
Section 2:  Newton’s Law of Gravitation

In 1686 Isaac Newton published his 
Universal Law of Gravitation.

This explained gravity as a force of 
attraction between all matter in the 
Universe, causing e.g. apples to fall 
from trees and the Moon to orbit 
the Earth.

(See also A1X Dynamical Astronomy)

Consider two masses        and       , separated by 
distance

( we ignore for the moment the 
physical extent of the two masses –

i.e. we say that they are  point masses )

Gravitational force on        due to        is 
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Notes

1. The gravitational force is a vector – i.e. it has both magnitude 
and direction.

2. is a unit vector from        to       .   In other words,  acts 
along the straight line joining the two masses.

3. The  gravitational constant      is a fundamental constant of 
nature, believed to be the same everywhere in the Universe.
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4. The gravitational force on       due to        is of equal 
magnitude, but in the opposite direction, i.e.

5. Gravity is described as an Inverse-Square Law. i.e. the 
gravitational force between two bodies is inversely 
proportional to the square of their separation.
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6. The gravitational force per unit mass is known as the 
gravitational field, or gravitational acceleration.

It is usually denoted by

Aside

We shouldn’t be too surprised that      is an acceleration: 
Newton’s 2nd law states that  “Force  =  mass  x  acceleration”.

However, Newton’s 2nd law concerns  inertial mass while Newton’s
law of gravitation concerns  gravitational mass.   That these two 
quantities are measured to be identical to each other is a very 
profound fact,  for which Newton had no explanation,  but which 
much later led Einstein to his theory of relativity.

See P1 dynamics & relativity, and A2 special relativity
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Planets and stars are  not point mass objects.  To determine the 
net force on       due to        we must add together the forces
from all parts of       .

Suppose that        is
spherical,  and its
density (amount of mass
per unit volume) depends only on 

distance from 
the centre of .      
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We say that the density is 
spherically symmetric

e.g.



In this special case, the net gravitational force on       due to       
is exactly the same as if all of the matter in        were 
concentrated in a point at the centre of        .
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Section 3:  Surface Gravity and Escape Speed

Consider, therefore, a spherical planet of radius       and total 
mass        which has a spherically symmetric density distribution.

The gravitational field      at
the planet’s surface is 
directed radially towards
the planet’s centre, and
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The magnitude of       is known as the  surface gravity, often just 
denoted by           (i.e. it is not a vector).

For example

This means (assuming the Earth is spherical)
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measures the rate of acceleration of falling objects 
(neglecting air resistance).
g

For any other body       (e.g. another planet or moon) it is useful 
to write
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e.g. for  Mars :

So

EarthMars 533.0 RR =

EarthMars 107.0 MM =

-2
EarthMars sm69.3377.0 == gg (3.4)
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Exercise: Use the table of planetary data from the textbook 
and Section 1 to compute       for all the planets.

We can also express         in terms of average density

i.e.

So from (3.1)
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From eq. (3.6)

1. If two planets have the same average density, the larger
planet will have the higher surface gravity.

2. If two planets have the same radius, the denser planet will 
have the higher surface gravity.



Escape Speed

Consider a projectile launched 
vertically upwards at speed      from 
the surface of a planet, with surface 
gravity    .

As the projectile climbs, the planet’s 
gravity slows it down – its kinetic 
energy converted to potential energy.

In the animation we see the projectile 
slow to a stop, then accelerate back to 
the surface.
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If the initial speed is high enough, 
the projectile will never return to 
the surface.

We say that the projectile escapes
the planet’s gravity.

The minimum speed required to 
achieve this escape is known as the  
escape speed, and
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See A1XSee A1X
Dynamical Dynamical 
AstronomyAstronomy



For the Earth

For Jupiter

Note that the escape speed does not depend on the mass of the 
projectile.
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Section 4:  Tidal Forces
In Section 2 we pointed out that planets and moons (and indeed 
stars) are not point mass objects.  Consequently, they will be 
subjected to tidal forces since different parts of their interior 
and surface experience a different gravitational pull from 
neighbouring bodies.

We see this differential effect
with e.g. the Earth’s tides, due to
the Moon (and the Sun).

We now consider briefly the 
maths of tidal forces, before later
exploring some applications to planets
and moons in the Solar System.



Suppose that planet       and moon        are separated by distance       
(centre to centre)

Consider a small mass       at position      and

Tidal force between       and       due to the planet is equal to the 
difference in the gravitational force on       and      due to

Let the distance from       to      equal       , and assume   
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(We needn’t 
worry about 
forces being 
vectors here, 
since A, C and  
Q lie along a 
straight line)
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If we now use that                   then

So

We can write eq. (4.1) as     
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( Aside: Eq. (4.2) follows from the  Binomial expansion for

which is approximately                 if                 )
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The important point here is that the magnitude of the tidal force 
is an inverse-cube law:  i.e. it falls off more rapidly with distance 
than does the force of gravity.

So, if the planet      is far from the moon     , the tidal force 
experienced by the moon (and vice versa) will be small.

Conversely, however, if the moon lies very close to the planet, 
then the tidal forces on its interior may be considerable.

In a later section we will explore the consequences 
of this for the stability of moons in the Solar System.
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