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Section 5:  The Ideal Gas Law

The atmospheres of planets (and the Sun too) can be modelled 
as an Ideal Gas – i.e. consisting of point-like particles (atoms 
or molecules) moving in random directions and interacting 
through perfectly elastic collisions.



Section 5:  The Ideal Gas Law

The atmospheres of planets (and the Sun too) can be modelled 
as an Ideal Gas – i.e. consisting of point-like particles (atoms 
or molecules) moving in random directions and interacting 
through perfectly elastic collisions.

We assume that the atmosphere has an equation of state, 
which links its pressure, density and temperature:

TkNVP =

Volume of the gas

Gas pressure, a measure of 
the force of the collisions

3m

-2NmPa ≡

Number of particles 
in the gas

Boltzmann constant:
-123 KJ10381.1 −×

Gas temperature, a measure 
of the K.E. of the particles

Kdegrees Kelvin

(5.1)



We can also write eq. (5.1) in the form

Here                            is the  number density of gas particles.
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We can also write eq. (5.1) in the form

Here                            is the  number density of gas particles.

Also we can write

So if we introduce

Then, from eqs. (5.2) – (5.4)

TknP = (5.2)

VNn /=

m
n ρ
= (5.3)

Mass density of the gas

Average mass of a gas particle

Hm
m

=µ (5.4)

Average mass of a gas particle 
in units of mass of hydrogen atom

kg10674.1 27−×

Hm
TkP

µ
ρ

= (5.5)



• is the “mean square speed” of the gas particles

• Factor of 3 on the RHS comes from the 3 dimensions 
(“degrees of freedom”)  in which the particles can move.

The gas has energy of              per degree of freedom

The temperature of the gas is a measure of the  average
kinetic energy of the particles.

Suppose all particles have mass      .   Then we define

Note

m

Tkm 2
32

2
1 =υ (5.6)

2υ

Tk2
1



At a temperature of  absolute zero, i.e.        ,  all gas motions 
cease.   Gas pressure drops to zero.

K0

From eq. (5.5)

Substituting from eqs. (5.2) and (5.3)

Tkm =2
3
1 υ (5.7)

2
3
1 υρ=P (5.8)







Section 6:  Hydrostatic Equilibrium

The pressure  (and hence the density and temperature)  is not 
constant throughout a planetary atmosphere.  A balance is 
maintained between the outward  pressure force and the inward  
gravitational force.  

We call this balance  hydrostatic equilibrium.

Let’s assume (as we did in section 2 for the interior of a planet) that 
the density of gas in the atmosphere is  spherically symmetric.

We can then derive an expression for how the pressure changes as a 
function of height in the planet’s atmosphere.

(we do this using calculus, forming a  differential equation)



dr

A

r

A dr

m

Consider a small cylinder of gas 
in the planet’s atmosphere, the 
bottom of which is a distance       
from the centre of the planet.

Let the area of the cylinder be       
and its height be      .

Suppose the cylinder contains a 
mass        of gas.

What forces will be exerted on 
this cylinder by the rest of the 
atmosphere?...
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Let the area of the cylinder be       
and its height be      .

Suppose the cylinder contains a 
mass        of gas.

What forces will be exerted on 
this cylinder by the rest of the 
atmosphere?...

dr

A

The horizontal forces on the walls of the cylinder will cancel out

r

A dr

m



Upper face:
Downward  force, due to pressure 
exerted by gas above the cylinder 

dr)(upper drrPAF +−=

Notes:    (1)   we are taking upwards as positive

(2)    we are using here the relation
pressure  =  force per unit area

(6.1)

*

*   There will also be a downward force due to the weight of atmosphere above the 
cylinder,  but we don’t consider that here since it will also apply to the lower face.



Lower face:
Upward  force, due to pressure of 
the gas below the cylinder, and 
downward  force, due to the weight 
of the gas in the cylinder.

(6.2)

dr

2lower
)()(

r
mrMGrPAF −=

Notes:    (1)              is the mass contained within 
radius        from the planet’s centre

(2)   The gravitational force term in eq. 6.2 is an approximation, since 
the cylinder does not all lie at distance        from the centre.

This is OK provided

)(rM
r

r
rdr <<



We can also write the mass of gas 
in the cylinder as  density x volume:

Substituting into eq. (6.3) gives

To keep the cylinder static,  we require that there be no  net 
force on it, i.e.

drAm ρ= (6.4)

drgArPAF ρ−= )(lower (6.5)

0upperlower =+ FF

We can re-write eq. (6.2) as gmrPAF −= )(lower (6.3)



So

Dividing by           and re-arranging

In the limit as             the LHS is the  derivative of          with 
respect to       i.e.  the rate of change of pressure with radius.

Finally,then, we have 

0)()( =+−+ drgArPAdrrPA ρ (6.6)

drA

g
dr

rPdrrP ρ−=
−+ )()(

(6.7)

0→dr
r

)(rP

g
r
P ρ−=

d
d

(6.8)

Also referred to as the 
pressure gradient



Since the density and gravitational acceleration are both  positive, 
this means that

i.e.           decreases with increasing radius.

How fast?...

We define the  pressure scale height via

If we make the assumption that        is  constant, then we can 
find an expression for the pressure as a function of radius.

0
d
d

<
r
P

(6.9)

)(rP

r
P

rPHP d
d

)(
11

−= (6.10)

PH



Re-arranging eq. (6.10)

This is a differential equation.  We solve it by integrating both 
sides.

PH
r

P
P dd

−= (6.11)

∫∫∫ −=−= r
HH

r
P
P

PP

d1dd
By assuming 
the scale height 
is constant, we 
can take it out 
of the integral



Re-arranging eq. (6.10)

This is a differential equation.  We solve it by integrating both 
sides.

i.e.

PH
r

P
P dd

−= (6.11)

∫∫∫ −=−= r
HH

r
P
P

PP

d1dd
By assuming 
the scale height 
is constant, we 
can take it out 
of the integral

constantlog +−=
PH

rP (6.12)

Natural 
logarithm



Re-arranging eq. (6.10)

This is a differential equation.  We solve it by integrating both 
sides.

i.e.

The constant can be fixed by the pressure at          , say

PH
r

P
P dd

−= (6.11)

∫∫∫ −=−= r
HH

r
P
P

PP

d1dd
By assuming 
the scale height 
is constant, we 
can take it out 
of the integral

constantlog +−=
PH

rP (6.12)

0PP =0=r

Natural 
logarithm

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

PH
rPrP exp)( 0 (6.13)



Eq. (6.13) makes sense for e.g. the Sun, which is gaseous throughout.

For a planet like the Earth, with a solid interior, we can write

hRr +=

Radius of surface
Height above surface



Eq. (6.13) makes sense for e.g. the Sun, which is gaseous throughout.

For a planet like the Earth, with a solid interior, we can write

We then fix the constant to be the pressure at the surface,

The Earth’s surface pressure is defined as  1 atmosphere

hRr +=

Radius of surface
Height above surface

0=h

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

P
S H

hPhP exp)( (6.14)



From eqs. (6.8) and (6.10)

For an  ideal gas, from eq. (5.5)

So

g
PHP ρ

=

Hm
TkP

µ
ρ

=

gm
TkH
H

P µ
= (6.15)



From eqs. (6.8) and (6.10)

For an  ideal gas, from eq. (5.5)

So

As      increases, so does        ,  i.e. the atmosphere extends further.

As            increase,         decreases. i.e. atmosphere less extended.

g
PHP ρ

=

Hm
TkP

µ
ρ

=

gm
TkH
H

P µ
= (6.15)

PHT

g,µ PH



From eqs. (6.8) and (6.10)

For an  ideal gas, from eq. (5.5)

So

As      increases, so does        ,  i.e. the atmosphere extends further.

As            increase,         decreases. i.e. atmosphere less extended.

Substituting in eq. (6.14)

g
PHP ρ

=

Hm
TkP

µ
ρ

=

gm
TkH
H

P µ
= (6.15)

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

Tk
hgmPhP H

S
µexp)( (6.16)

PHT

g,µ PH



The atoms or molecules in a planet’s atmosphere are constantly 
moving.  If they are moving fast enough, they can  escape.

From eq. (3.7), this requires

But the particles will have a  distribution of speeds  - some will 
exceed the escape speed, while others will not.

When a sufficient fraction of the particles exceed the escape 
speed, the planet will effectively ‘lose’ its atmosphere.

Section 7:  Escape of a Planetary Atmosphere

P

P

R
MG2

escape =>υυ (7.1)



A good ‘rule of thumb’ is:

A particular component of a planet’s atmosphere 
will be lost if, for that component,

is the ‘root mean square’ speed, the square root of the
mean square speed we met in Section 5.

We can use the results of Section 5 to relate the escape criterion 
to temperature, using:

escape6
1

rms υυ >

rmsυ

=rmsυ 2υ

Tkm =2
rms3

1 υ

(7.2)

(7.3)



So a particle of mass       will escape if

We define the escape temperature

The more massive the planet,  the hotter it must be 
before a given atmospheric component is lost.

P

P

R
mMGmmkT

54
12

escape36
1

3
12

rms3
1 =>= υυ (7.4)

m

P

P

kR
mMGT

54
1

escape =

(7.5)


