Detecting Gravitational Waves using a Pulsar Timing Array

Lindley Lentati
Cavendish Laboratory
Cambridge

...and why we havn't yet
Data problems:
Noise models
Computational problems:
High Dimensionality
Big datasets
Astrophysical problems:
Current limits getting interesting/depressing

Pulsar Timing

-Mass > our Sun

-20km across
-Hundreds rotations/sec -'lighthouse' effect

(a) Himber

Pulsar Timing

St. Catherine Church.

Pulsar Time
10:50:03:181

- Extremely precise astronomical clocks.

THE MOST ACCURATE TIME MEASURE

Spin period of PSR J0437-4715:
$P=0.00575745193671259 \mathrm{~s}+/-0.000000000000000002 \mathrm{~s}$!

- Period of pulsar known to 1 part in 10^{15}

Pulsar Timing

-Sensitive to nHz GWs
-Earth-pulsar distance changed
-See deviation in arrival time of pulse

Pulsar 1

Pulsar Timing

Also far away $\sim 1 \mathrm{kpc}=3 \times 10^{19}$ meters Change in path length from GWs:
\sim few hundred meters

$$
=0.1-1.0 \mu \mathrm{~s}
$$

Red: PSRCAT Pulsars $|b|<5^{\circ}$ (1245) Blue: PALFA Pulsars (113)

Jenet et al. 2004, ApJ, 606, 799

Pulsar Timing

Use a collection of pulsars: pulsar timing array
GW signal correlated between pulsars

Signal in Residuals
Clock errors:
monopole
Ephemeris errors:
dipole
GW signal:
quadrupole

The Hellings-Downs Curve

For an isotropic background the angular correlation has an analytic solution

$$
\mathrm{ab} \Gamma(\epsilon)=3\left(\frac{1}{3}+\frac{1-\cos \epsilon}{2}\left[\ln \left(\frac{1-\cos \epsilon}{2}\right)-\frac{1}{6}\right]\right)
$$

Smoking Gun of a real GW detection.

e.g. Hellings \& Downs, 1983, ApJL, 265, 39; Jenet et al. 2005, ApJL, 625, 123

Some predictions..

20 pulsars
100ns white noise
Detection in: 5 years (e.g. Jenet et al 2004)

Current IPTA dataset:
40 pulsars
20 years of data
Some < 100ns
.. Where's the detection?

Data challenges

Residuals:

Subtract expected time of arrival from actual time. <- 100ns white noise

Data challenges

Residuals:
Subtract expected time of arrival from actual time. <- 100ns white noise

Actual data:
J0437-4715
(one of the better pulsars)

Data challenges

Noise mostly due to the interstellar medium
Frequency dependent (goes as 1/f^2)

$$
t_{g}(v)=K D M /\left(v^{2}\right)
$$

$$
K \equiv 4.15 \times 10^{15} \mathrm{~Hz}^{2} \mathrm{~cm}^{3} \mathrm{pc}^{-1} \mathrm{~s}
$$

$$
\mathrm{DM}=\int_{0}^{L} n_{e} \mathrm{~d} l .
$$

Data challenges

Noise mostly due to the interstellar medium
Frequency dependent (goes as $1 / f^{\wedge} 2$)

J0437-4715 (Wrms $=0.651 \mu \mathrm{~s})$ post-fit

Data challenges

$\mathrm{J} 1713+0747(\mathrm{Wrms}=0.318 \mu \mathrm{~s})$ pre-fit

Data challenges

Intrinsic High Frequency
in arrival times

Known as 'Jitter'
Better telescopes wont help
Some pulsars already at limit

Data challenges

Intrinsic High Frequency variation in arrival times

Known as 'Jitter'
Better telescopes wont help
Some pulsars already at limit

Not necessarily Gaussian

Data challenges

Finally, Intrinsic Low Frequency variation in arrival times

Known as 'Timing Noise’

Either from magnetosphere, or core.. Origins mostly unknown

Stochastic Process as with DM

Individually can look just like Gravitational Waves

Computational challenges

$$
p(\mathbf{r} \mid \vec{\theta})=\frac{1}{\sqrt{\operatorname{det} 2 \pi \boldsymbol{\Sigma}(\vec{\theta})}} \exp \left(-\frac{1}{2} \mathbf{r}^{T} \boldsymbol{\Sigma}^{-1}(\vec{\theta}) \mathbf{r}\right)
$$

Residuals $\mathrm{r}=\left[\begin{array}{c}\mathbf{r}_{1} \\ \mathbf{r}_{2} \\ \vdots\end{array}\right] \quad$ The signal in this case is in the covariance matrix!

Covariance matrix for residuals:

$$
\boldsymbol{\Sigma}_{r}=\left\langle\mathbf{r r}^{\mathbf{T}}\right\rangle=\left[\begin{array}{cccc}
\mathbf{P}_{1} & \mathbf{S}_{12} & \cdots & \mathbf{S}_{1 l} \\
\mathbf{S}_{21} & \mathbf{P}_{2} & \cdots & \mathbf{S}_{2 l} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{S}_{l 1} & \mathbf{S}_{l 2} & \cdots & \mathbf{P}_{l}
\end{array}\right]
$$

Computational challenges

$$
p(\mathbf{r} \mid \vec{\theta})=\frac{1}{\sqrt{\operatorname{det} 2 \pi \boldsymbol{\Sigma}(\vec{\theta})}} \exp \left(-\frac{1}{2} \mathbf{r}^{T} \boldsymbol{\Sigma}^{-1}(\vec{\theta}) \mathbf{r}\right)
$$

$\vec{\theta}=($ GWB Amplitude, Spectral Index)

First Bayesian analysis In time domain.
(van Haasteren 2011)
Big Matrices (30k x 30k inversions)

Current Bayesian analysis
In Fourier domain. (Lentati 2013)

Much smaller matrices Much faster

Computational challenges

Dimensionality becoming an issue:
Up to 100 parameters for a single pulsar
Total can reach many hundreds or thousands

Most parameters are white noise related (scaling and quadrature terms):

> Not very covariant with low frequency noise Fix based on single pulsar analysis
> Can reduce parameter space to $50-100$ Use standard MCMC/MultiNest But not ideal

Options - Different Samplers for large dimensional problems
Gibbs Sampling (van Haasteren et al 2014)
Hamiltonian Sampling (Lentati et al 2013)

Still in general a problem

Astrophysical problems

Astrophysical problems

Ruling out large fractions of published models:
(M14) McWilliams 2014
(S13) Sesana 2013
(R14) Ravi 2014
Significant implications for Cosmology:
Mergers less frequent?

Energy lost through environment?

Decreases predicted amplitude compared to GW only evolution.

Astrophysical problems

J1909-3744 (Wrms $=0.110 \mu \mathrm{~s}$) pre-fit

11 years of data Very stable pulsar High frequency (avoids ISM) 100 ns rms

No evidence for low frequency noise of any kind!

$\log _{10}^{-17}$ GWB $^{-16.5}$ Amplitude

Summary

Current challenges:
Modelling the pulsars themselves, and the ISM in a reasonable way Large dimensionality of total problem (hundreds/thousands) Still fairly large matrices to deal with (few thousand x few thousand)

- Can do algebra on GPUs

Even so:
At the point where we *might* expect to see something.. ..but still nothing!

Cheers

