A1Y Introduction to Cosmology

10 lectures, exploring the development of cosmology, and some of the key ideas of Big Bang theory

Access course website via A1Y website, or at http://www.astro.gla.ac.uk/users/martin/teaching/ username = 'aone'; password = 'aone'

www.space-art.com

Type Ia Supernova

White dwarf star with a massive binary companion. Accretion pushes white dwarf over the Chandrasekhar limit, causing **thermonuclear disruption**

Red star:

extended

matter

atmosphere,

loses H-rich

Good standard candle because:-

Accretion disk

Narrow range of luminosities at maximum light Observable to very large distances

Some examples of B band SNIa light curves

In the Milky Way, Doppler analysis of HI 21cm radio emission, has revealed the spiral structure of the Galaxy

Doppler Shift

The Tully Fisher Relation for Spirals

The Tully Fisher Relation for Spirals

Problem:

Need to determine H_0 from remote galaxies, where peculiar motions are less important....

....but....

We cannot use primary distance indicators to measure their distance

Need Distance Ladder!!

HST has 'bypassed' one stage of the Distance Ladder, by observing Cepheids beyond the Local Group of galaxies

This has dramatically improved measurements of H_0

(A redshift of 0.2 corresponds to a recession velocity of 60,000 km/s and a distance of about 850 Mpc)

positive curvature

negative curvature

zero curvature

Geometry of the Universe affects the relationship between distance and redshift of the supernovae

NASA and R. Gilliland (STScl) STScl-PRC00-33

Hubble Space Telescope • WFPC2

Figure 13: Behaviour of the scale factor in different cosmologies.

Abell clusters

Gravitational Lens in Abell 2218

HST · WFPC2

PF95-14 · ST Scl OPO · April 5, 1995 · W. Couch (UNSW), NASA

Large Magellanic Cloud

MACHO's gravity focuses the light of the background star on the Earth

> A MACHO = Massive Compact Halo Object

So the background star briefly appears brighter

Lightcurve of a microlensing event

negative curvature

positive curvature

zero curvature

Geometry of the Universe affects the relationship between distance and redshift of the supernovae

negative curvature

positive curvature

zero curvature

The presence of matter 'warps' spacetime

We can measure the geometry and the density of the Universe using Type Ia Supernovae

Hubble diagram of distant Type Ia supernovae

Map of the density and peculiar velocity field in the Local Supercluster

Cluster baryons from X-ray maps

