2. Bremsstrahlung and Atomic Line Sources

2.1 Source emission measure and line ratios

X-ray bremsstrahlung continuum (free-free) emission produced in hot,
tenuous gases. (compare with black body).

electron Roxny
Bremsstrahlung = 'braking radiation
E
]‘H‘()l’.(}]]
Emissivity proportional to number density of . 2
'‘beam’ and target particles J ocn P 2.1

11. Thermal Bremsstrahlung Revisited

The differential emissivity is, then,

daJ _ Qo m, c’ jnp (F)o]@ dE dV

de g b :

znp Vngm ¢ J. 4 (kT)3/2 CXP[ E/T]dE

Put z=FE/kT and integrate:-
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In HEA1 we introduced the concept of the emission measure function -
which is a measure of how much of the plasma is at temperature T

We showed (see Section 11)

1/2 e
daJ ) 2 QOTzc jé:() dT

= 712

(2.2)
de Tm

e

Where E(T) = ajiT jnp (17)2 dv (2.3)
v

\

In fact we considered
the uniform temperature,

Source emission measure function densi ‘ry case first.

Suppose we have a plasma with uniform temperature 7 =T,

Then [ E(T)=¢,x 5(T —TO) } 24)
$ A\

Dirac delta function
Independent of
temperature

12 _¢
And dJ 2 Q,m,c> e i,
=2 12 So 12 (2.5)
de Tm, k' e T,

2
Matching up with HEA1, Sect. 11, we see that { 50 = nP V J (2.6)

2
Or, if the proton number density is not constant fo = jnp (V) dv 2.7)
v




In general, then, we can write ﬂ = JE(T) K(g, T)dT (2.8)
de
And for an isothermal plasma ﬂ — éjo K(E,TO) (2.9)
de

The same principles and relations hold for atomic line (bound-bound) emission,
but the emissivity will usually be a strongly peaked function of temperature - i.e.
there will be a temperature at which the energy of thermal plasma is optimal to
excite the ion involved and produce the line emission.
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We saw this in A1Y stellar astrophysics
as a graph of line strength vs temperature
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The ratio(s) of emissivity for two (or more) lines can be used as a diagnostic of the
temperature and density of the plasma, since e.g. the ratio for two lines may be a
monotonic function of temperature.
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2.2 Limitations on thermal bremsstrahlung spectra

In HEA1 we saw that for a general thermal source

dJ 2 " Q,m,c’ /T dT 2.10)
de =2 m 2 Jf( ) T2
But that if ETM)oc T = ;’ﬂ g’
E

i.e. A power law form for the source emission measure can make a thermal
source mimic a non-thermal source with a power law emissivity

Does this result generalise? By finding an appropriate form for &(T')
can we make a thermal source mimic any form for %’ 2

de

The answer is no, because if &(T') is to be physically meaningful, this

imposes certain constraints on the form which dJ/ must take.

de
Let's write o / kT
H(g)———g——CIcf(T) dT 2.11)
Positive constant
Then, we can show that ﬁ _ —go].f(T) e_%T dT 2.12)
d k ; T3/2
and
d'H C*% _ elrar
=(—=1Y -7 (2.13)
dgn ( 1) kn Ié(T) Tn+1/2

(see example sheets)




This means that, for &(T) >0

2 3
ESO dHZO d’ H
de de’ de’

<0 and so on...

Any source with observed differential luminosity that doesn't satisfy these
conditions cannot be 100% thermal.

a2

dL
de

Example:

Exponentially decaying spectrum

This shape satisfies the

derivative constraints

»
>

photon energy, &

We can contrast this with a non-thermal spectrum.

We saw in HEA1

dj iy d
d—{g:np JF(E) ng (¢,E)dE (2.14)

And taking 2
s (o py= L
de cE
. dj O,m, c” " F(E)
Implies that —=n, 0" I dE (2.15)
de g : Kk

This relates to issues addressed in HEA1




11d. Interpreting Energy Spectra

Consider a non-thermal source, homogeneous plasma

g _
de

2 o
n, QO < j F(E) dE photons m~ s keV"

. 1

= - dE photonss™ keV™

dl  n,V Qym,c’ O]-F(E)
de & :

11d. Interpreting Energy Spectra

The integral @ dE is a function of photon energy, &
7 E

We define G(g) = J.%E) dF
Then G(e+ds) = j %E) dE
E+de
Sothat G(e+de)~Gle) = | @ dE — j@ dE
e+de &

_ g+j_zg F(E) -

&




11d. Interpreting Energy Spectra

F(E
For small dg wewrite G(e+de)—-G(g) = - {(T)} de
E=¢
dG F(E dG
so that, — = _|:L—l or F(E) = —Eli_:|
de E Ap=s de oo E
2 o 2
Now, since A _npVQym.c JF(E) dE = 1l Qo m, € G(¢)
de & S E &
it follows that G(e) = ! 5 € i Must by megative
n,VQ,m,c” de /
2
and so F(E) = - b 5 d]+8d{
nV Qym,c” | de  de” | .
So, because F(E)>=0 we must have i|:g ﬂ:| <0 o6
de| de

For a non-thermal source to be physically meaningful.

Providing a source satisfies this single condition, however, otherwise it can
display any differential luminosity and still be consistent with a source of non-

thermal bremsstrahlung.

dL rF 5
de

Example: :

Not consistent with
non-thermal (or indeed
thermal) bremsstrahlung!

»
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Evidence Supporting the Unified Scheme

4. Hot accretion disk explains blue bump’ in guasar continuum

= UV excess from hot accretion disk

In time { (say), energy radiated
from ring between y and » + dr:

dE =dL,,, t = (%)dr

dr

dr 2F :

d [ GMm] GAm
= — d}" =
2r

In time f, mass passing through

e

«

b r

Agsuming a
black-body

ring is 111 = Mt :
= dL. = GMM dr
e 20

Area of disk 7L
ﬁ

= dgrdrcT® | (2.14)

Evidence Supporting the Unified Scheme

4. Hot accretion disk explains blue bump’ in guasar continuum

= UV excess from hot accretion disk

Re-arranging GMM 1/4

3
SATY

2.15)

Substituting in eq. (2.14), with M = 4><108M5un —8x10™ ke
M =28x10% kgs™

r~50R,

= | T~1.6x10°K (2.16)




2.3 Inefficiency of non-thermal bremsstrahlung

X-ray

electron

In a non-thermal source, fast electrons of energy -
emit X-ray bremsstrahlung due to short-range

-
electron-proton (or electron-ion) interactions. proton

The electrons also lose some of their energy, via long-range (coulomb) interactions,
to heating the 'cold’ background plasma (for which k7 << E ).

This makes non-thermal bremsstrahlung an inefficient source of radiation J

Rate of energy loss to heating in a cold plasma by an electron of energy E

5 2
(d_E] B, P A(E) n, o(E) 2.17)
dt Heating 4z 80 / E

|

Slowly varying logarithmic function of energy F , A(E ) ~ 20

Rate of bremsstrahlung radiation by a single electron is ﬂ =n,v dQB

de de

(Compare HEAI, Section 7)

(2.18)

Power radiated by a single electron is

dt ) gagiation de dg de

(2.19)

Taking € ~ E

dE

2
m c
7 ~ _E2 n, U(E) XQO—Ze (2.20)
4

Radiation




7. Reaction cross section

7.1 Incident Flux = number of beam particles crossing per
unit area of the target per unit time

2 -1
F =nb m° s

/.2 Reaction Rate = number of /nferactions per unit time

Roc FN.

7. Reaction cross section

Assuming that the incident flux of beam particles is independent

of F then
J=N,FQ s

Differential emissivity of photons with energy €— & + de
can be written as i = df de

£
dj(€) %
3 1 1
=n, F— | m s keV
de g
Differential emissivity of photons with energy, &£ Differential cross section

per unit energy range per unit volume




Comparing equations (2.17) and (2.20), we get a bremsstrahlung emission efficiency
which tells us the fraction of the energy loss rate that is in radiation

2

_ dE / dtradiation _ 1 47[ 80 E
dE/dt 27\ e’ A

2
X Qomec 2.21)

4

heating

Simplifying, by substituting (see HEA1) (4”2‘90 ) __ | and 0, = §ar2
re

e m,c’ 3 Xe
Classical elecrton radius Fine structure constant ~ 1/137
gives, for E=50keV
dE/dt._ .. . 4 o FE _
77 — / radiation — % - _ 10 5 (2.22)
dE/dt,piny 37T A mgc

Why is thermal bremsstrahlung a so much more efficient source of radiation?

In a thermal source all electrons
have E fairly close to kT , so

dE/dl‘ is small.

heating

Maxwellian Yelocity
107 K Distributions

2x10° K




2.4 Example (1): Hot solar corona magnetic loop

We are now obtaining solar data of sufficient
angular resolution (at least at lower X-ray
energies) to permit measurement of how
the temperature varies with position, pixel
by pixel, in a flare loop.

e.g. TRACE images: indicate that most
of the heating occurs near to the base of
the loop (confounding previous view of
uniform heating along loop).

Suppose we only measure the emissivity
from the whole of a solar loop. If we
make certain assumptions, we can stil/
estimate how temperature varies along the
loop.

Assume symmeftric loop,
uniform area S

Assume T =T(x)
and n=n(x) only.

Recall from HEA1 that

n,(F) dS
V7|

ET)= |

St

4

/ Here S, surfaces are disks of area S

Surfaces of constant T So { g(T) -28 nz(x)/‘dT/dx‘ } (2.23)




For high X-ray temperatures, pressure scale height of the corona: H ~ 2kT >> L

mpg

So we can assume that the pressure is constant along the loop.

But P=nkT so n(x)oc T(x)_1

ie. [n(x) oC noTo/T(x) }

and 2 2
£y =22t
T*|dT/dx|

(2.24)

where 7.7 are the density and temperature at loop centre
olo Y P p

Remember that we saw in eq. (2.8), for a thermal source the emissivity and emission
measure are related via

P
= Ojg(T)K(g,T)dT

dJ
So if we can ‘invert’ this equation* to determine f(T) from the observed de

then we can plug QZ(T) into eq. (2.24) to obtain:

dl’
Tzé:(T)E = ZSng 7-2)2 (2.25)

And we can in principle solve this differential equation to get T(x) and then use

the results to test models of coronal loop heating.

* This is known as an inverse problem; for a thermal source we can solve for #(T") via Laplace transforms, although the details lie beyond the scope of this course.




2.4 Example (2): Hot star wind See HEA1 - Example sheet 2

1.

The steady-state wind from a hot star consists of fully ionised hydrogen gas moving radially
outwards with constant velocity vg. By considering the mass per second passing through
a spherical surface of radius r outside the photosphere (of radius R,), show that np(r),

the number density of protons at radius r satisfies
M = dgp? vgnp(r)mp

where M is the mass loss rate of the star and mp is the proton mass. (This is known as

the mass continuity equation; see also Dr Woan's Stellar Atmospheres and Winds course).

. Hence, show that the source emission measure function, £(T), for the wind is given by
M2 dr
ol pep———
¢(T) dnr2vim? |dT

. If the temperature of the wind outside of the photosphere varies with radius according to

the formula

o= (z)”

where « and Ty are constants, derive an expression for r(T'), and hence show that £(T) =0

for T > Ty and .
M?
ET) = i7a a1 for T < Ty
dravimpT,'" R,

Determine the integrated source emission measure, =, first by integrating £(7") over tem-

perature, i.e. -
e f.] ¢(T)dT

and then via the volume integral

E= [ nhdV
Vv

showing that these two expressions are equivalent. Thus verify the relation

d
()= e v

. Assuming that the X-ray emission from the hot wind is thermal bremsstrahlung, show
that the differential luminosity of the star is given by
l .
a _, ( & ) Qomec I R
de TTMe L1/2 411.0”}3 m%—; TUI.MR* 0

. Applying the substitution = = ¢/kT, or otherwise, show that the above expression may be

reduced to e
o end f i % e Tdr

de -
kTy

Hence, explain why — for large X-ray photon energies — the shape of the differential photon

luminosity is independent of a.




