

Claiming the detection of transient gravitational waves

Chris Messenger - University of Glasgow

RAS - London, UK - 12th December 2014

Outline

- Detection rates
- The problem of detection
- Background estimation
- Significance
- Ongoing work

Detection rates

	Estimated			Number	% BNS	Localized	
	Run	BNS Range (Mpc)		of BNS	within		
Epoch	Duration	LIGO	Virgo	Detections	$5{ m deg}^2$	$20\mathrm{deg}^2$	
2015	3 months	40 - 80	-	0.0004 - 3	—	_	
2016 - 17	6 months	80 - 120	20 - 60	0.006 - 20	2	5 - 12	
2017 - 18	9 months	120 - 170	60 - 85	0.04 - 100	1 - 2	10 - 12	
2019 +	(per year)	200	65 - 130	0.2 - 200	3-8	8-28	dataction
2022 + (India)	(per year)	200	130	0.4 - 400	17	48	detection
Table 5. Detection rates for compact binary coalescence sources.							ruled out in
IFO	Source ^a	$\dot{N}_{ m low}~{ m yr}^{-1}$	$\dot{N}_{ m re}~{ m yr}^{-1}$	$\dot{N}_{ m high}~{ m yr}^{-1}$	$\dot{N}_{ m max}~{ m yr}^{-1}$		2015
	NS-NS	2×10^{-4}	0.02	0.2	0.6		
	NS–BH	7×10^{-5}	0.004	0.1			
Initial	BH–BH	2×10^{-4}	0.007	0.5			
	IMRI into IMBH			<0.001 ^b	0.01 ^c		
	IMBH-IMBH			$10^{-4 d}$	10 ⁻³ e		older paper with slightly different assumptions
Advanced	NS-NS	0.4	40	400	1000		
	NS–BH	0.2	10	300			
	BH–BH	0.4	20	1000			
	IMRI into IMBH			10 ^b	300 ^c		
	IMBH-IMBH			0.1 ^d	1 ^e		
						-	

LIGO-Virgo Collaboration, arXiv:1304.0670 (2013)

LIGO-Virgo Collaboration, CQG 27, 173001 (2010)

The basic problem

- Imagine you have a box containing your search.
- It is sensitive to real signals
 AND noise events. You cannot shield the detector from real signals.
- Every time it detects an event it outputs the "loudness" and the time.
- If you don't know the rate/ probability of noise events then how do you detect real events?

Inside the box

- We do actually know what's in the box.
- We construct a filter that is tuned to output large numbers when our particular signal is present and low numbers otherwise.
- Usually run over a large bank of templates.
- This is matched-filtering with tweaks (signal based vetoes) for deviations from Gaussianity.

LIGO-G1401381

More detectors

- Now we can start to use the signal properties to our advantage.
- Both detectors should be sensitive to the same signal but have different noise.
- So a **coincident** detection of similar loudness would indicate a signal.
- But there is still a chance that noise could conspire to trick us.

Background estimation

- What if we just offset the results of each detector by a fixed amount of time?
- Then there would be no chance that any coincident event could be considered a real signal!
- Any resulting coincidence would be representative of the noise, right?
- But what about contamination from signals? (the "Hamlet" issue).

Significance

- Our primary scheme for determining detection is to compare our loudest event(s) with the **estimated** background distribution.
- We then make claims based entirely on the consistency of our statistic with the background (estimate).
- If this significance is small enough (5-σ?) then we claim detection.

Big dog significance

significance is the ratio of the background (black/ grey) with the foreground (blue)

Hamlet : "to remove or not to remove? That is the question

• Ask a different question. What's the probability that this event came from an astrophysical distribution vs coming from the background?

$$B = \frac{\int d\vec{\theta} \, p(X|\vec{\theta}, \text{signal}) p(\vec{\theta}|\text{signal})}{p(X|\text{noise})}$$

Can also factor in what we think about detection prospects *prior* to the observation.

$$O = \frac{p(\text{signal})}{p(\text{noise})} \cdot \frac{\int d\vec{\theta} \, p(X|\vec{\theta}, \text{signal}) p(\vec{\theta}|\text{signal})}{p(X|\text{noise})}$$

 Would you equally value an SNR=8 event differently in the initial and advanced detector era?

Ongoing Work

- We are conducting 2 large mock-data challenges to test significance and astrophysical rates estimation.
- Significance resolving the removal vs nonremoval issue.
- Rates Testing biases, uncertainties and multiple detections.

Summary

- The advanced GW detector era is fast approaching and detections are anticipated.
- All detection criteria crucially hinge upon background estimation.
- Bayesian approaches could allow us to fold in event rate priors.
- We are in the process of testing our significance and rate estimation through extensive MDCs

https://dcc.ligo.org/LIGO-P1000146

Extra slides

Detection significance

- How do you determine the statistical significance of a GW event?
- We need to know/estimate the background noise distribution.
- But we can't turn off the foreground GW signals.
- Use a technique known as timeslides to estimate the background.

Time-slides. a) Simulated data from 2 detectors, b) detector 2 data is artificially slid in time with respect to detector 1.

A global network

LIGO-G1400947

Advanced detectors

- Advanced detectors have an ~10 X improvement in sensitivity.
- This gives an ~1000 X improvement in volume and therefore event rate!
- The design sensitivity volume includes ~10 galaxy superclusters.

