRANSPORT CLOSE TO THE SUN (CORONAL DIFFUSION)
- TRANSPORT PARALLEL TO *B*: PITCH ANGLE SCATTERING, FOCUSING
- CONVECTION WITH SOLAR WIND, ADIABATIC LOSSES
- POSSIBLE DIFFUSION ACROSS THE AVERAGE MAGNETIC FIELD

• DRIFTS

transport parallel to the average magnetic field

- ballistic gyrocenter motion along the field
- adiabatic focusing
- pitch-angle diffusion

transport equation for gyro-averaged phase space density $f(z,\mu,|p|,t)$ (focused transport)

$$I(s, E, \mu, t) = \int_0^t d\tau \ I_0(s, E, \mu, t - \tau) \ \underline{q}(s, E, \mu, \tau)$$

$$\frac{\partial f}{\partial t} + \mu v \frac{\partial f}{\partial z} + \frac{1 - \mu^2}{2L} v \frac{\partial f}{\partial \mu} - \frac{\partial}{\partial \mu} \left(D_{\mu\mu}(\mu) \frac{\partial f}{\partial \mu} \right) = q(z, \mu, t)$$

modeling parameters:

transport parameters are determined by properties of fluctuations (distribution of wave vectors, dynamical effects) <u>and</u> model used for wave-particle coupling resonant QLT (Jokipii 1966), non-resonant, non-linear extensions

observational input to distinguish between different theories :

1. rigidity dependence of mfps

flat between 1–10 MV increasing towards lower rigidities increasing towards higher rigidities

} ions

e

2. pitch angle distributions

information about: μ -dependence of $D_{\mu\mu}$ properties of fluctuations information about the interaction of energetic particles with magnetic turbulence in the solar wind can be obtained from spectral densities of the fluctuations:

observations of magnetic fluctuations consistent with

- ~ X % slab content
- ~ Y % 2-D content

making certain assumptions about the slab/2D ratio (X ~ 20, Y ~ 80), dynamical effects and the dissipation range (reduced scattering through 90 for electrons) allows to reproduce observed rigidity dependence of mfp quite well ...

however, predicted pitch angle distributions are in clear contradiction with observations

- smaller slab content at large wave numbers, few %
- strong decorrelation (a>>1) or non-linear effects

 10^{-1}

 10°

not observed

anisotropy of energy transfer – critical balance

Goldreich & Sridhar (1995)

- critical balance region close to \mathbf{k}_{\parallel}
- results in hydrodynamic-like caskade in wedge of wave vectors near $k_{\parallel} \sim 0$
- expect Kolmogorov scaling inside this region

reduced power spectrum in inertial range $P(f, \theta_B)$ exhibits

- $f^{-5/3}$ behaviour at $\theta_{\rm B}$ near 90
- *f*⁻² behaviour at small θ_{B}

$$P(f, \theta_B) = \iiint d^3 \mathbf{k} P(\mathbf{k}) \delta(2\pi f - \mathbf{k} \cdot \mathbf{V})$$
$$= \frac{1}{V} \iiint d^3 \mathbf{k} P(\mathbf{k}) \delta\left(\frac{2\pi f}{V} - k_x \sin \theta_B - k_z \cos \theta_B\right)$$

lateral transport of solar energetic particles undisturbed solar wind (no shocks/CMEs)

$$\frac{\partial f/\partial t}{\partial f} = \underbrace{\left[\frac{1}{r^2}\frac{\partial}{\partial r}(r^2K_{rr}) + \frac{1}{r\sin\theta}\frac{\partial K_{\phi r}}{\partial \phi}\right]\frac{\partial f}{\partial r} + \left[\frac{1}{r^2\sin\theta}\frac{\partial}{\partial \theta}(K_{\theta\theta}\sin\theta)\right]\frac{\partial f}{\partial \theta}}_{diffusion}}_{\left\{ + \left[\frac{1}{r^2\sin\theta}\frac{\partial}{\partial r}(rK_{r\phi}) + \frac{1}{r^2\sin^2\theta}\frac{\partial K_{\phi\phi}}{\partial \phi} + \Omega\right]\frac{\partial f}{\partial \phi}\right.}_{diffusion}}_{\left\{ + K_{rr}\frac{\partial^2 f}{\partial r^2} + \frac{K_{\theta\theta}}{r^2}\frac{\partial^2 f}{\partial \theta^2} + \frac{K_{\phi\phi}}{r^2\sin^2\theta}\frac{\partial^2 f}{\partial \phi^2} + \frac{2K_{r\phi}}{r\sin\theta}\frac{\partial^2 f}{\partial r\partial \phi}}_{drift}}_{\left\{ + \left[- \langle \mathbf{v}_d \rangle_r \right]\frac{\partial f}{\partial r} + \left[-\frac{1}{r} \langle \mathbf{v}_d \rangle_\theta \right]\frac{\partial f}{\partial \theta} + \left[-\frac{1}{r\sin\theta} \langle \mathbf{v}_d \rangle_\phi \right]\frac{\partial f}{\partial \phi}}_{d\phi}}_{convection}}_{\left\{ -V\frac{\partial f}{\partial r}\right\}}_{adiabatic energy change}}_{\left\{ +\frac{1}{3r^2}\frac{\partial}{\partial r}(r^2V)\frac{\partial f}{\partial \ln p}}_{sources}}_{\left\{ +Q \right\}}.$$

3-dimensional spatial diffusion in a Parker field (Ferreira, PhD thesis 2002)

lateral transport of solar energetic particles undisturbed solar wind (no shocks/CMEs)

transport equation for solar energetic particles with large anisotropies (Skilling 1975, Ruffolo 1995, Isenberg 1997, Dröge et al 2010)

$$\begin{split} \frac{\partial f}{\partial t} &= -\mu v b \cdot \nabla f - \frac{1-\mu^2}{2L} v \frac{\partial f}{\partial \mu} - \frac{\partial}{\partial \mu} \left(D_{\mu\mu}(\mu) \frac{\partial f}{\partial \mu} \right) + q(r,\mu,p,t) \\ &- \left(V_{sw} + V_d \right) \cdot \nabla f - \left[\frac{\mu(1-\mu^2)}{2} (\nabla \cdot V_{sw} - 3bb : \nabla V_{sw}) + \frac{2}{v} b V_{sw} : \nabla V_{sw} \right] \frac{\partial f}{\partial \mu} \\ &+ \left[\frac{1-\mu^2}{2} (\nabla \cdot V_{sw} - bb : \nabla V_{sw}) + \mu^2 bb : \nabla V_{sw} + \frac{\mu}{v} b V_{sw} : \nabla V_{sw} \right] p \frac{\partial f}{\partial p} \\ &+ \nabla \cdot (K_{\perp} \nabla f) \end{split}$$

stochastic differential equation solver:

$$d\boldsymbol{r}(t) = \mu \upsilon dt \boldsymbol{e}_{\boldsymbol{B}} + \sqrt{2\boldsymbol{K}_{\perp}} \, d\boldsymbol{W}_{\perp}(t) + \boldsymbol{\nabla}\boldsymbol{K}_{\perp} dt$$
$$d\mu(t) = \sqrt{2D_{\mu\mu}} \, dW_{\mu}(t) + \left[\frac{\upsilon}{2L}(1-\mu^2) + \frac{\partial D_{\mu\mu}}{\partial\mu}\right] dt$$

convection, adiabatic deceleration and drift taken into account by transformations between (Kocharov et al, 1998, Dröge et al 2010):

- 1) Heliocentric Inertial system
- 2) co-rotating system
- 3) co-moving system

estimate amount of perpendicular diffusion through observations of azimuthal intensity gradients

- relate intensity time profile to a longitudinal variation swept past single spacecraft by co-rotation
- simultaneous multi-spacecraft observations

look for events which exhibit

- time variations corresponding to spatial gradients perpendicular to B which are convected past the spacecraft
- no velocity dispersion

➡ dropouts, cutoffs

observer 4 deg inside of connection region exits after ~ 7 h due to co-rotation

 λ_{\perp} = (r/1 AU)² × cos(ψ) x (1-μ²)^{0.5} × 5E-4 λ_{\parallel}

Multi-Spacecraft Observations of Impulsive Solar Events Wibberenz & Cane (2006)

Connection plot and electron time profiles for the flare event of 1979 January 15.

electrons in the MeV range can be detected more than 80 from the flare longitude

evidence for lateral transport

Variation of peak intensities I_m with connection angle

lateral transport in the solar corona

diffusion on a sphere and escape from the sphere Reid 1964

used here:

modeling of electron event observed simultaneously on STEREO-A, STEREO-B, and ACE / Wind on 7 February 2010

N21 E11 M 6.4 02:20-02:39

Please acknowledge data provider, R. Gold at JHU/APL and CDAWeb when using these data. Generated by CDAWeb on Tue Jul 13 13:21:51 2010

ACE

STEREO-A

transport modeling of STEREO-A/B and ACE electron observations on 7 Feb 2010: 1. only time-dependent injection close to Sun and parallel tranport considered **red curves**

assumption of coronal transport and propagation parallel to IMF only does not explain observations → also perpendicular diffusion required !

transport modeling of STEREO-A/B and ACE electron observations on 7 Feb 2010: 2. combination of extended injection at the Sun and 3-D interplanetary tranport

 $\begin{aligned} \lambda_{\parallel} &= 0.07 / \cos^2(\psi) \text{ AU} \\ \lambda_{\perp} &= 0.15 * \lambda_{\parallel} * (r/1 \text{ AU})^2 * \cos(\psi) * (1-\mu^2)^{0.5} \\ \text{ scales with gyroradius (B and sin(θ))} \end{aligned}$

Application I: Reconstruction of acceleration parameters and plasma properties in impulsive solar flares (e.g., Kartavykh et al. 2007)

1. HOMOGENEOUS MODEL

ACCELERATION REGION OF LENGTH *L*

VOLUME AT THE TOP OF A CORONAL LOOP

IONS COLLIDE WITH ELECTRONS, PROTONS, HE⁺⁺, LEADING TO ENERGY LOSS AND CHARGE EXCHANGE PROCESSES

MEAN ESCAPE RATE PROPORTIONAL TO SPATIAL DIFFUSION COEFFICIENT

2. INHOMOGENEOUS MODEL

ACCELERATION VOLUME CONSISTS OF 2 DISTINCT REGIONS WHERE PARAMETERS ARE DIFFERENT BUT CONSTANT IN EACH OF THEM

TOTAL CHARGE AND ENERGY SPECTR OBTAINED AS WEIGHTED SUM OF PARTICLE POPULATION FROM THE 2 REGIONS

PROPAGATION IN SOLAR WIND SUBSEQUENTLY APPLIED TO TOTAL PARTICLE DISTRIBUTION

SYSTEM OF COUPLED FOKKER-PLANCK EQUATIONS FOR NUMBER DENSITY OF FE IONS OF CHARGE STATE *I*, $F_{I}(E,t)$

SOLVED BY METHOD OF STOCHASTIC DIFFERENTIAL EQUATIONS

$$\frac{\partial F_I}{\partial t} - \frac{\partial^2}{\partial E^2} (\varphi F_I) + \frac{\partial}{\partial E} (\psi F_I) - K \frac{\partial^2 F_I}{\partial x^2} + \frac{\partial}{\partial E} \left(\frac{dE}{dt} F_I\right) + \frac{F_I}{\tau_{I,I+1}} - \frac{F_{I-1}}{\tau_{I-1,I}} - \frac{F_{I+1}}{\tau_{I+1,I}} + \frac{F_I}{\tau_{I,I-1}} = X_I(T) \ \delta(t) \ \delta(E - E_0) / L$$

$$\varphi = D_p \left(\frac{dp}{dE}\right)^{-2}, \qquad \psi = \left(p^2 \frac{dp}{dE}\right)^{-1} \frac{\partial}{\partial E} \left(\frac{p^2 D_p}{dp/dE}\right)$$

$$K = K_0 (Q/A)^{S-2} E^{(3-S)/2}$$
$$D_p = D_0 (Q/A)^{2-S} E^{(S-1)/2}$$

SPATIAL AND MOMENTUM DIFFUSION

TIME SCALES FOR:

ACCELERATION

 $\tau_C = E/|(dE/dt)_{Coul}| \propto E^{3/2}A/(Q^2N)$ COULOMB LOSSES

ESCAPE

 $\tau_D = L^2/K \propto (Q/A)^{S-2} E^{(S-3)/2}$

 $\tau_{I,J}$: Ostryakov et al. 2000

 $\tau_A = p^2 / D_p \propto (Q/A)^{S-2} E^{(3-S)/2}$

CHARGE EXCHANGE

for low-energy (< 1 MeV/n) ions effects adiabatic deceleration are important reconstruction of charge spectra of Fe ions in impulsive solar events

mean charge of accelerated iron for $T = 3.16 \times 10^6$ K, $\tau_A / \tau_D = 0.1$ and $\tau_A N = 5 \times 10^{10}$ s cm⁻³ (dashed), $\tau_A N = 10^{11}$ s cm⁻³ (dashed-dotted), $\tau_A N = 2 \times 10^{11}$ s cm⁻³ (dotted curve).

solid curve is equilibrium mean charge of iron for $T = 3.16 \times 10^6 \text{ K}$

- recent observations of the iron mean charge in impulsive SEP events (Moebius et al., 2003) have shown a strong energy dependence in the range 0.18-0.55 MeV/nucleon
- data points typically lie to the left of the equilibrium spectra
- energy dependence can not easily be explained within the framework of current acceleration models

effect of adiabatic deceleration results in a shift of charge spectra:

Fe ions start at sun with \sim twice the energy they are observed at 1 AU after one day

inclusion of above effect allows meaningful interpretation of charge and energy spectra

reconstruction of electron spectra from multi-spacecraft observations

single power law in momentum

 `impulsive, short duration'' event (SDE)
 double power law
 in momentum

comparison of electron (~ 1 MeV) and gamma-ray (~ 0.3) spectral indices

dots:	ISEE-3
triangles:	Helios
open symbol	s: LDEs
filled symbol	s: SDEs
dashed line:	thin target
solid line:	thick target

observation of particles from the decay of solar neutrons

FIG. 2.—Solar system geometry at the time of the 1982 June 3 solar flare in a view perpendicular to the ecliptic plane. Protons from the flare are initially confined to field lines far from the Earth, while neutrons cross the field freely until they decay.

protons Evenson et al. 1983 ApJ 274, 875

FIG. 1.—128 s accumulations of the counting rate of > 2 MeV gamma-rays at the *ISEE* 3 spacecraft (Fig. 1*a*: 1980 June 21; Fig. 1*b*: 1982 June 3). The detector is a 1.4 kg CsI crystal enclosed in active anticoincidence shielding.

FIG. 3.—The flux of 25-45 MeV protons observed at *ISEE 3*. Two-hour averages are plotted. The gamma-ray arrival time is indicated by a dashed line.

electrons Dröge et al. 1996 ApJ 464, L87

FIG. 2.—Energy spectrum of the excess electrons (*filled circles*) and theoretical prediction for decay electrons in the rest frame of the parent neutron (*dashed line*) and for the estimated neutron spectrum for the 1980 June 21 flare (*solid line*).

FIG. 4.—Neutron source spectrum of the 1980 June 21 flare compiled from various observations (see text for details).

evolution of particle distributions in the inner heliosphere

impulsive injection

Fearless Forecasts

University of Alaska and Exploration Physics International, Inc. http://gse.gi.alaska.edu/index.html

realistic configurations of interplanetary magnetic field

SUMMARY

- good phenomenological description of parallel transport of solar particles in impulsive events
- electron pitch angle distributions not consistent with form of $D_{\mu\mu}$ predicted by dynamical QLT
- reconstruction of timing, energy and charge spectra of particles injected on field line connected to spacecraft, acceleration processes, correlation with electromagnetic emission
- tools for modeling anisotropic 3D transport are being developed
- evidence for significant perpendicular transport ($\lambda_{\perp} / \lambda_{\parallel} \sim 10^{-4} 10^{-1}$) in the events studied so far
 - \rightarrow indication for anticorrelation between λ_{\perp} and λ_{\parallel}

possibilities to explore:

- ratio of accelerated to escaping particles
- nature of acceleration process
- transport of energetic particles and magnetic structures in the solar corona
- science goals for future missions (Solar Orbiter, Solar Probe ...)