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Gravity in Einstein's Universe

(Space‘rime tells ma‘r'rer'\

how to move, and
matter tells spacetime

khow to curve Y
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“..Joy and amazement at the
beauty and grandeur of this
world of which man can just
form a faint notion.”
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Spacetime Matter

curvature (and energy)
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We are going to cram a lot of mathematics and
physics into approx. 2 hours.

Two-pronged approach:

» Comprehensive lecture notes, providing a
‘long term’ resource and reference source

» Lecture slides presenting “highlights” and
some additional illustrations / examples

Copies of both available on mySUPA
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What we are going to cover

Foundations of general relativity
Introduction to geodesic deviation
A mathematical toolbox for GR

Spacetime curvature in GR

a M 0 b &

Einstein’s equations

A wave equation for gravitational radiation
The Transverse Traceless gauge

The effect of gravitational waves on free particles

© 0 N o

The production of gravitational waves
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What we are going to cover

Introduction to GR

Gravitational Waves
and detector principles
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Foundations of general relativity
Introduction to geodesic deviation
A mathematical toolbox for GR
Spacetime curvature in GR

Einstein’s equations

A wave equation for gravitational radiation
The Transverse Traceless gauge
The effect of gravitational waves on free particles

The production of gravitational waves
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Aims and Objectives.
At the end of the course students should be able to:

1) explain qualitatively, from the General Theorv of Relativity, how metric
perturbations in free space take the form of a wave equation, propagating at the
speed of light

2) describe how gravitational waves are produced by the asymmetrical acceleration
of matter

3) explain qualitatively the quadrupole nature of gravitational waves, and
specifically why there 1s no dipole gravitational radiation, and how gravitational
waves interact with matter

4) explain the physical principles underlying detectors of gravitational waves with
particular emphasis on detectors using laser interferometry
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Learning Outcomes:

1) To be able to discuss and describe the field of gravitational wave detection on
three levels: for the intelligent layperson. for schoolchildren, and for the non-
specialist professional physicist or astronomer

2) To acquire sufficient general background knowledge of the field to write

confidently the introductory sections of reports (at first and second year level) and
of a Ph.D. thesis.
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Websites of my Glasgow University Courses

Part 1: Introduction to General Relativity,

http://www.astro.gla.ac/users/martin/teaching/gr1/gril_index.html

Part 2: Applications of General Relativity.

http://www.astro.gla.ac.uk/users/martin/teaching/gr2/gr2_index.html

Both websites are password-protected, with username and password ‘honours’.

Recommended textbooks

Aﬁrstmursc.m‘ "A First Course in General Rela'ﬁvi"ry" GRAVITATION "Gravitation”
general relativity

Charles Misner, Kip Thorne,

Bernard Schutz
John Wheeler

SERNAND ¥ ST

ISBN: 052177035
ISBN: 0716703440
Excellent introductory textbook.
Good discussion of gravitational wave
generation, propagation and detection.

The 'bible’ for studying GR

.’.ie University SUPA
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“Do not worry

about your
_ o difficulties in
0 ol ory Yo mathematics:
. - B
mahemacs b | can assure you
l .
vt that mine are
mine are
still greater.” Sti” gre ate r 7’
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“The hardest
thing In the world
to understand Is

the income tax”
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1. Foundations of General Relativity (pgs. 6 - 12)

GR is a generalisation of Special Relativity (1905).

In SR Einstein formulated the laws of physics to be valid
for all inertial observers

— Measurements of space and time relative
to observer’s motion.
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1. Foundations of General Relativity (pgs. 6 - 12)

GR is a generalisation of Special Relativity (1905).

In SR Einstein formulated the laws of physics to be valid
for all inertial observers

— Measurements of space and time relative
to observer’s motion.

Minkowski
metric

ds® = —c2dt? + da® + a’.y2 1 dz?

N

Invariant interval
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Newtonian gravity is incompatible with SR

Law of Universal Gravitation

Every object in the Universe attracts
every other object with a force directed
along the line of centers for the two
objects that is proportional to the
product of their masses and inversely
proportional to the square of the
separation between the two objects.

Isaac Newton:
1642 - 1727 AD

T
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Moon’s orbit
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Moon’s orbit

But how does the Moon
know to orbit the Earth?

How does gravity act at a
distance across space?

Earth

¥

€




Principles of Equivalence

Inertial Mass F m
m

Gravity and acceleration are equivalent
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The WEP implies:

/A object freely-falling in\
a uniform gravitational
field inhabits an
Inertial frame In which
all gravitational forces

have disappeared.
\_ PP J

University
of Glasgow
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The WEP implies:

/A object freely-falling in\
a uniform gravitational
field inhabits an
Inertial frame In which
all gravitational forces

have disappeared.
\_ PP J

.......

But only LIF: only local over
region for which gravitational
field is uniform.

S82E5279 1997:02:14 10:52:42

|
\ §)
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Strong Equivalence Principle

0 N

ocally (i.e. in a LI
all laws of physics
reduce to their SR 7=\
form — apart from 7 g

gravity, which simply | |E

\ disappears. /

G asgow SUPAGWD, October 2012
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The Equivalence principles

also predict gravitational at time t=0
|Ight deflection... Uniform gravitational
field, g
Light path A B
Light enters lift horizontally at X, at — A" i i
L ]

instant when lift begins to free-fall.

Observer Ais in LIF. Sees light
reach opposite wall at Y (same \ after time t=L/c
height as X), in agreement with SR. 5

To be consistent, observer B I_é_\

outside lift must see light path as .
curved, interpreting this as due to i Y

the gravitational field
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The Equivalence principles B at time =0
also predict gravitational i

i Unif | avitati |
redshift... | ! ﬁgl'dffrg’ gravitationa

N

: : . !
Light enters lift vertically at F, at i .
instant when lift begins to free-fall.

F
T Light path

Observer Ais in LIF. Sees light
reach ceiling at Z with unchanged E after time t=h/c
frequency, in agreement with SR. i

To be consistent, observer B

outside lift must see light as T
redshifted, interpreting this as due A
to gravitational field. i

1 Universit .
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The Equivalence principles
also predict gravitational

redshift...
A4 _gh
A ¢

Measured in Pound-
Rebka experiment

M University
of Glasgow
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From SR to GR...

How do we ‘stitch’ all
the LIFs together?

Can we find a
covariant description?

Umvemty
&7 of Glasgow IGR SUPA
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2. Introduction to Geodesic Deviation (pgs.13 - 17)

In GR trajectories of freely-falling particles are geodesics — the
equivalent of straight lines in curved spacetime.

Analogue of Newton I:  Unless acted upon by a non-gravitational
force, a particle will follow a geodesic.

University *Go, SUPA
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The curvature of spacetime is revealed by the behaviour of
neighbouring geodesics.

Consider a 2-dimensional analogy.

Zero curvature: geodesic deviation unchanged.
Positive curvature: geodesics converge
Negative curvature: geodesics diverge

# University "
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Non-zero curvature

Ne—

Acceleration of geodesic deviation

N—

Non-uniform gravitational field
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We can first think about geodesic deviation and curvature in a

Newtonian context

By similar triangles

{0 _&_,
r(t) 7o
Hence
: kG M
§=hi=——;
”
Unlvelslty

&7 of Glasgow
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We can first think about geodesic deviation and curvature in a
Newtonian context

or \ 5@ /

EGM  GM¢

|T" |?“" 2 .‘r? 3

which we can re-write as

2 GM |
d((:t)Z R3c2 >

Unlvelslty T
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We can first think about geodesic deviation and curvature in a
Newtonian context

or \ 5@ /

§GM  GM¢

|T" |?“" 2 .‘r? 3

which we can re-write as

2 GM |
d((:t)Z R3c2 >

T~

At Earth’s surface this equals 2% 10723 m
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Another analogy will help us to interpret this last term

£(s) =acosfdo = & cost = Eycos s/a N Sphere of
radius a
Differentiating:  d?¢( 1
ds2 a2

S(s)
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Another analogy will help us to interpret this last term

Sphere of

£(s) =acosbdp =Eycosh =Eycoss/a N |
radius a

Differentiating: ~ d*¢ 1

de2 2"
ds a £5)

Comparing with previous slide:
GM\~
R - { R.SC:Z }

represents radius of curvature of
spacetime at the Earth’s surface

R ~ 2 x 101t m

SUPAGWD, October 2012
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At the surface of the Earth R ~ 2 x 101 m

The fact that this value 1s so much larger than the physical

radius of the Earth tells us that spacetime 1s ‘nearly’ flat

the vicinity of the Earth — 1.e. the Earth’'s gravitational field

is rather weak. (By contrast, if we evaluate R for e.g. a

white dwarf or neutron star then we see evidence that their

gravitational fields are much stronger).

M University
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3. A Mathematical Toolbox for GR (pgs.18 - 32)

Riemannian Manifold

A continuous, differentiable
space which is locally flat
and on which a distance, or
metric, function is defined.

(e.g. the surface of a sphere)
The tangent space in a generic point of an s2 gphere

The mathematical properties of a Riemannian

manifold match the physical assumptions of the
strong equivalence principle

UHIVGI'Slty "G, SUPR
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Vectors on a curved manifold

We think of a vector as an
arrow representing a
displacement.

= AX“€
components basis vectors

In general, components of vector different at X and Y, even if the
vector is the same at both points.

University
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We need rules to tell us how to
express the components of a
vector in a different coordinate
system, and at different points
In our manifold.

e.g. in new, dashed, coordinate
system, by the chain rule

4 )

I

Ox |

A" = Orc Az
)

- J
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We need rules to tell us how to
express the components of a
vector in a different coordinate
system, and at different points
In our manifold.

e.g. in new, dashed, coordinate
system, by the chain rule

4 )

I

Ox |

A" = Orc Az
)

\_ , We need to think more carefully

about what we mean by a vector.
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Tangent vectors

We can generalise the concept of vectors to curved manifolds.

Suppose we have a scalar function, ¢, defined at a point, P, of
a Riemannian manifold, where P has coordinates {z', 2%, ..., 2"}
In some coordinate system. Since our manifold 1s differen-
tiable we can evaluate the derivative of ¢ with respect to each

of the coordinates, o', forz =1, ....n

Uni 1vel sity e :
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Tangent vectors

We can think of the derivatives as a set of n ‘operators’, denoted by
J
da’

These operators can act on any scalar function. ¢, and yield the rate of change of

the function with respect to the z'.

We can now define a tangent vector at point, P, as a linear operator of the form

Jg |0 5 O . 0
Ork — “ Oxt ta Ox? T tTa oxr"

at

This tangent vector operates on any function, ¢, and essentially gives the rate of
change of the function — or the directional derivative —in a direction which is defined

by the numbers (at, a?, ..., a").

Cacwyy SUPA

SUPAGWD, October 2012



&ia

&
drH

The n operators

spanning the vector space of tangent vectors at P.

Simple example: 2-D sphere.

Set of curves parametrised by
coordinates

e 0 tangent to it curve
1 orxr?

Basis vectors different at X and Y.

University
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Summary

To sum up, we can represent vectors as tangent vectors of curves in our manifold.
Once we have specified our coordinate system, we can write down the components
of a vector defined at any point of the manifold with respect to the natural basis

o
dxt

generated by the derivative operators {==:} at that point. A vector field can then

be defined by assigning a tangent vector at every point of the manifold.

Extends easily to more general curves, manifolds

SUPAGWD, October 2012



Transformation of vectors

Suppose we change to a new coordinate system {z'*, 2%, ..., 2 }. Our basis vectors
are now

J
Ox'H

37
€ m

2

How do the components, {a',a?,...,a"}, transform in our new coordinate system?

Let the vector @ operate on an arbitrary scalar function. ¢. Then

o, 0P
a(¢) = a” ‘

dxv
By the chain rule for differentiation we may write this as

Lo’ O
Ox? Ox't

a(p) =a

SUPAGWD, October 2012 “) B



However. if we write @ directly in terms of coordinate basis {e/ ' = {-2_1 we have
' I ox'e 1
| o
a(p) = a™ —
da'H
Hence we see that
AW
o ox'™
at = ——a
or?

This Is the transformation law for a contravariant vector.

Any set of components which transform according to this
law, we call a contravariant vector.

| Universit
of Glasgovz “acRy; "SUPA
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Transformation of basis vectors

—

What is the relationship between the basis vectors ¢}, and ¢, in the primed and

unprimed coordinate systems?

- ox”

€

—

T v

Thus we see that the basis vectors do not transform in the same way as the com-
ponents of a contravariant vector. This should not be too surprising, since the
transformation of a basis and the transformation of components are different things:
the former 1s the expression of new vectors in terms of old vectors; the latter is the

expression of the same vector in terms of a new basis.

QfGlangW SUPAGWD, October 2012
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& of

4 )
ax?
!
Aﬁ = A

oMY
\_ ,

This iIs the transformation law for a one-form or covariant
vector.

Any set of components which transform according to this
law, we call a one-form.

A one-form, operating on a vector, produces a real
number (and vice-versa)

Glasgow SUPAGWD, October 2012 @ @



Picture of a one-form

Not a vector, but a way of ‘slicing up’ the manifold.

The smaller the spacing, the
larger the magnitude of the
one-form.

When one-form shown acts on

the vector, it produces a real

number: the number of ‘slices’ “ ® ‘“’
that the vector crosses.

Example: the gradient operator (c.f. a topographical map)
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Picture of a one-form

Not a vector, but a way of ‘slicing up’ the manifold.

The smaller the spacing, the
larger the magnitude of the
one-form.

When one-form shown acts on

the vector, it produces a real

number: the number of ‘slices’ “ ® ‘“’
that the vector crosses.

Example: the gradient operator (c.f. a topographical map)
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Picture of a one-form

O

30

10

University

B U2
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Extension to tensors

An (lI,m) tensoris a linear operator that maps | one-forms and

N vectors to a real number.

Transformation law

4 )
rul rug q1 q
A.\'ﬂ1 U cua U] am 8$ a$ a$ i Atl ta ... 1

r1L7T2...Tm afﬂtl amt; 3mfr1 '“amrrm q1 g2 ... qm
\ J

If a tensor equation can be shown to be valid in a particular
coordinate system, it must be valid in any coordinate system.

Cacwyy SUPA
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Specific cases

(2,0) tensor

(1,1) tensor

(0,2) tensor

4 )
.. Oz" OxV
T.“'E_j‘ — - I T.ICE
oxk Ox
\_ J
4 )
1 l
D{I' 5:1: t 6$ D‘,k
77 9k 9xti !
\_ J
4 )
B oz Oz
T Pl 9l kl
\_ J
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Example:

metric tensor

which justifies

\_

, Oz 9aF
R T

~

J

ds® = guvdxtdz”

/

Invariant interval
(scalar)

SUPAGWD, October 2012
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We can use the metric tensor to convert contravariant vectors to
one-forms, and vice versa.

Lowering the index A; = QikAk
Raising the index B! — giij

Can generalise to tensors of arbitrary rank.

(this also explains why we generally think of gradient as a vector operator.
In flat, Cartesian space components of vectors and one-forms are identical)

University
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Covariant differentiation

Differentiation of e.g. a vector field involves subtracting vector
components at two neighbouring points.

This is a problem because the transformation law for the components
of A will in general be differentat P and Q.

DA A (x+dx)

— Partial derivatives are not tensors ]

To fix this problem, A (X) Q(x+dx)
we need a procedure for
transporting the components

of A to point Q.
P(x)

SUPAGWD, October 2012



Covariant differentiation

We call this procedure Parallel Transport

A vector field is parallel transported along a curve, when it mantains a
constant angle with the tangent vector to the curve

PX (z])

()

' University L T
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Covariant differentiation

A'(x)
We can write

DAY (z + dx) = A'(z) + 6 A" (x)

P(x)
where

[ §AY(z) = —T%, Al dz" }

X

Christoffel symbols, connecting the basis
vectors at Q to those at P

Cacwyy SUPA
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Covariant differentiation

A'(x)
We can write

DAY (z + dx) = A'(z) + 6 A" (x)

P(x)

where

_ .. k
[ §A (z) = —T%, Aldz" } Ox

Christoffel symbols, connecting the basis
vectors at Q to those at P

Cacwyy SUPA
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Covariant differentiation

We can now define the covariant derivative (which does
transform as a tensor)

Vector A?ﬁ: — Aiﬁ: + 1“; #4}

_ J
One-form B.g_;;; = B — Fﬂ;Bj

(with the obvious generalisation to arbitrary tensors)

University e .
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Covariant differentiation

We can show that the covariant derivatives of the metric tensor
are identically zero, i.e.

[ Jap:y = 0 and gffﬁ =2 J

From which it follows that

, 1 .
[ ;Fu - 5913(952‘.}: + Gikj — gjﬁ:,f) ]

Cacwyy SUPA
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Geodesics

We can now provide a more mathematical basis for the
phrase “spacetime tells matter how to move”.

4 )

One can define a geodesic as a curve along which the tangent vector to the

curve is parallel-transported. In other words, if one parallel transports a tangent

vector along a geodesic, it remains a tangent vector.

- J

The covariant derivative of a tangent vector, along the

geodesic is identically zero, i.e. - ~
0 p—

G J

M Universit
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Geodesics

Suppose we parametrise the geodesic by the proper time, T,

along it (fine for a material particle). Then

H a V;;
d ( dx +F§,ﬁdx dx _0
dz\ dr dr dr
l.e.
g N
dZa A% dP
e — 0
dr> T has dr dr
~ Y,

with the equivalent expression for a photon (replacing 7= with 2 )

SUPAGWD, October 2012
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4. Spacetime curvature in GR (pgs.33 - 37)

This is described by the Riemann-Christoffel tensor, which
depends on the metric and its first and second derivatives.

We can derive the form of the R-C tensor in several ways

(1. by parallel transporting of a vector around a closed loop in our manifold \

2. by considering the commutator of the second order covariant derivative of a

vector field

3. by computing the deviation of two neighbouring geodesics in our manifold

\_

T Umver51t
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(a) (b)

A University "o
’L' Qf GlangW SUPAGWD, October 2012 @




912

In a flat manifold, parallel transport does not rotate vectors, while
on a curved manifold it does.

S2

,! L
o] University
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After parallel transport around a
X closed loop on a curved manifold,
the vector does not come back to its

Y g original orientation but it is rotated
¥ through some angle.
X The R-C tensor is related to this
angle.
4 )
I I mlv2 T nl I I T
R ady F&j-'rr:rlﬁ Fa,ﬁpr:r’;f + F.—:r;,-,ﬁ F&,ﬁ,?
g J
If spacetime is flat then, for all indices R‘“ﬁﬁﬁ_ — ()
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Another analogy will help us to interpret this last term

Sphere of

£(s) =acosbdp =Eycosh =Eycoss/a N |
radius a

Differentiating: ~ d*¢ 1

de2 2"
ds a £5)

Comparing with previous slide:
GM\~
R - { R.SC:Z }

represents radius of curvature of
spacetime at the Earth’s surface

R ~ 2 x 101t m
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5. Einstein's Equations (pgs.38 - 45)

What about “matter tells spacetime how to curve?...

The source of spacetime curvature is the Energy-momentum tensor
which describes the presence and motion of gravitating matter (and

energy).

We define the E-M tensor for a perfect fluid

In a fluid description we treat our physical system as a smooth
continuum, and describe its behaviour in terms of locally averaged
properties in each fluid element.

SUPAGWD, October 2012



Each fluid element may possess a bulk motion

with respect to the rest of the fluid, and this relatlve
motion may be non-uniform. @

At any instant we can define
Momentarily comoving rest frame (MCRF)

of the fluid element — Lorentz Frame in which Q
the fluid element as a whole is

Instantaneously at rest.

Particles in the fluid element will not be at rest:

1. Pressure (c.f. molecules in an ideal gas)
2. Heat conduction (energy exchange with neighbours)
3. Viscous forces (shearing of fluid)

Universit -
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Each fluid element may possess a bulk motion

motion may be non-uniform.

with respect to the rest of the fluid, and this relative d

Perfect Fluid if, in MCRF, each fluid
element has no heat conduction or
viscous forces, only pressure.

O
o @
P

Dust = special case of pressure-free perfect fluid.
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Definition of E-M tensor

We can define the energy momentum tensor, T, in terms of its components in some

coordinate system, {x', 2?

, ...,z }, for each fluid element. Thus we define T for a
fluid element to be equal to the flux of the a component of four momentum

of all gravitating matter® across a surface of constant z”.

2By ‘gravitating matter’ we mean here all material particles, plus (from the equivalence of

matter and energy) any electromagnetic fields and particle fields which may be present

Components of T in the MCREF for dust

only non-zero component is T% = p, the energy density of the fluid element.

SUPAGWD, October 2012



Components of T in the MCRF for a general perfect fluid

(

p 00 0\
0 P 0 0

Pressure due to random motion

0O 0 P 0 / of particles in fluid element

00 0 PJ
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Components of T in a general Lorentz frame

Extending our expression for 7% from the MCRF to a general Lorentz frame is
fairly straightforward, but the interested reader is referred e.g. to Schutz for the
details and here we just state the result. If @ = {u®} is the four velocity of a fluid

element in some Lorentz frame, then |

T = (p+ P)u“u’ + Pn°”,

where 1 is the Minkowski metric of SR.

Conservation of energy and momentum requires that

SUPAGWD, October 2012 “) B



Extending to GR

In Section 1 we introduced the strong principle of equivalence which stated that, in
a LIF, all physical phenomena are in agreement with special relativity. In the light
of our discussion of tensors, we can write down an immediate consequence of the

strong principle of equivalence as follows

(
Any physical law which can be expressed as a tensor equation in SR

has exactly the same form in a local inertial frame of a curved spacetime
.

\

J
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How 1s this extension justified? From the principle of covariance a tensorial de-
scription of physical laws must be equally valid in any reference frame. Thus, if a
tensor equation holds in one frame it must hold in any frame. In particular, a tensor
equation derived in a LIF (i.e. assuming SR) remains valid in an arbitrary reference

frame (i.e. assuming GR).

é h

T = (p+ P)ut'u” + Pgh”

\. J

Hence

4 ™ _ _
Covariant expression of

; LY i ..
and T‘L — “ energy conservation in
a curved spacetime.

; Umversn
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So how does “matter tell spacetime how to curve™...

Einstein’s Equations

BUT the E-M tensor is of rank 2, whereas the R-C tensor is of rank 4.

Einstein’s equations involve contractions of the R-C tensor.

Define the Riccitensor b — RH
Y Ray = Ry
and the curvature scalar by R — g&'ﬁﬂﬂg

M Universit
of Glasgowy CacRyy 'SUPA
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We can raise indicesvia ~ RHV — gH?gY B R,3

4 1 N\
and define the Einstein tensor pr o DY _ 41V
G = R — g R
\- y,
We can show that (4 F‘i — ()
4 h
LL L1/
so that T‘t p— GI' )
N S
\. y,
University -
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Einstein took as solution the form GI.U-L" — {[J-T,U-L’

. J

where we can determine the constant & by requiring that we should recover the laws
of Newtonian gravity and dynamics in the limit of a weak gravitational field and

non-relativistic motion. In fact & turns out to equal 87G /c*.

Solving Einstein’s equations

Given the metric, we can compute the Christoffel symbols, then the
geodesics of ‘test’ particles.

We can also compute the R-C tensor, Einstein tensor and E-M tensor.

University e .
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What about the other way around?...

Highly non-trivial problem, in general intractable, but given E-M
tensor can solve for metric in some special cases.

e.g. Schwarzschild solution, for the spherically symmetric

static spacetime exterior to a mass M

4 )

M dr2
dSZ ——(1- de + : Vi + 'rzdez + ';'”2 SiI]Q Qd@z
r (1—2%)

N \ | y
\

Coordinate singularity at r=2M
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Geodesics for the Schwarzschild metric

o\ 2 2 1, 5
Radial geodesic (di" ) 21 hlz n 2M (1 N h_)

dr r r r2

Changing the dependent variable from » to u and the independent variable from 7 to ¢,

our radial geodesic equation reduces to

N2
h? (du) = (kz — 1) — h2u? +2Mu (1 + h.zuz)

do
4 ) )
d* M
of _u — —u + 1+ 3Mu?
dch? h2
\_ \ J

N

Extra term, only in GR

Cacwyy SUPA
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e.g. for the Earth’s orbit the ratio

3N 2
~3x 1078
M/ ="

Newtonian solution:

Elliptical orbit

Fociat F; and F, p
Ox = a = semi-major axis P defined by =
.. . l+ecosg
Oy = b = semi-minor axis
b = az(l —ez) :
' = semi-latus rectum
e = eccenfricity
= b’/a

Cacwyy SUPA
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GR solution:

Precessing ellipse

IN/2
U = E [1+ecos (1— 3M )@]

Perihelion

h? h2

Here
2T

P=1=r ek Planet
6m M
A =
a(l — e?)
A Universit -
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GR solution:

Precessing ellipse

- > \- >
” \ .-
'I o '.\ ) - - * 2 =
Jiop PPTa N 5600 73 seconds
‘f o’ \ ol arc/century
I ’,‘ - “
| - v
—A—= .
b —’jv Sun 4 )
\ 247
N,
\\ ’ )
L e .=~/ Odiof
~. " Mercury

6m M
a(l —e?)

If we apply this equation to the orbit of Mercury, we obtain a perihelion advance which

A =

builds up to about 43 seconds of arc per century.

1 Universit
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GR solution:
Precessing ellipse

Seen much more
dramatically in the
binary pulsar
PSR 1913+16.

Periastron is
advancing at a rate of
~4 degrees per year!

Cetiter of Mlass

_|_

SUPAGWD, October 2012
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Gravitational light deflection in GR

Radial geodesic for a photon

dr\ 2 h2  2M A2
(?):H—L+ :

d\ 2 73
d?u
o ——=tu= 3M u?
do
- Ad 2M
Solution reducesto u = —- 5
‘2?”“11“ T min
. | AM AGM
So that asymptotically | A¢ = = —
) i "min C=T'min
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This is exactly twice the deflection angle predicted by a Newtonian treatment. If we take
Tmin t0 be the radius of the Sun (which would correspond to a light ray grazing the limb
of the Sun from a background star observed during a total solar eclipse) then we find that

3
Ap = 46%9{) xxlég = 8.62 x 107° radians = 1.77 arcsec

True position

Apparend
¢ posttion of stat

bl Umver51t
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1919 expedition, led by Arthur Eddington, to observe
total solar eclipse, and measure light deflection.

GR passed the test!
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6. Wave Equation for Gravitational Radiation (pgs.46 - 57)

Weak gravitational fields

In the absence of a gravitational field, spacetime is flat. We define a
weak gravitational field as one is which spacetime is ‘nearly flat’

l.e. we can find a coord system
Jas = Naps + h‘&,ﬁ

such that
AN

where Nag = diag (—1,1,1,1) This is known as a
| Nearly Lorentz
has| << 1 for all a and 3 coordinate system.

fI’llVGI’Slty @ S®
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If we find a coordinate system in which spacetime looks nearly flat,
we can carry out certain coordinate transformations after which
spacetime will still look nearly flat:

1) Background Lorentz transformations

(t'. 2y, 2) = | (t,z,v,2)

l.e.  Lorentz boost of speed v

asgow SUPAGWD, October 2012




If we find a coordinate system in which spacetime looks nearly flat,
we can carry out certain coordinate transformations after which
spacetime will still look nearly flat:

1) Background Lorentz transformations

Under this transformation

g Vbt )l h
S dzH Ox Y

g ab — 1] a O™ 5"1“"8 b = Tag Uaps

. J

provided v << 1, then if |h.s| << 1

for all @ and 3, then |h/,5| << 1 also.

A Qf Glasgow SUPAGWD, October 2012



If we find a coordinate system in which spacetime looks nearly flat,
we can carry out certain coordinate transformations after which
spacetime will still look nearly flat:

1) Background Lorentz transformations

Hence, our original nearly Lorentz coordinate system remains nearly Lorentz in the
new coordinate system. In other words, a spacetime which looks nearly flat to one
observer still looks nearly flat to any other observer in uniform relative motion with

respect to the first observer.
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If we find a coordinate system in which spacetime looks nearly flat,
we can carry out certain coordinate transformations after which

spacetime will still look nearly flat:

2) Gauge transformations

Suppose now we make a very small change in our coordinate system by applying a

coordinate transformation of the form

2 = % + (2P

we now demand that the £% are small, in the sense that

%5l << 1 forall o,

Umversny
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If we find a coordinate system in which spacetime looks nearly flat,
we can carry out certain coordinate transformations after which
spacetime will still look nearly flat:

2) Gauge transformations

Suppose now that the unprimed coordinate system 1s nearly Lorentz

Then Qfa-g = Tags + hﬂ-ﬁ — gﬂ',lﬁ — 5,3,&

and we canwrite ' 5 =has —Eap — Epa

Note that if [£* 5| are small, then so too are |§, 5|, and hence 7/,5

Umversuy *Gce, SUPA
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If we find a coordinate system in which spacetime looks nearly flat,
we can carry out certain coordinate transformations after which
spacetime will still look nearly flat:

2) Gauge transformations

The above results tell us that — once we have identified a coordinate system which
is nearly Lorentz — we can add an arbitrary small vector £% to the coordinates x“
without altering the validity of our assumption that spacetime is nearly flat. We
can, therefore, choose the components £* to make Einstein’s equations as simple as
possible. We call this step choosing a gauge for the problem — a name which has
resonance with a similar procedure in electromagnetism — and coordinate transfor-
mations of this type given by equation are known as gauge transformation. We
will consider below specific choices of gauge which are particularly useful.

;, Umversuy *Gce, SUPA
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Einstein’s equations for a weak gravitational field

To first order, the R-C tensor for a weak field reduces to

{h'fté,.lj":r' + hﬁ*}-,&é — hcw,,ﬁﬁ — h‘,ﬁﬁ,ﬂ:w)

I:\-.-"ll—k

Rﬂ?ﬂé —

and is invariant under gauge transformations.

Similarly, the Ricci tensor is R, = ! (hﬁ-’* + 0y e — ™™ — :‘1,#1;)

) e

h=h, =n ap heg

L

0T a0
hwa™ =7 (h';w,n-),g = 7" Ny o

;, Umversuy *Gce, SUPA
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The Einstein tensor is the (rather messy) expression

1
N JOE SO LY .'Ij . Il'j
G,tm — E [h,tm-,v' + h‘:m:,,u' — h,mx,cr' — h,,uv — TN (haﬂ — h‘,ﬁ' )}

— 1
but we can simplify this by introducing hyw = Iy — E?}m;h-

So that

11— o« o u
G,mx — _E h,mf,&' + '??;crfh'&'ﬁ o h‘,tm,v T

And we can choose the Lorentz gauge to eliminate the last 3 terms

| Universit
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In the Lorentz gauge, then Einstein’s equations are simply

WX ;
—h-m;?& — 16.-'!. ITHL’

-
And in free space this gives L o

.
Writing e = 0" Nuaa

( 5 )
or a 9

—— + V2 B, = 0
U J

M University
Qf Glasgow SUPAGWD, October 2012




Remembering that we are taking ¢ = 1, if instead we write

0?2 b \ —
then ——— + V2 b, = 0

4 This is a key result. It has the mathematical form of a )
wave equation, propagating with speed C.
We have shown that the metric perturbations — the

‘ripples’ in spacetime produced by disturbing the metric —
\ propagate at the speed of light as waves in free space. y

University —
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7. The Transverse Traceless Gauge (pgs.57 - 62)

Simplest solutions of our wave equation are plane waves

EM, = Re |4, exp (ik,x®)]

A

_ Wave vector
Wave amplitude

Note the wave amplitude is symmetric — 10 independent components.

Also, easy to show that A Lﬂ . 0
o =

l.e. the wave vector is a null vector

| Universit
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Thus . i 2 2 2 ]_)/(2
wo o — f('ut — ('11';1: —I_ k’y —I— JZLE)

— /LY

Also, from the Lorentz gauge condition h =0

which implies that Am | —

1.e. the wave amplitude components must be orthogonal to the wave vector k.

But this is 4 equations, one for each value of the index .

Hence, we can eliminate 4 more of the wave amplitude components,

Cacwyy SUPA
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Can we do better? Yes

Our choice of Lorentz gauge, chosen to simplify Einstein’s equations,
was not unique. We can make small adjustments to our original Lorentz
gauge transformation and still satisfy the Lorentz condition.

We can choose adjustments that will make our wave amplitude
components even simpler — we call this choice the Transverse
Traceless gauge:

Aij — 'T?ﬂ.y AMH — (traceleSS)

A =0 forall a

SUPAGWD, October 2012



Suppose we orient our coordinate axes so that the plane wave is

travelling in the positive Z direction. Then

and

A, =0 forall a

(

\_

\

i.e. there is no component of the metric perturbation in the direction

of propagation of the wave. This explains the origin of the “Transverse’ part

J
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So in the transverse traceless gauge,

D 4@ cos |w(t — z)]

I Ny

where ( 0 0 0 0\
0 A%Y  ARY 0
A(TT) _ v
7z 0 A(ITyT) _ 40D
\ 0 0 0 0)

Also, since the perturbation is traceless h TT) — A (TT]

Cacwyy SUPA
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8. Effect of Gravitational Waves on Free Particles (pgs.63 - 75)

Choose Background Lorentz frame in which test particle initially at
rest. Set up coordinate system according to the TT gauge.

T3
Initial acceleration satisfies (d{” ) -0
dr
0

l.e. coordinates do not change, but adjust themselves as wave
passes so that particles remain ‘attached’ to initial positions.

Coordinates are frame-dependent labels.

What about proper distance between neighbouring particles?

Cacwyy SUPA
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Consider two test particles, both initially at rest, one at origin and the
otherat r=¢, y=2=10

Al = / |9a,3d:1?“d;z:-5|” :

€
l.e. Al — / ‘gmm‘l/? ~ \/g;m,(:l? =0
0

Now g;mr(il? = ()) = Nex ~|— h";(BET)(iE — 0)
In general,
. 1 ) / this is time-
SO Al ~ {1 + 5;1_££T)(m _ 0) varying

\- y,
Uni 1vel sity e :
' I aS%OW SUPAGWOD, October 2012 S®




More formally, consider geodesic deviation

initially at rest

£Y between two particles,

l.e. |n|t|aIIy with [JH — (1‘ Uﬁ ()‘ 0)1 gﬁ _ (U e () U)I
Then 0 | X
o Ry, = —€eRR,
and T T 1 (TT)
Ry =07 Rater = )f rx t
RE! — YR L _1 ('TT)
tet — T Llytot = 5 byy.tt
4 )
02 2 2 92
Hence | 0" o _ L Oy O 1 O
Ot2 2 Ot T dﬁ N
\§ J
University & .
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Similarly, two test particles initially separated by € inthe ¢-direction

satisfy
(32 1 07 s 1 0° A
— & = —E—h( T) —_ ¢ = ——e——plTD
ot? 2 Ot? Ot? 2 Otz
g J

We can further generalise to a ring of test particles: one at origin, the
otherinitiallya = =ecosf 1y =esinfl z=20;:

0* 1 0> 1 H2
wil — —FCO%QC)2h‘ (T 4 25%11196)2}: (T'T)
> ] 0’ | 5
ﬁf! = E Cosﬁd—ghgu ) _ —F%m@ﬁh(TT)

”' Universit s
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So in the transverse traceless gauge,

D 4@ cos |w(t — z)]

I Ny

where ( 0 0 0 0\
0 A%Y  ARY 0
A(TT) _ v
7z 0 A(ITyT) _ 40D
\ 0 0 0 0)

Also, since the perturbation is traceless h TT) — A (TT]

Cacwyy SUPA
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Solutions are:

. 1 L.
&' = ecosf + o€ cos@ AT coswt + o€ sin ¢ AgT} cos wt

. 1 [
Y = esinf + S€cos 0 AgT) coswt — Sesin 0 AT cos wt

Suppose we now vary # between 0 and 27, so that we are considering an initially

circular ring of test particles in the x-y plane, initially equidistant from the origin.
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AT _

Ty — L

ASD £ 0

&-;1: L

& =

AT =0

—+ Polarisation

1
€ cos 0 ( 1 4+ §A§£T}

€ sin 6 (1 — %AET

COS c.ut)

) cos wt )

SUPAGWD, October 2012
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{TT) £ 0 A{TT) 0

cos Wt

fr 1
' = €ecosf + ¢ s AgT}

. 1
esinf + 55 cos ¢ AgT} cos wt

&‘y

AT = X Polarisation

’——-\.“. - d'—__hs
. * \l . / \ ’
A1 ’ 1
’, A
" \ ! ] : \
] ’ ! \
! 1 / 7 I |
! i \
]
\ I I s A "
\ | ’ \
£ . # I
hRN ’ . l "'R ~ I'
-~ ——- » - ""q._-’
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Rotating axes through an angle of —7/4 to define 2’ = 7 (r — )

We find that
1
, v = NG (2 +v)
m T )
T —  ccos — e = (TT) rar)s <
" = e€cos ((:?Jr -l) — 5 €sin (6’ - 4) Ay, coswt
: 'y 1 T
&Y = esin (9 — ;1) - EF COS (9 -+ i) AgT) cos wt
These are identical to earlier solution, apart from rotation.
 University —
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. : TT : TT : :

e The two solutions, for Afm, ) #+ 0 and A;Efy ) # 0 represent two independent
gravitational wave polarisation states, and these states are usually denoted
by ‘4’ and ‘x’ respectively. In general any gravitational wave propagating
along the z-axis can be expressed as a linear combination of the “+" and *x’

polarisations, 1.e. we can write the wave as
h = ae, 4+ be,

where a and b are scalar constants and the polarisation tensors e, and e, are

/ 0 0 0 (]\ / 0 0 0 U\
0 1 0 0 0 0
0 0 —1 0 0 1 0 0

\0 0 0 0/ \0 0 0 0/
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« Distortions are quadrupolar - consequence of fact that
acceleration of geodesic deviation non-zero only for tidal
gravitational field.

« At any instant, a gravitational wave is invariant under a rotation of
180 degrees about its direction of propagation.
(c.f. spin states of gauge bosons; graviton must be S=2,
tensor field)

| Universit
of Glasgovz “ace>; "SuPA

SUPAGWD, October 2012




Design of gravitational wave detectors
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Design of gravitational wave detectors
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Design of gravitational wave detectors
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34 yrs on - Interferometric ground-based detectors
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M,
& 1€"’r]
B m—
| : | /r_—l\
A A

A | - _M] | 1,{ 1 /" _-M2

Gravitational wave h = he, propagating along z axis.

Fractional change in proper separation | —— — —
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More generally, for h = he,

Detector ‘sees’

hy = h sin®@ cos2¢

Maximum response for

Null response for

=0 ¢=m/4

-~
-

-~

test mass e \_/

X

Incoming wave
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More generally, for h = he,

Detector ‘sees’
hy = h sin?6 sin 2¢

Maximum response for

-~
-~
-

9 = T /2 O — ;1/4 ;,/’ \_/
test massQ/ e

Null response for
X

=0 o=20

Incoming wave
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9. The Production of Gravitational Waves (pgs 76 - 80)

We can understand something important about the nature of gravitational radiation
by drawing analogies with the formulae that describe electromagnetic radiation.
This approach 1s crude at best since the electromagnetic field is a vector field while
the gravitational field 1s a tensor field, but it 1s good enough for our present purposes.
Essentially, we will take familiar electromagnetic radiation formulae and simply
replace the terms which involve the Coulomb force by their gravitational analogues
from Newtonian theory.

Net electric

_— dipole moment

2 12
L’elect.ric dipole X € d

SUPAGWD, October 2012 “) B



Lmagnetic dipole X [

[ = Z (position of q.a-_) P (c:urrent due to Qi)
qi

Gravitational analogues?...

Mass dipole moment: d = Z m;X;
A,
But d = Z m;x; = P
A

Conservation of linear momentum implies no mass dipole radiation

;, Umversuy *Gc, ‘SUPA
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Lmagnetic dipole X H

[ = Z (position of q.a-_) P (c:urrent due to Qi)
qi

Gravitational analogues?...

Conservation of angular momentum implies no mass dipole radiation
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Also, the quadrupole of a spherically symmetric mass distribution
IS zero.

4 )
Metric perturbations which are spherically symmetric don’t produce

gravitational radiation.
- y,

(" )

| 2G ..

Example: binary neutron star system. hw = TI %
c*r

\_ J

where /,,,, 1s the reduced quadrupole moment defined as

1.
1, = /,()(T—") (:z?‘u;z?y _ 30““r2> JV

@ ety ", S0P
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Consider a binary neutron star system consisting of two stars both of Schwarzschild

mass M, in a circular orbit of coordinate radius R and orbital frequency f.

1

I,.=2MR? {coaz(%ft) — 3]
AN D2 | 2746 1

I, =2MR {sm (27w ft) — 3}

Loy =1, = 2M R? [cos(27 ft) sin(27 f)]
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Thus her = —hy,, = hcos (4 ft)

hpy = hy, = —hsin (47 ft)

where 322G M R? 12
h = 7

cr

So the binary system emits gravitational waves at twice the orbital
frequency of the neutron stars.

R?[km] f?[Hz]
r[Mpc]

Also =23 x107°°

SUPAGWD, October 2012
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Thus her = —hy,, = hcos (4 ft)

hpy = hy, = —hsin (47 ft)

where 322G M R? 12
h = 7

cr

So the binary system emits gravitational waves at twice the orbital
frequency of the neutron stars.

R?[km] f?[Hz]
r[Mpc]

<«—= Huge
Challenge!
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