A MODERN INFERENCE TOOLBOX Towards fast, scalable Bayes

12. Dezember 2014

Dr Ewan Cameron

University of Oxford (Zoology) SEEG / Malaria Atlas Project

OVERVIEW

- 1. Where we are: Bayes in astronomy
- 2. Why is Bayes computationally challenging?
- 3. Towards fast, scalable Bayes

WHERE WE ARE: BAYES IN ASTRONOMY

- the Bayesian approach is becoming ever more popular: a trend largely shaped by in-field textbooks such as
 - [Bayesian Logical Data Analysis for the Physical Sciences]] (Gregory, 2010)
 - · [Practical Statistics for Astronomers] (Wall & Jenkins, 2012)
 - [Statistics, Data Mining, and Machine Learning in Astronomy] (Ivezic et al., 2014)
- ★ and occasionally by more general references: e.g.
 - · [Bayesian Data Analysis] (Gelman et al., 2004/2013)
 - [Gaussian Processes for Machine Learning] (Rasmussen & Williams, 2006)

- * astrostatistics themed conferences & summer schools are now a thing:
 - the [Statistical Challenges in Modern Astronomy'] series at Penn State
 - · [Statistical Challenges in 21st C. Cosmology] (IAUS306)
 - [Bayesian astrophysics: XXVI Canary Islands Winter School of Astrophysics]
- ***** as are astrostatistics sessions at statistics conferences:
 - $\cdot~$ at the ISI World Statistics Congress (e.g. HK 2013)
 - at ISBA (e.g. Kyoto 2013)

- early adopters have had great success applying established techniques: e.g.
 - hierarhical modelling (e.g. SNa fitting: Mandel et al., 2011; stellar eccentricities: Hogg et al., 2010)
 - Gaussian processes for spatial fields (e.g. Wandelt et al., 2004; Jasche & Kitaura, 2010)
 - Gaussian processes as non-parametric noise models (e.g. Gibson et al., 2012)
 - Bayesian model averaging / model selection (e.g. cosmology: Trotta 2008; exoplanets: Feroz et al., 2011)
 - Approximate Bayesian Computation (e.g. Cameron & Pettitt, 2012; Weyant et al., 2013)

- nevertheless, few graduates will have received any statistical training by the end of their PhD
- most astro-statisticians have only a superficial knowledge of mathematical statistics: this limits the potential for cross-disciplinary exchange
- * we're rarely at the forefront of methodology (with the exception of nested sampling, perhaps)
 - cf. ``What we talk about when we talk about fields'' (Cameron, 2014: http://arxiv.org/abs/1406.6371)
- in-depth (i.e., full-time / funded) collaborations with statisticians are rare

BY CONTRAST: IN GENETICS, BIOLOGY, AND EPIDEMIOLOGY:

 in the ``bio-sciences'' long-term collaborations with top statisticians are fostered to develop cutting edge techniques for domain-specific applications ...

... with exciting results & high impact publications!

BY CONTRAST: IN GENETICS, BIOLOGY, AND EPIDEMIOLOGY:

 Myers et al. (2010) in Science: "Drive Against Hotspot Motifs in Primates Implicates the PRDM9 Gene in Meiotic Recombination"

Towards fast, scalable Bayes

BY CONTRAST: IN GENETICS, BIOLOGY, AND EPIDEMIOLOGY:

* Kong et al. (2012) in Nature: ``Rate of de novo mutations and the importance of father's age to disease risk''

BY CONTRAST: IN GENETICS, BIOLOGY, AND EPIDEMIOLOGY:

★ Bhatt et al. (2013) in Nature: ``The global distribution and burden of dengue''

BY CONTRAST: IN GENETICS, BIOLOGY, AND EPIDEMIOLOGY:

* Gerland & Raftery et al. (2014) in Science: ``World population stabilization unlikely this century''

WHERE WE ARE IN GRAVITATIONAL WAVE ASTRONOMY

- * we're at Type I civilization (on the Kardashev scale): we use all the resources on our planet, but haven't ventured further afield!
 - Bayesian model selection is well used: typically implemented via nested sampling with multinest
 - hierarchical models solve routine inference problems like dealing with selection bias
 - some novel techniques for speeding up likelihood evaluations are being explored

WHERE WE ARE IN GRAVITATIONAL WAVE ASTRONOMY

- * we're at Type I civilization (on the Kardashev scale): we use all the resources on our planet, but haven't ventured further afield!
 - Bayesian model selection is well used: typically implemented via nested sampling with multinest [but no sign of SMC or particle filtering]
 - hierarchical models solve routine inference problems like dealing with selection bias [but no sign of JAGS/STAN, or non-parametrics]
 - some novel techniques for speeding up likelihood evaluations are being explored [but no sign of ``Russian roulette'' series truncations, the unscented transform, or subset posteriors]

WHY IS BAYES COMPUTATIONALLY CHALLENGING?

WHY IS BAYES COMPUTATIONALLY CHALLENGING?

- the complex models required for `real-world' problems rarely allow for analytic solutions or offer low-dimensional sufficient statistics
- \star approximate inference via Markov Chain Monte Carlo is usually possible (unless the likelihood is unavailable: hence, doubly intractable \rightarrow ABC), but:
 - posterior estimates convergence as $O(N^{-1/2})$ (cf. Tierney, 1994): so ``it is easy to get rough estimates, but nearly impossible to get accurate ones'' (Rue et al., 2008)
 - the design of an effective (efficient) MCMC transition kernel becomes more and more difficult as the model dimension increases

``MO DATA, MO PROBLEMS''

* MCMC is not a natural tool for Big Data inference:

- for iid observations the cost of likelihood function evaluation goes as O(n);
- while for more complex models (e.g. Gaussian processes; cf. Neal 1997) it can be as bad as $O(n^3)$;
- it's non-sequential: every time we add new data we need to recompute the posterior more-or-less `from scratch'
- it's difficult to parallelise efficiently without further approximation (cf. Scott et al. 2013)

TOWARDS FAST, SCALABLE BAYES

PREVIEW

[i] Hamiltonian MCMC

[ii] Sequential Monte Carlo

[iii] Pseudo-marginal MCMC

[iv] Consensus/Median Posteriors

- Hamiltonian MCMC = exploring the posterior with Hamiltonian dynamics:
 - · introduces a ``momentum'' term to the posterior: $H(\theta, p) \propto \exp\left(\log\left(\pi(\theta|y)\right) - \frac{1}{2}p \cdot p\right)$
 - improves the efficiency scaling with dimension: $\sim O(d^{\frac{5}{4}})$ compared to $O(d^2)$ for random walk MCMC
 - but requires `tuning' and computation/estimation of the gradient of *H*;
 - see for reference: Neal (2012) [arXiv:1206.1901]
 - first use in GW astronomy? Lentati et al., 2013

* RW MCMC vs HMC

- to-date there have been few astronomical applications except to large-scale structure (cf. Jasche & Kitaura 2010)
 - presumably because it's non-trivial to code from scratch and then tune to a given problem
- * hopefully this will change thanks to STAN (mc-stan.org):
 - $\cdot\,$ an open source package for MCMC sampling with HMC
 - includes the self-tuning NUTS (No-U-Turn) HMC sampler (Hoffmann & Gelman, 2011)
 - a BUGS/JAGS style programming interface lets the user quickly build and sample from hierarchical models

* Example STAN code

```
model {
  matrix[N,N] Sigma;
  // off-diagonal elements
  for (i in 1:(N-1)) {
    for (j in (i+1):N) {
      Sigma[i,j] <- eta_sq * exp(-rho_sq * pow(x[i] - x[j],2));</pre>
      Sigma[j,i] <- Sigma[i,j];</pre>
    3
  }
  // diagonal elements
  for (k in 1:N)
    Sigma[k,k] <- eta_sq + sigma_sq; // + jitter</pre>
  eta_sq ~ cauchy(0,5);
  rho_sq ~ cauchy(0,5);
  sigma_sq ~ cauchy(0,5);
  y ~ multi_normal(mu,Sigma);
}
```

A NOTE ON HIERARHICAL MODELS

- IMO, 90% of astrostatistical problems can be solved within hours (at most, a day) simply by writing the model out in hierarhical form & coding it up in STAN (or JAGS: Just Another Gibbs Sampler)
- * example from epidemiology: an EIV probit regression

$$\begin{array}{rcl} n_i^{\mathrm{Mic}} & \sim & \mathrm{Binom}(p_i^{\mathrm{Mic}}, n_i^{\mathrm{tot}}) \\ n_i^{\mathrm{RDT}} & \sim & \mathrm{Binom}(p_i^{\mathrm{RDT}}, n_i^{\mathrm{tot}}) \\ \Phi^{-1}(p_i^{\mathrm{Mic}}) & = & \alpha + \beta \times \Phi^{-1}(p_i^{\mathrm{RDT}}) \\ \{\Phi^{-1}(p_i^{\mathrm{RDT}})\} \; (i = 1, \dots, n^{\mathrm{obs}}) & \sim & F \\ & F & \sim & \mathrm{DP}(G_{\Theta}, m) \\ & \alpha, \; \beta, \; \Theta, \; m \; \sim \; \pi \end{array}$$

Towards fast, scalable Bayes

A NOTE ON HIERARHICAL MODELS

* example from epidemiology: an EIV probit regression (JAGS code)

```
model.iags <- "model {</pre>
for (i in 1:N) {
nx[i] ~ dbinom(px[i],n[i]);
ny[i] ~ dbinom(py[i],n[i]);
for (i in 1:N) {
                                                                  Eebrile children
                                                                  Non Febrile children
py[i] <- phi(alpha+beta*probit(px[i]));</pre>
alpha ~ dnorm(0.1);
                                                          [Microscopy]
beta ~ dnorm((0, 1);
for (i in 1:N) {
px[i] <- phi(gx[i]);</pre>
                                                          8
for (i in 1:N) {
gx[i] ~ dnorm(mu[label[i]],precision[label[i]]);
for (i in 1:K) {
mu[i] \sim dnorm(0,1);
precision[i] ~ dgamma(1,1);
for (i in 1:N) {
                                                                                  Prevalence (RDT)
label[i] ~ dcat(compprobs):
compprobs ~ ddirch(eta);
3"
```

- Sequential Monte Carlo (SMC) techniques first appeared in the 1950s in the study of self-avoiding random walks (cf. Hammersley & Morton, 1954)
 - · originally dismissed as ``poor man's Monte Carlo''

- rediscovered in the 1990s as powerful solutions to the problems of:
 - missing data imputation (Kong et al., 1994)
 - automated target tracking (Gordon et al., 1994)

- nowadays SMC methods are just as valuable as MCMC to the applied statistician
- used almost exclusively for state space models: e.g. when we have noisy observations of a random process evolving in time

- * but SMC methods are also ubiquitous as tools for `ordinary' Bayesian inference:
 - \cdot e.g. posterior sampling via `data tempering' (Chopin, 2001)
 - e.g. marginal likelihood estimation: including two cosmological applications (Wraith et al, 2009; Kilbinger et al., 2010)
- indeed any hierarchical model that can be written as a graphical model can be structured for SMC (Naesseth et al., 2014)

- whereas MCMC iterates a single `particle' through a given parameter space such that its path converges towards the target density, SMC iterates a whole population of weighted particles
 - in many applications the iteration will be from the prior to the posterior via `data tempering' or the thermodynamic path
 - importantly: the SMC posterior can be updated `online': just add new data and proceed (without having to start all over)
 - the key steps of SMC are: re-weighting, resampling, & refreshment

* example: re-weighting, resampling, & refreshment

- * keyword & references for further reading:
 - particle filtering, particle Gibbs, sequential importance sampling, population Monte Carlo
 - introduction/review: Doucet, de Freitas, & Gordon (2012)
 - http://www.stats.ox.ac.uk/~doucet/smc_resources.html
 - introductory book: [Monte Carlo Strategies in Scientific Computing] Liu (2002)
 - · advanced: Del Moral et al., 2006
 - extensions: [particle Gibbs w/ ancestor sampling] Lindsten et al., 2012
 - extensions: [sequential quasi-Monte Carlo] Gerber & Chopin, 2014 [read at the RSS on Wednesday!]

 * a wide class of Bayesian procedures have recently been `discovered' based on the observation that MCMC can still target the correct posterior if the acceptance ratio,

$$z = \frac{L(y|\theta')\pi(\theta')f(\theta|\theta')}{L(y|\theta)\pi(\theta)f(\theta'|\theta)}$$

is replaced with unbiased estimates of $L(y|\cdot)$,

$$z = \frac{\hat{L}(y|\theta')\pi(\theta')f(\theta|\theta')}{\hat{L}(y|\theta)\pi(\theta)f(\theta'|\theta)}$$

(cf. Beaumont, 2003; Andrieu & Roberts, 2009; Doucet et al., 2012)

 these `pseudo-marginal' MCMC algorithms can be useful when the likelihood is known conditional upon some unknown latent variables:

$$L(y|\theta) = \int L(y|z)\pi(z|\theta)dz$$

which suggests the importance sampling estimator,

$$\hat{L}(y|\theta) = \sum_{i=1}^{N} \frac{L(y|z_i)\pi(z_i|\theta)}{g(z_i)} \quad \text{for } z_i \sim g(\cdot)$$

- e.g. when the likelihood is known conditional upon some noisily-measured covariates
- some previous (`unwitting') applications of this form in astronomy: Hogg et al. (2010); Schneider et al. (2014)
- value of understanding context is access to statistical results on estimator choice for maximum efficiency

 $\star\,$ another case is where $\pi(z|\theta)$ is actually unknown (e.g., stochastic output from a computational simulation)

$$\hat{L}(y|\theta) = \sum_{i=1}^{N} L(y|z_i) \text{ for } z_i \sim \pi(z|\theta)$$

- this type of pseudo-marginal algorithm encompasses Approximate Bayesian Computation
- again, some previous (`unwitting') applications of this form in astronomy: `Bayesian simulation sampling' (Fardal et al., 2013)
- classic example is simulation of ancestor histories in population genetics

* example: ancestor history simulations (Beaumont et al., 2003)

- $\star\,$ yet another case is where $\pi(y|\theta)=f(y|\theta)/Z(\theta)$ is known only up to an intractible normalizing constant
 - e.g. the Ising model, spatial point processes, massive Gaussian Markov Random Fields
- $\star\,$ unbiased estimators for $1/Z(\theta)$ can be constructed using a ``Russian roulette'' approach (cf. Lyne et al., 2014)
 - write the unknown term as an infinite series expansion, but only evaluate to a random finite number of terms
 - parts of this idea come from the Quantum Chromodynamics literature!
 - [applicable to some problems in GW? Canizares et al., 2013; Lentati et al., 2014]

Towards fast, scalable Bayes

PSEUDO-MARGINAL MCMC

* example: ``Russian roulette'' GMRF (Lyne et al., 2014)

CONSENSUS MCMC

 in the 'Big Data' regime it can easily happen that we have a simple model with iid observations yet the sheer volume of data means that likelihood evaluation becomes a limiting step for MCMC:

$$y = \{y_1, y_2, \dots, y_n\} \sim f(\cdot | \theta^*)$$
 i.e., $L(y|\theta) = \prod_{i=1}^n f(y_i|\theta)$

* if we try to parallelise by splitting the data into msubsamples and distributing to m cores, we still have to wait for the slowest core to return its likelihood evalution before we can decide whether to accept or reject the proposed θ'

CONSENSUS MCMC

 * a `naive' solution is to allow MCMC to run separate chains on the subsetted data give to each core, and then recombine the posteriors as a product of Normals fitted to each (Scott et al., 2013):

$$\hat{\pi}(\theta|y) \propto \prod_{j=1}^{m} \hat{N}_{[\pi(\{y\}_m|\theta)\pi(\theta)]}(\theta)$$

* if we try to parallelise by splitting the data into msubsamples and distributing to m cores, we still have to wait for the slowest core to return its likelihood evalution before we can decide whether to accept or reject the proposed θ'

CONSENSUS MCMC

 this can give huge speed ups, but assumes the each subset posterior is well-approximated by a Gaussian

MEDIAN OF SUBSET POSTERIORS

- a more sophisticated solution for combining subset posteriors is to take a median
- but this requires some mathematical deliberation since a median of probability measures is not trivial to define
 - Minsker et al. (2014) solve this problem by introducing a kernel-based metric distance which has a median recovered via the Wieszfeld algorithm
 - $\cdot\;$ available as the Mposteriors package in R
 - suggested to `power up' each subset posterior as $L(\{y\}_m|\theta)^m\pi(\theta)$

Towards fast, scalable Bayes

MEDIAN OF SUBSET POSTERIORS

* GP example from Minsker et al. (2014):

AND MANY MORE

- * Other contemporary techniques left undiscussed:
 - Bayesian non-parametrics with the Dirichlet processes

 [e.g. semi-parametric error models; Cameron & Pettitt, 2013:
 fine structure constant paper II]
 [e.g. online classification via the Mondrian process;
 Lakshminarayan et al., 2014]
 - the unscented transform
 - [e.g. for building fast approximate likelihood functions; e.g. Goldberger et al., 2008]
 - Approximate Bayesian Computation [for intractible likelihoods: e.g., Cameron & Pettitt, 2013; Weyant et al., 2013]
 - INLA (the Integrated Nested Lapalce Approximation) and the SPDE approach to random fields

[for fast GP fitting: e.g., Rue et al., 2008; Lindgren et al., 2011]