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Parameter estimation: 2-D case

Linear combination
of g and @, well
constrained by data

Length of axes
determined by the
eigenvalues of the
Fisher information
matrix
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F determines how much
information we can learn
about our parameters
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Direction of axes are the eigenvectors of F
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Cepheild Variables: Cosmic Yardsticks

Brightness
Brightness

Henrietta Leavitt
1908-1912

Time Time

B
Rt
=
o
=]
=
=
=
g

Period





5
Time (days)

(suun Areanigte)
ssaulybiq uareddy

F 3

Aisourmun-g

Period




Principal Component Analysis templates for Cepheids

Galactic and LMC VI data:

Initially fitted with a 6™
order Fourier fit to V and
I data — 24 parameters

Perform PCA and keep only

firs-‘- TWO eigenvec-ro r|s faurier + PCA fitted light cures for star na. 3 @ HE3S
: . o | P - Aihgseod Ny -8 |
24-dim problem — 2-dim| | #F7 w ;]'("‘ iy |
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Can then fit templates to S/ Ry ]
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much sparser data L e T ;
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Dealing with observational selection effects

No matter how good the telescope,
there is a limit to the flux that it
can reliably detect.

In e.g. galaxy surveys, there is a
‘fading out' at large distances
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Dealing with observational selection effects

No matter how good the telescope,
there is a limit to the flux that it

Can reliably detect.

In e.g. galaxy surveys, there is a
‘fading out' at large distances

$

2dl' Galaxy Redshift Survey SN O
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12h

13*

56237 galaxies
113439 total
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Dealing with observational selection effects

No matter how good the telescope,
there is a limit to the flux that it

Can reliably detect. Properties of sampled objects
(e.g. luminosity, colour) change
In e.g. galaxy surveys, there is a with increasing distance
‘fading out’ at large distances
s, Malmquist bias

2dF Galaxy Redshift Survey LN og

ir4

Many other examples of
observational selection effects
in astronomy:

124

13*
0

B R 56237 galaxies
S 113439 total
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e.g. masses and semimajor axes
of extra-solar planets

Velocity (m s7!)
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HD 49674

iMass = 0,11 Myyp /pin 1
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RMS = 4.80 m s~
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Orbital Phape

TauBoo
HD187123
HD75289
HD209458
Ups And
51F
HD217107
HD130322
55Cne
GL36
HD195013
HD192263
RhoCrB
HD168443
HD114762
GLE76
70Vir
HD37124
HD134987
fotaHor
HD177830
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Dealing with observational selection effects

Easy /n principle to correct for selection effects

P, (data | model, 1)
4

= p(data| model, I )x S(data, I )

4

A

/

The “actual’ likelihood

b S ]
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Dealing with observational selection effects

Easy /n principle to correct for selection effects

D, (data| model, 1) o p(data|model, 1)xS(data, 1)
4 4 A

/ / \

The "actual” likelihood The “ideal” likelihood The selection function

Selection function measures the probability that an
object with particular data characteristics™ would be
observable

(* e.g. apparent magnitude, colour, surface brightness, angular size)
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Dealing with observational selection effects

Easy /n principle to correct for selection effects

D, (data| model, 1) o p(data|model, 1)xS(data, 1)
4 4 A

/ / \

The "actual” likelihood The “ideal” likelihood The selection function

P, (data | model, I )
S(data, 1)

p(data| model, 1) o

Problems: need to know S(data,1) accurately

S(data,|) may depend on different data
than the likelihood functon
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Dealing with observational selection effects

Example: Galaxy luminosity function

P(M)dM = fraction of galaxies with absolute
magnitude between M and M +dM A

p(M)

N
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Dealing with observational selection effects

Example: Galaxy luminosity function

P(M)dM = fraction of galaxies with absolute
magnitude between M and M +dM A

p(M)
But we don't observe M . We infer it from
The apparent magnitude and distance (modulus)

UNIVERSITY

- ISYA. Ifrane, 2" - 23 July 2004

<v




Luminosity and flux

d=3m

Apparent brightness, or flux, falls off with the square of the
distance, because the surface area of a sphere increases with

the square of its radius Distance, (metres)

L=4zD°F,

N

Luminosity, (watts) Flux, (watts / square metre)
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Measuring Astronomical Distances: Parallax

View {rom the Earth In January

Even the nearest star shows a
parallax shift of only 1/2000t
the width of the full Moon

Yiew from the Earth in Juby




Measuring Astronomical Distances: Parallax

D= L Ei A.U.
& & + * tan P P
D= 206365 A.U.
P

A star at a distance
of 1 parsec shows a
parallax angle of
one arc second




Measuring Astronomical Distances: Parallax

D= L zi A.U.
& & + * tan P P
D= 206365 A.U.
2 P

parallax

angle 1 pc=206265A.U.
=3.086x10° m
oy = 3,262 light years




Apparent and Absolute Magnitude

Expressing flux in terms of distance and luminosity:-

47 DL,
47 DL,

m, —m, =—2.5l0g,,

=5log,, D, -5log,, D,
+2.5log,, L, —2.5log,, L

Suppose L, and L, areequal:-

m, =m, +5log,, D, —5log,, D,



Apparent and Absolute Magnitude

Absolute magnitude = apparent magnitude which a star
would have If it were at a
distance of ten parsecs

m=M +5log,, D-5

m—-M = =distance modulus



Apparent and Absolute Magnitude

In cosmology we often measure distances in Megaparsecs

1 Mpc =1million parsecs =10° pc




Apparent and Absolute Magnitude

In cosmology we often measure distances in Megaparsecs

1 Mpc =1million parsecs =10° pc

in Mpc

m=M +5log,,(Dx10°) -5
=M +5log,, D +5log,,10° -5



Apparent and Absolute Magnitude

In cosmology we often measure distances in Megaparsecs

1 Mpc =1million parsecs =10° pc

in Mpc

m=M +5log,,(Dx10°) -5
=M +5log,, D +5log,,10° -5

in Mpc

<

m=M +5log,, D +25




Dealing with observational selection effects

Example: Galaxy luminosity function

P(M)dM = fraction of galaxies with absolute
magnitude between M and M +dM A

p(M)

But we don't observe M . We infer it from
The apparent magnitude and distance (modulus)

Simplest form of observational selection:

sharp apparent magnitude limit

1 if m<mg,
S(m) = .
0 otherwise

UNIVERSITY

- ISYA. Ifrane, 2" - 23 July 2004




Dealing with observational selection effects

Example: Galaxy luminosity function

P(M)dM = fraction of galaxies with absolute
magnitude between M and M +dM A

pobs (M )
But we don't observe M . We infer it from
The apparent magnitude and distance (modulus)

Simplest form of observational selection:

sharp apparent magnitude limit

1 if m<m,, M, M

S (m) — Unobservable
0 otherwise M. =m, ., —
LIM — ""'LIM

Distance modulus
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Dealing with observational selection effects

Example: Galaxy luminosity function

P(M)dM = fraction of galaxies with absolute
magnitude between M and M +dM A

pobs (M )
But we don't observe M . We infer it from
The apparent magnitude and distance (modulus)

Simplest form of observational selection:

sharp apparent magnitude limit

1 if m<m,, M, M

S (m) — Unobservable
0 otherwise M. =m, ., —
LIM — ""'LIM

Distance modulus
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Dealing with observational selection effects

Example: Galaxy luminosity function

P(M)dM = fraction of galaxies with absolute
magnitude between M and M + dM A

pobs (M )
But we don't observe M . We infer it from
The apparent magnitude and distance (modulus)

Simplest form of observational selection:

sharp apparent magnitude limit

1 if m<m,, M, M

S (m) — Unobservable
0 otherwise M. =m, ., —
LIM — "''LIM

Distance modulus

UNIVERSITY

- ISYA. Ifrane, 2 - 23 July 2004




Dealing with observational selection effects

Example: Galaxy luminosity function

P(M)dM = fraction of galaxies with absolute
magnitude between M and M + dM A

pobs (M )
But we don't observe M . We infer it from
The apparent magnitude and distance (modulus)

Simplest form of observational selection:

sharp apparent magnitude limit

1 if m<m,, M, M

S (m) — Unobservable
O otherwise M.=m . —
LIM — "''LIM

Distance modulus
.I'.-/ A
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Distance modulus p

Absolute magnitude M
S ISYA. Ifrane, 2" - 23 July 2004
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Distance modulus p

Absolute magnitude M
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Dealing with observational selection effects

Easy /n principle to correct for selection effects

D, (data| model, 1) o p(data|model, 1)xS(data, 1)

Need to integrate out over distance modulus
(‘nuisance parameter’), since the selection function
depends on both M and 1
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To make any further progress we need to adopt a model
for p(u)

Assuming that galaxies are uniformly distributed in
space, we can show that

1 M—(M.-1.386%)]
pobs(M) = \/Eﬁexp _%|: ( 00 d ):|

A
p(M) Observed pdf
M, M, —1.385"

» Increasing luminosity
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To make any further progress we need to adopt a model

for p(u)

Observed galaxies
are intrinsically
more luminous

space, we can show that

Assuming that galaxies are uniformly distributed in /

p(M)

pobs (M )

L oo 2| M ~(M,-1.3807)]
\N2ro i o

Malmquist Bias

Observed pdf
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M, M, —1.3807

» Increasing luminosity
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;cl'o make any further progress we need to adopt a model Observed galaxies
or p(u) erved
are intrinsically

more luminous
Assuming that galaxies are uniformly distributed in /

space, we can show that

1 M—(M.-1.386%)]
pobs(M) = \/Eﬂexp _%|: ( 00 > ):|

I Malmquist Bias
p(M) Observed pdf

Can we avoid
homogeneity
assumption?

M, M, —1.3857
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CMBR ‘ripples’ are the
seeds of today’s galaxies

Galaxy formation is highly
sensitive to the pattern, or

power spectrum, of CMBR
temperature ripples and the
dark matter in the Universe




Velocity — Density Reconstructions

We can compare observed peculiar velocities with the
reconstructed density and velocity field from all-sky
redshift surveys, via linear theory relations:-

% [ g SN -1

VpeC (r) = 472_ rr _ r‘3

Vv, . =-Q°§

p

» density-density comparisons
» velocity-velocity comparisons
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Density — density comparisons

Archetype is POTENT (Bertschinger & Dekel 1988; Dekel et al 1999)

—_ Smoothing

D, (r) =—ju(r’,6’,¢)dr'

Need only radial components,
but everywhere! Interpolate
u(r) on a regular grid

S
UNIVERSITY
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Density — density comparisons

Archetype is POTENT (Bertschinger & Dekel 1988; Dekel et al 1999)

]. I T T T | T T T T [-1 1 I ! |. LI T
. SN | o. LA
Compare v, withe.g. [ b = 089£0.18 .« "nir /]

L . = .-:].[:Ih Mpc DA —_—

IRAS o-field. Assume 05l R
linear biasing: §gal =bhd : AR

=]

V-V, Versus o .

has slope 5 90-6/ Y BN 7 SR D _
— m - ST ;

L1
-1 -0.5 0 0.5 1
UNIVERSITY

ﬂl — 089 i 012 Sigad et al. fi998)
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Density — density comparisons

POTENT is vulnerable to a number of statistical biases:-

» Calibration bias

» Inhomogeneous Malmaquist bias
» Tensor window bias

» Sampling gradient bias

See e.g. Strauss & Willick (1995), Hendry & Simmons (1995), Hendry (2001)
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Density — density comparisons

POTENT is vulnerable to a number of statistical biases:-

» Calibration bias

» Inhomogeneous Malmquist bias
» Tensor window bias

» Sampling gradient bias

See e.g. Strauss & Willick (1995), Hendry & Simmons (1995), Hendry (2001)
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Inhomogeneous Malmquist bias

Interpolate u(r) on a real space grid

Line of sight d C7
O —_—>

est
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Inhomogeneous Malmquist bias

Interpolate u(r) on a real space grid

Line of sight d C7
0 . > T
Uest Utrye
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Inhomogeneous Malmquist bias

Interpolate u(r) on a real space grid

Line of sight d

CZ
O ° > o< ° r
Uest Utrue

In general E(r|d)=d

Bias correction depends on P(I)
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Velocity — velocity comparisons

Archetype is VELMOD (Willick & Strauss 1997, Willick et al 1998)

‘Forward’ VELMOD
— e | :
Maximise likelihood of L_H p(m. |n.,cz;;®)

observing Tully-Fisher
data, given a velocity Inverse’ VELMOD

field and TF model :
L:H p(7; | m;, Cz;; ©)

(® = parameters of TF relation and velocity model

VELMOD also requires a parametric model for
S(m,n,r), LF, p(cz|r)
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Velocity — velocity comparisons

3000 . .
Triple-value regions /| strauss & willick (1995)

2000 — —
E
=
%
9 oo ke  cogmgser |
o

1000 _

Frobebllity Distribution
0 L 1 L 1 | L 1 L 1 ]

0 1000 2000 3000
Distance (km s-!)

VELMOD also requires a parametric model for
S(m,n,r), LF, p(cz|r)
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Robust Method

Assumption: luminosity function is Universal

Prob o« w(m,r,l,b)p(r,l,b)p(M)

4 4 X
/ Spati’al

Selection effects distribution Luminosity function

We want to test our model for the selection effects

w(m,z,1,b)=0(m;, —m)x¢(z,1,b)
4 4

/
/ Angular and radial
Step function Selection function
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Robust Method: Completeness
3.
3
-
=)
@)
=
(D)
-g (Mi, W) My
Absolute magnitude M
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Robust Method: Completeness
3.
3
-
=)
@)
=
(D)
-g (Mi, W) My
Absolute magnitude M
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Distance modulus p

Robust Method: Completeness

Miim(Ks; )

Absolute magnitude M
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Robust Method: Completeness

lim

Distance modulus p

Absolute magnitude M
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Robust Method: Completeness

Distance modulus p

Absolute magnitude M
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Robust Method: Completeness

Define:- £ = F(M)
F(M Iim)

where "
F(M)= j f (x)dx

—Q0

Distance modulus p

Can show:-

P1: £ e U[0]]

P2: £, u uncorrelated

N

UNIVERSITY
of

GLASGOW ISYA. Ifrane, 2" - 23" July 2004

Absolute magnitude M




Robust Method: Completeness

Also:-
s
! n +1
I = n(Sl)
n.=n(S,uUs,)
E.=£ Vi:ini—l
' 12 n +1
but only for
UNTY m* S mlim

GLASGOW

Distance modulus p

Absolute magnitude M
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Robust Method: Completeness

AISO' Random variable ¢
F=_ti
" n+1 > |

0 32 34

3

I =n($,)
n.=n(S,uUs,)

1 Vi:in‘_l
) 12 n. +1

30 32 34 36 38

but only for

< .
. m. = mI|m
NIVERSITY
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Robust Method: Completeness

13 13.9 14 14.5 1% 15.85
T = T T T

Also:- AR

[ S3RSZ sample

1000

>

_|_

H
Number of obiecl

100

i =n(S,)
n. =n(S,Us,) -

3

Te

N e aci =
E:E Vi:—ni_ EE?_ | ]
75 120 +1 E |
ol |
but Onl for 3 @ _I IEﬁlﬂé IRTH,T'E.'::EHI{I iﬁflﬂjﬂlkmfsl o i |

Limiting apparent magnitude m,
M. <My,
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Dealing with observational selection effects

Easy /n principle to correct for selection effects

D,..(data| model, 1) = p(data|model,I)x S(data, I)
4 4 A

/ / \

The "actual” likelihood The “ideal” likelihood The selection function

More generally, the selection function can be much more complicated

'‘Zone of avoidance’
Surface brightness

Colour

0
0
o Galaxy diameters
0
o Redshift

UNIVERSITY
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Dealing with observational selection effects

Easy /n principle to correct for selection effects

D,..(data| model, 1) = p(data|model,I)x S(data, I)
4 4 A

/ / \

The "actual” likelihood The “ideal” likelihood The selection function

More generally, the selection function can be much more complicated

Zone of avoidance Too difficult o model

Surface brightness analytically, but we can
use Monte Carlo

simulation to generate
Colour '‘Mock' datasets

Redshift

0
0
o Galaxy diameters
0
0

UNIVERSITY
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Hierarchical clustering:

Galaxies form out of the
mergers of fragments:
CDM halos at high redshift.

Clusters form where
filaments and sheets of
matter intersect

140 Mpc

g 11 Gyr ago

UNIVERSITY
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Hierarchical clustering:

Galaxies form out of the
mergers of fragments:
CDM halos at high redshift.

Clusters form where
filaments and sheets of
matter intersect
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Hierarchical clustering:

Galaxies form out of the
mergers of fragments:
CDM halos at high redshift.

Clusters form where
filaments and sheets of
matter intersect
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ACDM
Models vs i
observations

s

G
Observed /** 2
£ 3 e

N L]
TRl
1 ; ] ‘"- '
g 2T,
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Ty
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v

FERE Lt )
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Monte Carlo Sampling

Generating random variables

1.  Uniform random number, U[0,1]

See Numerical Recipes!

MNUMERIC AL PJLINIE
=1 =] ==
Fartran 77

RNUMERIC AL
RECIPES in
Fortran S0

B o Poarliert i Wi

RECIPES in C

RS AT S e o e

Bhacored Ecitksn

http://www.numerical-recipes.com/

UNIVERSITY
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Portable Random Number Generators

Parl: and Miller [1] have surveyed a large number of random number generators
that have been used over the last 30 years or more. Along with a good theoretical
review, they present an anecdotal sampling of a number of inadeguate generators that
have come mnto widespread use. The historical record is nothing if not appalling.

There is good evidence, both theoretical and empirical, that the simple multi-
plicative congruential algorithm

Iivi =al; (mod m) (7.1.2)

can be as good as any of the more general linear congruential generators that have
e 2= 0 (equation 7.1.1) — i the multiplier a and modulus m are chosen excquisitely
carefully. Park and Miller propose a “Minimal Standard”™ generator based on the
choices

a=T7"=16807 m=2% —1 = 2147483647 (7.1.3)
First proposed by Lewis, Goedman, and Miller in 1969, this generator has in
subsequent years passed all new theoretical tests, and (perhaps more mportantly)
has accumulated a large amount of successful nse. Park and Miller do not claim that
the generator 15 “perfect” (we will see below that 1t 15 net), but only that it 15 a good
minimal standard against which other generators should be judged.

It 15 not possible to implement equations (7.1.2) and (7.1.3) directly in a
high-level langnage. since the product of o and m — 1 exceeds the maximum value
for a 32-bit integer.  Assembly language implementation vsing a 64-bit produoct
register 1s straightforward, but not portable from machine to machine. A tnck
due to Schrage [2.3] for multiplying two 32-bit integers modulo a 32-bit constant,
without using any intermediates larger than 32 bits (including a sign bit) is therefore
extremely interesting: It allows the Minimal Standard generator to be implemented
in essentially any programming language on essentially any machine.

Schrage’s algorithm 13 based on an approximate factorization of m,




Monte Carlo Sampling

yx)
Generating random variables

dy

2. Transformed Random Variables

Suppose we have X ~UJ[0,1]

Let Y = Y(X)

Then [ p(y)dy = p(x)dx
4

p(x(y))

p(y) =
p dy,/dx|

/

Probability of number

between y and y-+dy Probability of number

between x and x+dx

UNIVERSITY
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Because probability
must be positive




Monte Carlo Sampling

yx)
Generating random variables

dy

2. Transformed Random Variables
Suppose we have X ~UJ[0,1]
Let Y = y(X) ¥

L J

Then p(y)dy = p(x)dx @
4

/

Probability of number
between y and y+dy

Probability of number = dn 4y x
between x and x+dx

UNIVERSITY
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Monte Carlo Sampling

Generating random variables

2. Transformed Random Variables p(Ay)

1

Suppose we have X ~UJ[0,1] ba

Let Yy=a+(b—a)x

Then y~U]Ja,b]

UNIVERSITY
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Monte Carlo Sampling

Generating random variables

2. Transformed Random Variables

Numerical Recipes uses the transformation
method to provide x~ N(0)) :

Normal distribution with mean zero
and standard deviation unity

Define z=u+oX

X~ N(u, o)

UNIVERSITY
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Monte Carlo Sampling

Generating random variables

3. Probability Integral Transform
Cumulative distribution function (CDF)

Suppose we can compute the CDF of

some desired random variable Pla) = _[Dp(x)dx = Prob(x<a)

P(x)

06 08

0.2 04

UNIVERSITY
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Monte Carlo Sampling

Generating random variables

3. Probability Integral Transform
Cumulative distribution function (CDF)

Suppose we can compute the CDF of

some desired random variable Pla) = _[Dp(x)dx = Prob(x<a)

y y~uoy 9

06 08

0.2 04

0
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Monte Carlo Sampling

Generating random variables

3. Probability Integral Transform
Cumulative distribution function (CDF)

Suppose we can compute the CDF of

some desired random variable Pla) = [p(x)dx = Prob(s<a)

—o

1) y —_ U [O,l] P(I) . T T T /— ]
2) Compute °t )
x=P™*(y) [ ]

UNIVERSITY
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Monte Carlo Sampling

Generating random variables

3. Probability Integral Transform
Cumulative distribution function (CDF)

Suppose we can compute the CDF of

some desired random variable Pla) = [p(x)dx = Prob(s<a)

—o

1) y —_ U [O,l] P(I) . T T T
2) Compute °t )
x=P7(y) = '
3) Then ST .
X~ p(x) st )
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i ISYA. Ifrane, 2 - 23r¢ July 2004




Monte Carlo Sampling

Generating random variables

4. Rejection Sampling

Suppose we want to sample from
some pdf P,(X) and we know
that

P, (X) < py(X) VX

UNIVERSITY
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Monte Carlo Sampling

Generating random variables

4. Rejection Sampling

Suppose we want to sample from
some pdf P,(X) and we know
that

P.(X) < p,(X) VX 1) Sample X; from P,(X)
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Monte Carlo Sampling

Generating random variables

4. Rejection Sampling

Suppose we want to sample from
some pdf P,(X) and we know
that

P.(X) < p,(X) VX 1) Sample X; from P,(X)

2) Sample Yy ~UJO0, p,(%)]

UNIVERSITY

i ISYA. Ifrane, 2 - 23r¢ July 2004




Monte Carlo Sampling

Generating random variables

4. Rejection Sampling

Suppose we want to sample from
some pdf P,(X) and we know
that

P, (X) < py(X) VX
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Sample X; from P,(X)

Sample Yy ~U[O0, p,(x,)]

If y<p,(X) ACCEPT
otherwise REJECT




Monte Carlo Sampling

Generating random variables

4. Rejection Sampling

Suppose we want to sample from
some pdf P,(X) and we know
that

P, (X) < py(X) VX

Set of accepted values x|
are a sample from P,(X)
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Sample X; from P,(X)

Sample Yy ~U[O0, p,(x,)]

If y<p,(X) ACCEPT
otherwise REJECT




Monte Carlo Sampling

Generating random variables

4. Rejection Sampling

Suppose we want to sample from
some pdf P,(X) and we know =
that

Method can be very slow if the
p.(X) < p,(X) VX shaded region is too large -
particularly in high-N problems

Set of accepted values x|
are a sample from P,(X)

N
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Monte Carlo Sampling 0(X)

Generating random variables

5. Metropolis-Hastings
Algorithm

o Sample initial point x®

0 Sample tentative new state
from Q(x',x") (e.g. Gaussian)

o Compute | 5 _ p(x") Q(x', x"")
p(x®) Q(x™,x)

olf a>1 Accept
Otherwise Accept with probability a
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Monte Carlo Sampling 0(X)

Generating random variables

5. Metropolis-Hastings
Algorithm

o Sample initial point x®

0 Sample tentative new state
from Q(x',x") (e.g. Gaussian)

o Compute | 5 _ p(x") Q(x', x"")
p(x®) Q(x™,x)

olf a>1 Accept
Otherwise Accept with probability a

Acceptance: x@ =x

x@ — x®

Rejection:
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Monte Carlo Sampling 0(X)

Generating random variables

5. Metropolis-Hastings
Algorithm

o Sample initial point x®

0 Sample tentative new state

from Q(x',x") (e.g. Gaussian) Acceptance: x® =x'

I 1 (1)
X X ’X . .
o Compute | 5 _ p( (1)) Q( ks ? Rejection: x@ — y@
p(x*) Q(X™,x’)
olf a>1 Accept Markov Chain

Otherwise Accept with probability a
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Monte Carlo Sampling
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Monte Carlo Sampling
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Enjoy the ISYA, and keep in touchll.



