
2. Bremsstrahlung and Atomic Line Sources

2.1 Source emission measure and line ratios

X-ray bremsstrahlung continuum  (free-free)  emission produced in hot, 

tenuous gases.   (compare with black body).

Bremsstrahlung =  ‘braking radiation’

Emissivity proportional to number density of

‘beam’ and target particles
2

Pnj (2.1)

The differential emissivity is, then,

Put                        and integrate:-
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In HEA1 we introduced the concept of the emission measure function –

which is a measure of how much of the plasma is at temperature

We showed  (see Section 11)

Where

In fact we considered

the uniform temperature,

density case first.
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Source emission measure function

Suppose we have a plasma with uniform temperature

Then

And

Matching up with HEA1,  Sect. 11,  we see that

Or, if the proton number density is not constant

0TT

00)( TTT

Independent of 

temperature

(2.4)

Dirac delta function

2/1

0

02/1

2

0

2/1
02

2
T

e

k

cmQ

md

dJ
kT

e

e

(2.5)

VnP

2

0
(2.6)

dVrn
V

P

2

0 (2.7)



dTTKT
d

dJ

0

,)(In general, then, we can write

And for an isothermal plasma
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The same principles and relations hold for atomic line (bound-bound) emission, 

but the emissivity will usually be a strongly peaked function of temperature – i.e.

there will be a temperature at which the energy of thermal plasma is optimal to 

excite the ion involved and produce the line emission.

Different lines will peak at

different temperatures

We saw this in A1Y stellar astrophysics

as a graph of line strength vs temperature

The ratio(s) of emissivity for two (or more) lines can be used as a diagnostic of the

temperature and density of the plasma, since e.g. the ratio for two lines may be a 

monotonic function of temperature.

For example     Line 1 at energy        :

Line 2 at energy        :

Ratio may be monotonic function of temperature

From  Mauche (2001)
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2.2  Limitations on thermal bremsstrahlung spectra

In HEA1 we saw that for a general thermal source

But that if

i.e.  A power law form for the source emission measure can make a thermal 

source mimic a non-thermal source with a power law emissivity

Does this result generalise? By finding an appropriate form for 

can we make a thermal source mimic  any  form for         ? 
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The answer is no, because if              is to be physically meaningful,  this 

imposes certain constraints on the form which          must take.

Let’s write

Then, we can show that
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(see example sheets)



This means that, for

and so on…

Any source with observed differential luminosity that doesn’t satisfy these

conditions cannot be 100% thermal. 

Example:

Exponentially decaying spectrum

This shape satisfies the

derivative constraints
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We can contrast this with a non-thermal spectrum.

We saw in HEA1

And taking

Implies that

This relates to issues addressed in HEA1
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11d. Interpreting Energy Spectra

Consider a non-thermal source, homogeneous plasma

1-1-3-
2

0 keVsmphotonsdE
E

EFcmQ
n

d

dj e
P

1-1-
2

0 keVsphotonsdE
E

EFcmQVn

d

dJ eP

11d. Interpreting Energy Spectra

The integral is a function of photon energy,

We define

Then

So that

dE
E

EF

dE
E

EF
G )(

dE
E

EF
dG

d

)(

dE
E

EF

dE
E

EF
dE

E

EF
GdG

d

d

)()(

en

that G(

ddd )

d )

F

ddd

)(

E

E

E

EF

dE

dE

of rgy



11d. Interpreting Energy Spectra

For small         we write

so that, or

Now, since

it follows that

and so
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Must be negative

So, because          we must have

For a non-thermal source to be physically meaningful.

Providing a source satisfies this single condition, however, otherwise it can 

display any differential luminosity and still be consistent with a source of non-

thermal bremsstrahlung.

Example:

Not consistent with

non-thermal (or indeed

thermal) bremsstrahlung!
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2.3  Inefficiency of non-thermal bremsstrahlung

In a non-thermal source, fast electrons of energy 

emit X-ray bremsstrahlung due to short-range 

electron-proton (or electron-ion) interactions.

The electrons also lose some of their energy, via long-range (coulomb) interactions, 

to heating the ‘cold’ background plasma (for which                ).

This makes non-thermal bremsstrahlung an inefficient source of radiation

Rate of energy loss to heating in a cold plasma by an electron of energy
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Rate of bremsstrahlung radiation by a single electron is

(Compare HEA1, Section 7)

Power radiated by a single electron is

Taking
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Comparing equations (2.17) and (2.20), we get a bremsstrahlung emission efficiency

which tells us the fraction of the energy loss rate that is in radiation

Simplifying, by substituting (see HEA1) and

gives, for 
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Why is thermal bremsstrahlung a so much more efficient source of radiation?

In a thermal source all electrons

have       fairly close to         ,  so

is small.
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2.4  Example (1):  Hot solar corona magnetic loop

We are now obtaining solar data of sufficient 

angular resolution (at least at lower X-ray 

energies) to permit measurement of how 

the temperature varies with position, pixel 

by pixel, in a flare loop.

e.g.  TRACE images:  indicate that most

of the heating occurs near to the base of 

the loop  (confounding previous view of 

uniform heating along loop).

Suppose we only measure the emissivity

from the whole of a solar loop.   If we 

make certain assumptions, we can still

estimate how temperature varies along the 

loop.

Assume symmetric loop,

uniform area

Assume

and                    only.

Recall from HEA1 that
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For high X-ray temperatures, pressure scale height of the corona:

So we can assume that the pressure is constant along the loop.

But                         so

i.e.

and

where              are the density and temperature at loop centre
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Remember that we saw in eq. (2.8), for a thermal source the emissivity and emission

measure are related via

So if we can ‘invert’ this equation*  to determine from the observed ,

then we can plug      into eq. (2.24) to obtain:

And we can in principle solve this differential equation to get and then use 

the results to test models of coronal loop heating.
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* This is known as an inverse problem; for a thermal source we can solve for via Laplace transforms, although the details lie beyond the scope of this course.)(T



2.4  Example (2):  Hot star wind See HEA1 – Example sheet 2


