

Non-thermal electron rate at loop-top and foot-point sources of solar flares: implications for electron acceleration

Paulo Simões Eduard Kontar

School of Physics and Astronomy University of Glasgow

> Workshop on High Energy Flare Physics 25-26 June 2012 University of Glasgow

Introduction

X-ray flare images: Yohkoh and RHESSI

Thermal coronal source: E < ~10keV Non-thermal chromospheric sources (foot-points): E > 20keV Non-thermal coronal source E > ~20keV

Many authors investigated the photons intensity and/or spectral index of loop-top and foot-point sources. Some examples: Petrosian et al. (2002): 18 Yohkoh events Battaglia & Benz (2006): 5 RHESSI events Tomczak & Ciborski (2007): 117 Yohkok events

Differences and evolution of photons counts and spectral index of the sources

So far, no estimative of the **number** of electrons at the non-thermal loop-top source were attempted.

Introduction

Ideally, one could infer the electron rate the the loop-top and foot-points and verify how these values change over time.

With RHESSI, we can try to estimate the electron rate integrating over a long time (entire impulsive phase): counts needed.

Assuming that the acceleration region is small (point): Electron rate at LT is due to trapped + precipitating population Electron rate at FP is due to precipitating population

R=1 traditional thick-target model (beam streaming down towards foot-points) R>1 partial trapping (magnetic trap, pitch-angle scattering) R<1 "then we have a problem" (Marina Battaglia, last week)

Outline

- 1. Select flares with a spatially resolved non-thermal loop-top source
- 2. Imaging spectroscopy: modeling thin (LT) and thick-target (FP) sources
- 3. Measure source sizes
- 4. Calculate the electron rate
- 5. Discuss the implications of the results

Flare Selection

Events with resolved loop structure (loop-top and foot-point sources) No overlapping of the sources Strong events: enough counts for imaging spectroscopy Non-thermal loop-top source resolved.

Flare	А	В	С	D
Date	2002-07-23	2003-11-02	2011-02-24	2011-09-24
Time	00:27:26	17:15:54	07:29:40	09:35:53
∆t [s]	284	246	176	82
GOES	X8.3	X4.8	M3.5	~X1.9

Methodology

CLEAN images

- detectors 3 to 8
- 19 energy bins 10-100keV (log-spaced)

clean_beam_width: visibility forward-fitting of foot-points

Imaging spectroscopy: Foot-points: thermal + thick-target Loop-top: thermal + thin-target

Non-thermal models set as single power-law with fixed energy range (Emin=20keV)

Results: Thick-target Electron spectral index and integrated electron rate (NFP electrons/s)

Thin-target Electron spectral index and the product <nVF> (electrons /cm²/s)

Calculate electron rate at looptop (need plasma density *n* and source size *L*)

$$\dot{N}_{LT} = \frac{\langle nV\bar{F} \rangle}{nV}S = \frac{\langle nV\bar{F} \rangle}{nL},$$

Comparing CLEAN and visibility forward fitting: footpoint size

2002 July 23

Beam width factor = 2.3

2003 November 02

Beam width factor = 2.0

2011 February 24

Beam width factor = 1.9

2011 September 24

Beam width factor = 2.4

Maps and spectroscopy: 2002-07-23

Maps and spectroscopy: 2003-11-02

Maps and spectroscopy: 2011-02-24

Maps and spectroscopy: 2011-09-24

Source geometry

$$\dot{N}_{LT} = \frac{\langle nV\bar{F} \rangle}{nV}S = \frac{\langle nV\bar{F} \rangle}{nL},$$

Plasma density

$$EM = n^2 V_{th},$$
$$V_{th} = A_{th} D_{th},$$

	Flare	2002- 07-23	2003- 11-02	2011- 02-24	2011- 09-24
A _{th}	10 ¹⁸ cm ⁻²	0.57	2.24	0.91	0.34
D _{th}	10 ⁸ cm	9.7	11.5	8.5	6.0
V _{th}	10 ²⁷ cm ³	0.55	2.57	0.78	0.20
L	10 ⁸ cm	5.18	4.26	8.30	4.7
n	10 ¹⁰ cm ⁻³	26	13	6	24

Flare	2002-07-23	2003-11-02	2011-02-24	2011-09-24
NLT	99.3 ± 14.4	248.2 ± 47.0	1.6 ± 0.4	19.2 ± 6.8
NFP	30.8 ± 4.6	150.5 ± 10.5	1.0 ± 0.1	5.0 ± 1.1
R	3.2 ± 0.7	1.6 ± 0.3	1.5 ± 0.4	3.8 ± 1.6
Uncert.	22%	19%	27%	42%

NLT, NFP in electrons/s

R > 1

Partial trapping of electrons:

magnetic trapping, pitch-angle scattering (collisions and/or waves) Note:

- size of acceleration region unknown;
- pitch-angle distribution unknown;
- magnetic mirror ratio unknown.

R=1 Traditional thick-target model

R<1 <u>"we have a problem"</u>

Magnetic trapping

Collisionless magnetic trapping

 $I = T + P \qquad \dot{N}_{FP} = P$ $T = \xi I \qquad \dot{N}_{LT} = P + T$ $P = (1 - \xi)I \qquad R = \frac{\dot{N}_{LT}}{\dot{N}_{FP}} = \frac{1}{1 - \xi}$ $\xi = 1 - \frac{1}{R}$ $\frac{T}{I} = \xi = \frac{\int_{-\mu_0}^{\mu_0} f(\mu)d\mu}{\int_{-1}^{1} f(\mu)d\mu}$ $\frac{P}{I} = 1 - \xi = \frac{\int_{-1}^{-\mu_0} f(\mu)d\mu + \int_{\mu_0}^{1} f(\mu)d\mu}{\int_{-1}^{1} f(\mu)d\mu}$

2 pitch-angle distributions: Isotropic Narrow beam along magnetic field

Pileup:

2 photons at E arriving at the same time are counted as one event with 2*E.

Spatially integrated spectra: correcting pileup gives a difference of 24%, 15% and 1.6% in NFP, for the 3 flares, respectively. 2 X-class flares, 1 M-class flare.

10000 b) C) a) 1000 count rate 100 uncorrected corrected 1st order pileup 10 2nd order pileup det: 345678 10 f) d) e) 0.8 0.0 Corr/Uncor 0.2 2002/07/23 00:27:26.000+284.0 2003/11/02 17:15:54.584+246.4s 2011/02/24 07:29:40.000+176.05 0.0 10 100 10 100 10 100 photon energy [keV] photon energy [keV] photon energy [keV]

No pileup correction for images.

In our analysis, other uncertainties reach $\sim 20\%$ - 27%, and still R > 1.