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GW Analysis

• The detector signal is correlated against single GW template (match filtering)               

� := {�i}mi=1h(f,�)s(f) = he(f) + n(f)

• Integration by quadratures, i.e.  evaluations of weighted inner products.  Quadrature rule 

given by the quadrature points and weights

hs|hi =
MX

k=1

!ks
⇤(fk)h(fk)

{fk,!k}Mk=1

• Correlation cost scales with the observation time (larger M)  and  the dimension of the  

parameter space (many evaluations of          )h.|.i



RAS 12th December 2014 Priscilla Canizares
3

GW Analysis

• Once we have a detection, we need to extract the physical parameters of the system. Ex. 

Markov chain Monte Carlo (MCMC) — requires repeated evaluations of the likelihood             

across the parameter space

- MCMC techniques are computationally expensive: Depends on the # of sampling points and 

dimensionality of the waveform space

P (s|h)

•  Need of numerical tools to handle and analyse GW data in feasible times. 

•  On going efforts to improve the efficiency of Bayesian inference methods include [see e.g.  J.  Veitch et al 

2014] a suitable choice of waveform parameterisation and better proposal distributions.

P (s|h) / exp

(hn(f)|n(f)i)

n = s(f)� h(f,�)
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Compression of the GW model 
without loss of information - 

 fewer computational operations.
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Compressed sensing 

• Compressed sensing (CS) [E. J. Candes et al 2006, D.L. Honoho 2006] major development in applied 

mathematics of the last decade. 

• Classically to store and reproduce signals they are 

sampled at fixed intervals.

- It allows one to get around the classical sampling limit and recover signals from fewer 

measurements.

- The optimal sampling strategies depend on the sparsity  of the signal and its structure 

[B. Adcock et al 2014]. 

- New developments and strategies are based on empirical evidences — mathematical 

justification built ad hoc.
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Find a Reduced basis [Greedy algorithm]

• Input: Set of training templates evaluated at a sample of (training) points                 

• Output:  The GW [reduced] basis (RB)  and  the associated points in parameter space             

{h(fk,�i)}i=D
i=1 {ei(f)}i=n

i=1 {�i}i=n
i=1

• Greedy algorithm ensures exponential convergence with the number of basis templates
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h(f,�) ⇠=
nX

i=1

ci(�)ei(f)

k = 1, ...,M

Reduced Order Modelling — Key facts 
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Find Empirical interpolation points [Greedy algorithm]

•Output: Subset of sampling points

• Input: Set of GW-basis functions                and sampling points  {ei}ni=1 {fi}Mi=1

{Fi}ni=1 ⇢ {fi}Mi=1 |n ⌧ M

{h(fk,�i)}i=D
i=1

f

�

f

k = 1, ...,M {ei(Fj)}i=n
i=0 j = 1, ..., n n << D, n << M

The set of EIM points is nested and hierarchical,

Reduced Order Modelling — Key facts 
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• Step (4) Carry out parameter estimation: Evaluate likelihood/posterior over parameter space using 

ROQ rule and, e.g., MCMC. ONLINE

• Step (3) Construct signal specific weights: Compute the weights to use in the quadrature rule once 

data has been collected. startup

• Step (2) Find empirical interpolation points: Find a set of points at which to match templates onto the basis.

OFFLINE

• Step (1) Construct reduced basis: Find a set of templates that can reproduce every template in 

the model space to a certain specified precision. OFFLINE

ROM Parameter Estimation Recipe 

wk

hs|h(�)i = 4<
MX

k=0

s⇤(fk)h(fk,�)

' 4<
nX

k=0

!kh(Fk,�)

!k =
MX

k=0

s⇤(fk)~e(fk)R �f

Rij = ei(Fj)

The cost of evaluating integrals scales lineally as the # of RBs m

[Canizares et al 2013]
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Burst waveform

Compressed Likelihood 

•Parameter estimation using ROM.
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Compressed Likelihood 

•Parameter estimation using ROM

TaylorF2 waveform (BNS) h(f,�) = A(�)f�7/6ei 
F2
3.5(�)

[P. Canizares et al 2014].
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Canizares, et al (2014)

Reduced Order Modelling
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• Surrogate models: quick and accurate way to generate waveforms [S. E. Field et al 2014,  see 

also Pürrer 2014] 

- Based on ROM builds a waveform (surrogate) model for arbitrary parameters

- No need of close form waveforms  

12

10

basis and build the empirical interpolant (see also the dis-
cussion in Section III C).

V. COST AND SPEEDUP FOR SURROGATE
MODEL PREDICTIONS

Next we discuss the cost (in terms of operation counts)
to evaluate a surrogate model. We also present the large
speedups that can be achieved when evaluating a sur-
rogate model for our nominal EOB example compared
to generating a fiducial waveform using the EOB solver
as implemented in the LAL software package, which we
refer to as the EOB-LAL code.

The complete surrogate model is given in (30) where
the m coe�cients Bi(t) in (19) and the 2m fitting func-
tions {Ai(�)}mi=1

and {�i(�)}mi=1

are assembled o✏ine as
described in Sections IIIA, III B, and III C. In order to
evaluate the surrogate model for some parameter �

0

we
only need to evaluate each of those 2m fitting functions at
�
0

, recover the m complex values {Ai(�0

)e�i�i(�0

)}mi=1

,
and finally perform the summation in (30). Each Bi(t)
is a complex-valued time series with L samples. There-
fore, the overall operation count to evaluate the surrogate
model at each �

0

is (2m � 1)L plus the cost to evaluate
the fitting functions.

Figure 10 shows timing results for the nominal EOB
test case with m = 10 and a surrogate error (31) uni-
formly below 10�7 for all mass ratios between 1 and 2.
The top panel confirms that the cost of evaluating the
surrogate model is linear in the number of samples L, as
discussed above.

FIG. 10. Top: Average time to generate a single fiducial EOB
waveform from a standard EOB code (circles) and through
evaluation of its surrogate (crosses). Here we show results
for the nominal example when using polynomial least squares
fits for the amplitudes and phases. Bottom: The speedup,
defined as the ratio of waveform generation times for EOB-
LAL code to the surrogate model.

Depending on the sampling rate, the speedup in eval-

uating the surrogate model compared to generating an
EOB waveform with the EOB-LAL code is between two
and almost four orders of magnitude. For a sampling
rate of 211 = 2,048 Hz, which is the rate used in the
S5 and S6 searches for gravitational waves from binary
black holes by the LIGO-VIRGO-GEO600 collaboration
[25, 47], the speedup is ⇡ 2,300 as shown in the bottom
panel of Fig. 10. This is about three orders of magnitude

faster than the EOB-LAL code.
The speedups indicated here are not an artifact of

studying waveforms from binaries with nearly equal
masses. Repeating these experiments for waveforms with
mass ratios from 9 to 10 (chosen so that the typical du-
ration ⇡ 11,000M and number of waveform cycles ⇡ 80
are comparable to our nominal EOB example), we find
that only m = 15 reduced basis waveforms are needed to
span the space with �m = 10�11. The resulting surro-
gate model has an error from (31) of . 8 ⇥ 10�9 with a
corresponding speedup in the online stage of about 5,000
at a sampling rate of 2,048 Hz. Again, the speedup is
about three orders of magnitude.
As already mentioned in Sec. IV, the fitting step for

building the surrogate potentially introduces the largest
errors in the surrogate model. For the EOB example,
these largest errors are still small (see Fig. 9) and sug-
gest that one does not need to include all 19 basis wave-
forms/empirical times in order to yield a su�ciently ac-
curate approximation. The top panel of Fig. 11 shows the
surrogate error in (31), maximized over 1,000 randomly
selected waveforms, as a function of the number of se-
lected RB waveforms m. After m = 7 there is little to
be gained by including more basis waveforms because the
surrogate error is roughly constant until m = 19 while,
from the bottom panel of Fig. 11, its evaluation time
continues to grow with m. The dash-dotted line in the
top panel shows the expected error computed by aver-
aging the surrogate’s error bound (33) over q. Taking
the average (maximum) of (33) over q we are guaranteed
surrogate errors of better than 10�5 (5⇥ 10�5), which is
su�cient for many GW applications. The actual errors,
which might be inaccessible for some fiducial waveform
models, are better than 10�7 (c.f. Fig. 9 and the solid
curve in the top panel of Fig. 11).

VI. CONCLUDING REMARKS AND OUTLOOK

We introduced a solution to the problem of quickly
and accurately generating predictions for a given fam-
ily of gravitational waveforms. The solution constructs a
surrogate for this fiducial set of waveforms in three o✏ine
steps. In the first step, a reduced basis is generated that
spans the space of waveforms in the given range of pa-
rameters. In the second step, an application-specific (i.e.,
empirical) interpolant is constructed using only these m
reduced basis waveforms. The empirical interpolation
method selects a corresponding set of m times that are
used to build the interpolant but requires knowing the

9

This is the culmination of the o✏ine steps. Only the m
reduced basis waveforms evaluated at the m empirical
times are needed to build the surrogate model and to
predict an approximation for a fiducial waveform at any
time and parameter value. In addition, the {Bi(t)}mi=1

are computed once and for all o✏ine; only the fitting
functions for the amplitude and phase need to be evalu-
ated during the online stage once � is specified.

IV. ASSESSING THE SURROGATE MODEL

One of the errors of interest for the complete surrogate
model is a discrete version of the normed di↵erence be-
tween a fiducial waveform and its surrogate, which is, for
L equally spaced time samples,

�t
LX

i=1

|h(ti;�)� h
S

(ti;�)|2 , (31)

where �t = (t
max

� t
min

)/(L � 1). We will sometimes
refer to this as the surrogate error. Recall, from (3) and
(11) that the square of the normed di↵erence between
two waveforms is directly related to their overlap. Other
errors of interest are the pointwise ones for the phase and
amplitude,

����
A(t;�)� A

S

(t;�)

A(t;�)

���� , |�(t;�)� �
S

(t;�)| . (32)

Figure 9 shows a variety of comparisons between the
surrogate and fiducial model for our EOB test case, using
L = 16,384 time samples [45]. The top plot shows that
the surrogate error (31) is uniformly below 10�7, where
the mass ratio q = 1.068 corresponds to the largest error.
The middle panel of Fig. 9 shows the fiducial EOB and
surrogate waveforms for q = 1.068. Both waveforms are
visually indistinguishable and, from the bottom panel of
the same figure, we see that both amplitude and phase
pointwise errors (32) are indeed very small. The largest
errors are . 10�3 and are smaller than: i) the di↵erences,
for the same quantities, between the EOB model and the
NR simulations used to calibrate the former [24], and ii)
the numerical error of those NR simulations (see, e.g.,
[46]) and of more recent state-of-the-art simulations [16],
as quantified through self-convergence tests. As discussed
in Sec. III C and App. E, these maximum errors for the
surrogate take place shortly after merger and are directly
related to the accuracy with which one can determine the
peak amplitude of the fiducial waveforms used to build
the surrogate.

In Appendix D we derive the following error bound for

FIG. 9. Top: Surrogate model error defined by (31), which
is related to the overlap error through (3), for 1,000 randomly
selected mass ratios. The mass ratio yielding the largest
surrogate model error is q = 1.068. Middle: The fiducial
EOB waveform and its surrogate prediction for q = 1.068.
There is visual agreement throughout the entire duration of
⇡ 12,000M . Bottom: The fractional errors (32) in the am-
plitude and the phase di↵erence between the fiducial EOB
waveform and its surrogate model prediction for q = 1.068.
The di↵erences are smaller than the errors intrinsic to the
EOB model itself as well as those of state-of-the-art numeri-
cal relativity simulations.

the discrete norm (31),

�t
LX

i=1

|h(ti;�)� h
S

(ti;�)|2

 ⇤m�m + ⇤m�t
mX

i=1

�
h(Ti,�)� h

S

(Ti,�)
�
2

. (33)

This bound identifies contributions from two sources.
The first term in (33) describes how well the empirical in-
terpolant (i.e., the basis and empirical nodes) represents
h(t;�). The expected exponential decay of the greedy er-
ror �m with m along with a slowly growing Lebesgue con-
stant ⇤m results in this term being very small. The term
⇤m�m corresponds exactly to the curve labeled “EIM
Bound” in Fig. 6. The second term in (33) is related
to the quality of the fit. Incidentally, the fitting step
has the dominant source of error in the surrogate model
compared to the first two steps of generating the reduced

S. E. Field et al 2014,

Further Developments
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Further Developments
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• Likelihood transformation techniques accelerates MCMC convergence but increases 

the evaluation time. Using surrogate models this cost can be reduced [ R . H. Cole and J. R. 

Gair 2014]

• New proposed approach to account for model uncertainties leading to systematic 
errors [C. J Moore and J. R Gair 2014]

• Controlled compression scheme that trade detection sensitivity for computational 
savings

See Chua’s Poster!
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• Compressed sensing is an a promising line of research towards development efficient 

pipelines to generate and analyse GW in feasible times. 

• Recent works show that Reduced Order Modelling has the potential to speedup 

gravitational-wave analysis by orders of magnitude without loosing accuracy.

• The cost of generating GW templates can be dramatically decreased using surrogate 

models.

Outlook
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