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Basic	
  Idea	
  

•  High	
  energy	
  phase	
  in	
  the	
  early	
  universe	
  
excites	
  quantum	
  density	
  perturba%ons	
  and	
  
gravita%onal	
  waves	
  

•  These	
  seed	
  the	
  forma%on	
  of	
  structure	
  we	
  see	
  
today	
  

•  At	
  recombina%on,	
  z≈O(1000),	
  and	
  
reioniza%on,	
  z≈O(10),	
  there	
  are	
  free	
  electrons	
  
around	
  that	
  can	
  sca=er	
  light	
  towards	
  us	
  
–  If	
  they	
  see	
  a	
  quadrupolar	
  intensity	
  pa=ern	
  around	
  
them	
  we	
  see	
  polarized	
  light	
  	
  



Indirect	
  constraints	
  

•  Assume	
  some	
  scalar	
  perturba%ons	
  
•  Define	
  a	
  “tensor	
  to	
  scalar”	
  ra%o	
  r	
  to	
  set	
  the	
  
level	
  of	
  the	
  tensor	
  perturba%ons	
  

•  Compare	
  CMB	
  to	
  predic%ons	
  



Decomposi%on	
  of	
  CMB	
  

•  Temperature	
  fluctua%ons	
  T	
  
•  Polariza%on	
  fluctua%ons	
  
– Stokes	
  parameters	
  Q	
  &	
  U	
  
– Rewrite	
  as	
  a	
  “gradient”	
  or	
  “E-­‐mode”	
  pa=ern	
  and	
  	
  
“curl”	
  or	
  “B-­‐mode”	
  pa=ern	
  



Planck	
  2013:	
  ns	
  and	
  r	
  

Planck Collaboration: Cosmological parameters
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Fig. 21. 68% and 95% confidence regions on one-parameter extensions of the base ⇤CDM model for Planck+WP (red) and
Planck+WP+BAO (blue). Horizontal dashed lines correspond to the fixed base model parameter value, and vertical dashed lines
show the mean posterior value in the base model for Planck+WP.
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show the mean posterior value in the base model for Planck+WP.
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Planck	
  2014	
  

•  Planck	
  2014	
  results	
  due	
  soon	
  
•  Preliminary	
  results	
  were	
  presented	
  at	
  a	
  recent	
  
conference;	
  many	
  talks	
  available	
  online	
  at:	
  
– h=p://www.cosmos.esa.int/web/planck/
ferrara2014	
  

•  Parameter	
  constraints	
  now	
  come	
  from	
  a	
  
likelihood	
  that	
  op%onally	
  includes	
  high-­‐l	
  TE	
  
and	
  EE	
  spectra	
  in	
  addi%on	
  to	
  TT	
  	
  



•  in	
  G.	
  Efstathiou’s	
  Ferrara	
  talk,	
  see:	
  
– preliminary	
  2014	
  TT,	
  TE	
  &	
  EE	
  power	
  spectra	
  
– preliminary	
  2014	
  r	
  vs	
  ns	
  plot	
  



Less	
  indirect	
  constraints	
  

•  Density	
  waves	
  have	
  a	
  symmetry	
  that	
  stops	
  
them	
  producing	
  a	
  “curl”	
  or	
  “B-­‐mode”	
  pa=ern	
  
in	
  the	
  CMB	
  polariza%on,	
  they	
  only	
  make	
  a	
  
“gradient”	
  or	
  “E-­‐mode”	
  pa=ern	
  	
  

•  Gravity	
  waves	
  produce	
  both	
  E-­‐	
  and	
  B-­‐	
  mode	
  
pa=erns	
  in	
  the	
  CMB	
  polariza%on…	
  



BICEP	
  2014:	
  B-­‐modes	
  at	
  150	
  GHz!	
  

Bicep	
  2	
  Results	
  Paper	
  2014	
  



But	
  is	
  it	
  primordial?	
  

•  A	
  main	
  challenge…	
  



Planck	
  PIP30:	
  Dust	
  is	
  important!	
  
Planck Collaboration: Dust polarization at high latitudes

Fig. 9: Planck 353 GHz DBB

` angular power spectrum computed on MB2 defined in Sect. 6.1 and extrapolated to 150 GHz (box
centres). The shaded boxes represent the ±1� uncertainties: blue for the statistical uncertainties from noise; and red adding in
quadrature the uncertainty from the extrapolation to 150 GHz. The Planck 2013 best-fit ⇤CDMDBB

` CMB model based on temper-
ature anisotropies, with a tensor amplitude fixed at r = 0.2, is overplotted as a black line.

Appendix D.1 confirms that the result does not depend on the
method of computing the power spectrum.

This power spectrum is extrapolated to 150 GHz as in
Sect. 6.2, with an extrapolation uncertainty estimated from the
inferred dispersion of �d. Our final estimate of the DBB

` spec-
trum is presented in Fig. 9, together with its 1� error budget.
For the first bin, `= 40–120, the expected level of dust polarized
DBB

` , as extrapolated to 150 GHz, is 1.32⇥ 10�2 µK2
CMB (Fig. 9).

The statistical error, estimated from Monte Carlo simulations of
inhomogeneous Planck noise (presented in Appendix A for this
particular binning), is ± 0.29⇥10�2 µK2

CMB, so that the dustDBB

`
spectrum is statistically detected at 4.5� in this broad ` bin.

In order to assess the potential contribution from systemat-
ics, we have computed the dust DBB

` spectrum on MB2 on dif-
ferent subsets of the data and performed null tests, which are
presented in Appendix D.3. In this lowest bin of `, we do not ob-
serve any departure from what is allowed by noise. Nevertheless,
we stress that below the noise level our cross-spectra could be
subject to a positive or negative bias due to systematic e↵ects.
For example, if instead of taking the DetSets cross-spectra (as
we have done throughout this paper) we take the mean value
computed from the DetSets, HalfRings, and Years cross-spectra
(presented in Appendix D.3), the statistical significance of our
measurement is decreased from 4.5� to 3.6�.

The uncertainty coming from the MB2 definition (presented
in Appendix D.2) is 0.04 ⇥ 10�2 µK2

CMB for this bin, thus much
less than the statistical error. For this reason, it is not added to
the error budget. However, the spectral extrapolation to 150 GHz
adds an additional uncertainty (+0.28,�0.24) ⇥ 10�2 µK2

CMB to
the estimated power in MB2, added in quadrature in Fig. 9.

The expected value in this lowest-` bin from direct compu-
tation of theDBB

` power spectrum on MB2, as shown in Fig. 9, is
lower than (but consistent with) the statistical expectation from
the analysis of the 352 high Galactic latitude patches presented
in Sects. 5.2 and 6.2. This indicates that MB2 is not one of the
outliers of Fig. 7 and therefore its dust B-mode power is well rep-
resented by its mean dust intensity through the empirical scaling
lawD / hI353i1.9.

These values of the DBB

` amplitude in the ` range of the pri-
mordial recombination bump are of the same magnitude as those
reported by BICEP2 Collaboration (2014b). Our results empha-
size the need for a dedicated joint analysis of the B-mode po-
larization in this region incorporating all pertinent observational
details of the Planck and BICEP2 data sets, which is in progress.

6.4. Frequency dependence

We complement the power spectrum analysis of the 353 GHz
map with Planck data at lower frequencies. As in the analysis
in Sect. 4.5, we compute the frequency dependence of the BB

power measured by Planck at HFI frequencies in the BICEP2
field, using the patch MB2 as defined in Sect. 6.1.

We compute on MB2 the Planck DBB

` auto- and cross-power
spectra from the three Planck HFI bands at 100, 143, 217, and
353 GHz, using the two DetSets with independent noise at each
frequency, resulting in ten angular power spectra (100 ⇥ 100,
100⇥143, 100⇥217, 100⇥353, 143⇥143, 143⇥217, 143⇥353,
217 ⇥ 217, 217 ⇥ 353, and 353 ⇥ 353), constructed by combin-
ing the cross-spectra as presented in Sect. 3.2. We use the same
multipole binning as in Sect. 6.3. To each of these DBB

` spectra,
we fit the amplitude of a power law in ` with a fixed exponent

15



BICEP+Planck	
  

•  Cross-­‐correla%on	
  analysis	
  to	
  try	
  and	
  
disentangle	
  a	
  primordial	
  signal	
  from	
  dust	
  

•  …Wait	
  and	
  see!	
  



Main	
  Challenges:	
  Foregrounds	
  

•  Next	
  genera%on	
  of	
  ground-­‐based	
  B-­‐mode	
  
experiments	
  will	
  observe	
  at	
  mul%ple	
  
frequencies	
  
– See	
  e.g.	
  L.	
  Page’s	
  talk	
  from	
  Ferrara	
  

•  Balloons	
  can	
  cover	
  more	
  frequencies	
  
– Less	
  atmosphere	
  

•  Also	
  of	
  course	
  space	
  
– LiteBIRD	
  	
  	
  
– COrE+	
  



Foreground	
  Mi%ga%on	
  Techniques	
  

•  Choose	
  clean	
  areas	
  of	
  the	
  sky!	
  	
  Then	
  mask	
  
•  Template-­‐based	
  cleaning	
  
– Do	
  foregrounds	
  significantly	
  decorrelate	
  across	
  
frequencies	
  though?	
  

•  Parametric	
  modelling	
  
– E.g.	
  via	
  Gibbs	
  sampling	
  with	
  Commander	
  
– But	
  what	
  about	
  priors?	
  



Main	
  Challenges:	
  Systema%cs	
  

•  T-­‐>P	
  leakage	
  
•  E<-­‐>B	
  mixing	
  coming	
  from	
  finite	
  sky	
  patches	
  
•  …	
  



The	
  future	
  

•  Might	
  be	
  able	
  to	
  “de-­‐lens”	
  the	
  CMB	
  to	
  remove	
  
the	
  lensing	
  contribu%on	
  
–  In	
  principle	
  allows	
  one	
  to	
  push	
  to	
  much	
  lower	
  r,	
  
ul%mately	
  perhaps	
  to	
  10-­‐6!	
  

– This	
  uses	
  high-­‐l	
  informa%on	
  to	
  reconstruct	
  the	
  
lensing	
  poten%al	
  	
  

– See	
  Lewis	
  &	
  Challinor,	
  Phys	
  Rep	
  429	
  (2006)	
  1,	
  for	
  a	
  
discussion	
  and	
  original	
  references	
  	
  



More	
  on	
  template	
  cleaning…	
  

•  Following	
  Efstathiou,	
  SG	
  &	
  Paci	
  2009	
  
– Based	
  on	
  simula%ons,	
  now	
  seems	
  very	
  op%mis%c!	
  

•  Focus	
  on	
  “reioniza%on”	
  B-­‐modes	
  



Simulated	
  inputs…	
  4 Efstathiou, Gratton and Paci

Figure 1. Q (left) and U (right) maps: the upper panel shows CMB simulations. The remaining panels show the PSM at 70, 100, 143
and 217 GHz. The temperature scale (thermodynamic temperature) is in µK. All maps were generated at Healpix NSIDE=2048.

c© 0000 RAS, MNRAS 000, 000–000



Mask	
  and	
  smooth	
  B-mode detection at low multipoles 5

Figure 2. As Figure 1, but with maps generated at Healpix NSIDE=16 and a smoothing of 7◦ FWHM. The internal mask described in
the text has been applied to the PSM.

c© 0000 RAS, MNRAS 000, 000–000



Cf.	
  the	
  r=0.1	
  input	
  contribu%on	
  

6 Efstathiou, Gratton and Paci

Figure 3. Maps of the B-mode contributions to the primary CMB realizations (r = 0.1) shown in Figure 2.

Figure 4. PCL E and B-mode power spectrum estimates computed for the CMB simulations and foreground components of Figure
1. The power spectra are computed for the region of the sky outside the internal mask. No instrumental noise has been added to the
simulations. The blue points show the power spectrum estimates for the CMB. The red lines show the theoretical input CMB spectra.
The foreground power spectra are as follows: 70 GHz (dark blue); 100 GHz (purple); 143 GHz (orange); 217 GHz (green).

3 ILC COMPONENT SEPARATION

3.1 Summary

The internal linear combination method is very simple and well known (see e.g. Bennett et al. 2003; Eriksen et al. 2004b).

Suppose we have M maps T i(p) (temparature, Q, or U polarization at each pixel p) at different frequencies, we find the linear

combination

T (p) =

M
∑

i

wiT
i(p) (2)

that minimises the variance

Var(T ) = 〈T 2〉 − 〈T 〉2 (3)

c© 0000 RAS, MNRAS 000, 000–000



•  Model	
  data	
  as:	
  

•  Find	
  coeffs	
  by	
  minimizing:	
  

•  Soln	
  is:	
  

B-mode detection at low multipoles 11

power spectrum at low multipoles as shown in Figure 6. This is consistent with the fundamental limit of r ∼ 0.1 imposed by

the cross-correlation offset discussed in the previous section. However, notice that the weights are now even larger than for

the foreground-only case and so any instrumental noise will be highly amplified in the ILC solution.

For realistic experiments, we are therefore caught between a rock and a hard place. In the presence of instrumental
noise, we would like to minimise the noise when combining frequency channels (equation 22). However, this will not remove

foregrounds. If we use weights that minimise the foreground residuals (which we cannot find in principle because of cross-
correlation offset) we amplify the noise to unacceptable high levels.

4 TEMPLATE FITTING

The discussion of the previous Section shows that a purely blind component separation method such as ILC is fundamentally
limited for B-mode detection by the cross-correlation offset, even if foreground mismatch is negligible (i.e. a linear combination

exists which eliminates the foregrounds to high accuracy). To reduce the cross-correlation offset, a semi-blind technique is

required which utilises supplementary information on either the foregrounds or the primary CMB signal. In this Section we
investigate template fitting and show that this provides an acceptable method for B-mode analysis for Planck.

4.1 Summary

Let us model the data vector as

x = s + Fβββ + n, (25)

where s is the signal, F is a template matrix, βββ is a vector of unknown parameters and n is the pixel noise vector. For example,

the data vector x could be a vector of length 2Np consisting of the Q and U maps x ≡ (Q,U), βββ could be a vector of four

unknown amplitudes (β1
Q, β1

U , β2
Q, β2

U )T , and F a 2Np × 4 matrix consisting of two Q and two U foreground template maps

F =

























F 1
Q(1) 0 F 2

Q(1) 0
. 0 . 0

. 0 . 0

F 1
Q(Np) 0 F 2

Q(Np) 0
0 F 1

U (1) 0 F 2
U (1)

0 . 0 .

0 . 0 .
0 F 1

U (Np) 0 F 2
U (Np)

























. (26)

We find βββ by minimising

χ2 = (x− Fβββ)T C−1(x− Fβββ), (27)

where C is the covariance matrix (15). The solution is

βββ = (FT C−1F)−1(FT C−1x). (28)

The minimum variance estimate of the signal vector, ŝ, is the Wiener-filtered

ŝ = SC−1(x− Fβββ), (29)

(see e.g. Rybicki and Press 1992). If the data vector is noise-free and contains zero foreground, we see that template matching
recovers a ‘biased’ estimate of the signal,

ŝ = s − F(FTC−1F)−1FT C−1s. (30)

This is the analogue of (13) for template matching (and is identical for a single foreground/template if the covariance matrix

C is diagonal). Notice that as with equation (13) the offset is independent of the amplitude of the foreground template. Even
if there is no foreground in our signal, template matching will produce a cross-correlation offset in the recovered signal that

is independent of the amplitude of the foreground. As with the ILC method, the cross-correlation offset gives a fundamental

irreducible limit on the amplitude of a B-mode component detectable by template matching. The critical difference with
the ILC method is that the amplitude of the offset depends on the mismatch between the foreground matrices, FQ(i)FQ(j)

etc., and the appropriate sub-matrices CQQ etc. of C. The bigger the mismatch, the smaller the cross-correlation offset. The

method is therefore ‘semi-blind’ because it uses prior information on the signal+noise covariance matrix to determine the
vector βββ. As we will show below, this prior information reduces the cross-correlation offset by more than an order of magnitude

compared to the ILC method.

c© 0000 RAS, MNRAS 000, 000–000

B-mode detection at low multipoles 11

power spectrum at low multipoles as shown in Figure 6. This is consistent with the fundamental limit of r ∼ 0.1 imposed by
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limited for B-mode detection by the cross-correlation offset, even if foreground mismatch is negligible (i.e. a linear combination

exists which eliminates the foregrounds to high accuracy). To reduce the cross-correlation offset, a semi-blind technique is

required which utilises supplementary information on either the foregrounds or the primary CMB signal. In this Section we
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Let us model the data vector as

x = s + Fβββ + n, (25)

where s is the signal, F is a template matrix, βββ is a vector of unknown parameters and n is the pixel noise vector. For example,

the data vector x could be a vector of length 2Np consisting of the Q and U maps x ≡ (Q,U), βββ could be a vector of four

unknown amplitudes (β1
Q, β1

U , β2
Q, β2
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














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
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0 F 1

U (Np) 0 F 2
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




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




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


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The minimum variance estimate of the signal vector, ŝ, is the Wiener-filtered

ŝ = SC−1(x− Fβββ), (29)

(see e.g. Rybicki and Press 1992). If the data vector is noise-free and contains zero foreground, we see that template matching
recovers a ‘biased’ estimate of the signal,

ŝ = s − F(FTC−1F)−1FT C−1s. (30)

This is the analogue of (13) for template matching (and is identical for a single foreground/template if the covariance matrix

C is diagonal). Notice that as with equation (13) the offset is independent of the amplitude of the foreground template. Even
if there is no foreground in our signal, template matching will produce a cross-correlation offset in the recovered signal that

is independent of the amplitude of the foreground. As with the ILC method, the cross-correlation offset gives a fundamental

irreducible limit on the amplitude of a B-mode component detectable by template matching. The critical difference with
the ILC method is that the amplitude of the offset depends on the mismatch between the foreground matrices, FQ(i)FQ(j)

etc., and the appropriate sub-matrices CQQ etc. of C. The bigger the mismatch, the smaller the cross-correlation offset. The

method is therefore ‘semi-blind’ because it uses prior information on the signal+noise covariance matrix to determine the
vector βββ. As we will show below, this prior information reduces the cross-correlation offset by more than an order of magnitude

compared to the ILC method.
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For realistic experiments, we are therefore caught between a rock and a hard place. In the presence of instrumental
noise, we would like to minimise the noise when combining frequency channels (equation 22). However, this will not remove

foregrounds. If we use weights that minimise the foreground residuals (which we cannot find in principle because of cross-
correlation offset) we amplify the noise to unacceptable high levels.

4 TEMPLATE FITTING

The discussion of the previous Section shows that a purely blind component separation method such as ILC is fundamentally
limited for B-mode detection by the cross-correlation offset, even if foreground mismatch is negligible (i.e. a linear combination

exists which eliminates the foregrounds to high accuracy). To reduce the cross-correlation offset, a semi-blind technique is

required which utilises supplementary information on either the foregrounds or the primary CMB signal. In this Section we
investigate template fitting and show that this provides an acceptable method for B-mode analysis for Planck.

4.1 Summary

Let us model the data vector as

x = s + Fβββ + n, (25)

where s is the signal, F is a template matrix, βββ is a vector of unknown parameters and n is the pixel noise vector. For example,
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Q, β2
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. (26)

We find βββ by minimising

χ2 = (x− Fβββ)T C−1(x− Fβββ), (27)

where C is the covariance matrix (15). The solution is

βββ = (FT C−1F)−1(FT C−1x). (28)

The minimum variance estimate of the signal vector, ŝ, is the Wiener-filtered

ŝ = SC−1(x− Fβββ), (29)

(see e.g. Rybicki and Press 1992). If the data vector is noise-free and contains zero foreground, we see that template matching
recovers a ‘biased’ estimate of the signal,

ŝ = s − F(FTC−1F)−1FT C−1s. (30)

This is the analogue of (13) for template matching (and is identical for a single foreground/template if the covariance matrix

C is diagonal). Notice that as with equation (13) the offset is independent of the amplitude of the foreground template. Even
if there is no foreground in our signal, template matching will produce a cross-correlation offset in the recovered signal that

is independent of the amplitude of the foreground. As with the ILC method, the cross-correlation offset gives a fundamental

irreducible limit on the amplitude of a B-mode component detectable by template matching. The critical difference with
the ILC method is that the amplitude of the offset depends on the mismatch between the foreground matrices, FQ(i)FQ(j)

etc., and the appropriate sub-matrices CQQ etc. of C. The bigger the mismatch, the smaller the cross-correlation offset. The

method is therefore ‘semi-blind’ because it uses prior information on the signal+noise covariance matrix to determine the
vector βββ. As we will show below, this prior information reduces the cross-correlation offset by more than an order of magnitude

compared to the ILC method.
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Figure 9. Distributions of the tensor-scalar ratio for two simulations with r = 0 and r = 0.1. The dotted (red) lines show the distributions
for noise-free and foreground-free simulations for regions outside the internal mask. The solid (blue) lines show the distributions for
foreground subtracted noisy simulations, as described in the text.

where Sij , Φij and Nij are respectively the primordial CMB, residual foreground and noise covariance matrices. Now construct
the data vector

Yi = xi − F k
i βk

i , (βk
i = βk

(Q,U), if i ≡ (Q,U)), (41)

where the superscript denotes frequency. If the template subtraction removes the foregrounds, the average of (41) over noise-

realizations is

〈Yi〉 = si(1 −
∑

k

βk
i ), (42)

and if the coefficients βββ are independent of the signal the covariance matrix 〈YiYj〉 is

〈YiYj〉 = Sij(1 −
∑

k

βk
i )(1 −

∑

k

βk
j ) + Nij + Nk

ijβ
k
i βk

j . (43)

The solution for βββ is found by iteratively minimising (27) with C replaced by 〈YiYj〉 and ignoring any weak correlation

between the solution and the signal. The final data vector Y and its covariance matrix (43) are then used to compute the

likelihood function (15). The parameters βββ are well constrained by the data and so it is a good approximation to keep them
fixed at their central values. The main contribution of the βββ to the error budget is via the noise term (43).

In the simulations described here, we construct the data vector x from the four frequency channels 70, 100, 143, 217

GHz, since there is little additional sensitivity to primary CMB signal in the other channels. We use the 30 GHz and 353 GHz
channels as templates. The internal mask described in Section 2 is applied to all channels. The resulting noisy foreground

subtracted maps are shown in Figure 8. The upper panel of this figure shows the noise-free CMB simulations for r = 0.1 for

the regions that lie outside the internal mask. The second panel shows the reconstruction after foreground subtraction from
the noisy maps following the procedure described above. There is clearly a very good correspondence between the two sets of

maps. The third panel in Figure 8 shows the noise-free contribution of the B-mode to the Q and U maps. The foreground
subtracted reconstruction is shown in the lowest panel. Again, there is a good correspondence between the maps, but the

reconstructed maps are very noisy. In fact, instrument noise dominates over foreground mismatch. A substantial component

of the noise comes from the templates because the 30 and 353 GHz channels of Planck are significantly noisier than the main
‘CMB’ channels at ∼ 100 GHz.

The likelihood functions for r are shown in Figure 9. The dotted (red) lines show the likelihood functions applied to the

noise-free CMB maps (though with diagonal ‘regularizing’ noise applied, as described in Section 3) for the two simulations
with r = 0 and r = 0.1 for the regions outside the internal mask. These likelihoods are close to the ‘best’ that could be

achieved from a low resolution experiment in the absence of foreground contamination. The results from our noisy foreground

subtracted simulations are shown by the solid (blue) lines. The distribution for the model with r = 0 is peaked close to
r = 0, so clearly residual foreground mismatch is unimportant. The increased widths of the blue curves are caused by residual

instrument noise, including the noise in the template channels. All of the results described in this paper assume a nominal
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Table 3: Classification scheme of foreground removal techniques

Scheme cross-correlation offset foreground mismatch

Blind (e.g. ILC) Significant Small (given enough frequency bands)
Semi-blind (e.g. template fitting) Small Small (given enough templates)

Unblind (e.g. model fitting) Small (if model is correct) Small (if model is correct)

and foreground components with similar structure on the sky. The result is a cross-correlation offset that is independent of the
amplitude of the foregrounds. Any purely blind technique (e.g. harmonic ILC) will show a cross-correlation offset. Unless one

can isolate pure B-modes on a cut sky (see e.g. Lewis 2003), cross-correlation between the CMB E-modes and the foregrounds

can produce a potentially serious cross-correlation offset.
The amplitude of the cross-correlation offset can be reduced if some additional information is provided. We have classified

template matching as a ‘semi-blind’ technique because it makes use of some prior information, though it is not based on a

physical model of the foregrounds. The method requires a model for the signal (primordial CMB) covariance matrix and
the templates provide a model for the angular distribution of the foregrounds (spectral index variations can be taken into

account by adding more templates). As shown in the previous Section it is possible to reduce both cross-correlation offset and

foreground mismatch to negligible levels.
A third class of technique attempts to model the foregrounds by fitting a parametric physical model (Brandt et al. 1994;

Eriksen et al. 2006; Dunkley et al. 2008b). If the physical model is a correct representation of the truth, it is possible to reduce

both the cross-correlation offset and foreground mismatch to negligible levels. However, this type of technique is limited, in
practice, by the number of frequency channels available. The number of independent parameters describing the model must

be less than or equal to the number of frequency channels. For Planck polarization, this limits the number of independent

free parameters to be ≤ 7 (if the Q and U models are treated independently). This limits the complexity of the physical
model, limiting the scope for redundancy checks. Of course, if the model is incorrect the method will be limited by foreground

mismatch.

It is also useful to consider how foreground subtraction techniques are affected by instrumental noise. Instrumental noise
in a purely blind technique is, in a sense, ‘uncontrollable’. For example, the ‘ideal’ weights listed in the first three rows of Table

2 remove foregrounds to high precision. However, if they were applied to noisy data they would amplify the instrumental noise
to high levels (because many of the weights exceed unity). For Planck polarization, the resulting noise amplification would

be unacceptable. We have shown in Section 4.2 that in the template matching approach, instrumental noise is ‘controllable’

provided the templates have high signal-to-noise. Instrumental noise is a major problem for model fitting techniques. As far as
we are aware, nobody has yet developed a model fitting technique that incorporates prior information on the angular variation

of the spectral indices of the diffuse foregrounds (which vary slowly over the sky). As a proxy, model fitting is usually done

by independently fitting parameters in a very coarsely pixelized map. This reduces the effects of instrument noise on the
estimated parameters, but even then the effects of noise can be limiting. For example, in the analysis of the WMAP 5-year

polarization data at a resolution of NSIDE = 8 the synchrotron spectral index was computed at a resolution of NSIDE = 2
(48 pixels over the whole sky) in Dunkley et al. (2008a). Fairly strong (though not unreasonable) priors were imposed to find

convergent solutions (e.g. the dust spectral index, which is poorly constrained by the data, was kept fixed). Nevertheless,

Dunkley et al.’s results for the E-mode power spectrum at low multipoles compare well with those from the template cleaned
maps of Gold et al. (2008). It remains to be seen whether model fitting can perform well for the more difficult problem of

B-mode recovery for Planck. We hope to report on this in a future paper.

6 CONCLUSIONS

In this paper, we have used the Planck Sky Model to assess the impact of foregrounds on B-mode detection by Planck at

low multipoles. We have analyzed the internal linear combination technique and shown that the offset caused by E-mode

polarization pattern (cross-correlation offset) leads to a fundamental limit of r ∼ 0.1 for the tensor-scalar ratio even in the
absence of instrumental noise. This is comparable to the sensitivity limit of Planck if foregrounds are neglected. For realistic

Planck instrument noise, ILC amplifies the noise of the ‘cleaned’ polarisation maps to unacceptably high levels. Our results

show that ‘blind’ techniques such as ILC are unsuitable for detecting primordial B-modes from a future low-noise ‘CMBpol’
mission.

We have analysed template fitting, using internal templates constructed from the Planck data and devised a scheme to

approximate the likelihood function (14) from multi-frequency maps. We have shown that this scheme works well for Planck

and offers a feasible way of recovering primordial B-modes from dominant foreground contamination even in the presence of

noise. According to the results shown in Figure 9, Planck, after the nominal mission lifetime of 14 months, could set a useful
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