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Einstein’s RelativityEinstein’s Relativity

Matter causes space Matter causes space 

to to curvecurve or or warpwarp

Spacetime tells matter 
how to move, and 
matter tells spacetime 
how to curve 

Gravity in Einstein’s Universe 
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“…joy and amazement at the 

beauty and grandeur of this 

world of which man can just 

form a faint notion.” 

 TG 

Spacetime 

curvature 
Matter  

(and energy) 
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We are going to cram a lot of mathematics and 
physics into approx. 2 hours. 

 
Two-pronged approach: 
 

   Comprehensive lecture notes, providing a   

      ‘long term’ resource and reference source 

 

   Lecture slides presenting “highlights” and  

      some additional illustrations / examples 

Copies of both available on mySUPA 
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What we are going to cover 

 1. Foundations of general relativity 
 

2. Introduction to geodesic deviation 
 

3. A mathematical toolbox for GR 
 

4. Spacetime curvature in GR 
 

5. Einstein’s equations 

 
6. A wave equation for gravitational radiation 
 

7. The Transverse Traceless gauge 
 

8. The effect of gravitational waves on free particles 
 

9. The production of gravitational waves 
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Websites of my Glasgow University Courses 

“Gravitation” 
Charles Misner, Kip Thorne, 
John Wheeler 

 ISBN:  0716703440  
 

Recommended textbooks 

The ‘bible’ for studying GR 

“A First Course in General Relativity” 
Bernard Schutz 

 
 
ISBN:  052177035  
Excellent introductory textbook.  
Good discussion of gravitational wave 
generation, propagation and detection. 
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“Do not worry 

about your 

difficulties in 

mathematics;   

I can assure you 

that mine are 

still greater.” 
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“The hardest 

thing in the world 

to understand is 

the income tax”  
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1. Foundations of General Relativity   (pgs. 6 – 12) 

GR is a generalisation of  Special Relativity   (1905). 

 

In SR  Einstein formulated the laws of physics to be valid 

for all  inertial observers 

 

   Measurements of space and time relative  

      to observer’s motion.  
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1. Foundations of General Relativity   (pgs. 6 – 12) 

GR is a generalisation of  Special Relativity   (1905). 

 

In SR  Einstein formulated the laws of physics to be valid 

for all  inertial observers 

 

   Measurements of space and time relative  

      to observer’s motion.  

Invariant interval 

Minkowski 

metric 
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Isaac Newton: 

1642 – 1727 AD 

The Principia: 1684 - 1686 

Newtonian gravity is incompatible with SR 
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Moon’s orbit 

Earth 



Moon’s orbit 

But how does the Moon 

know to orbit the Earth? 

 

How does gravity act at a 

distance across space? 

Earth 



The Principia: 1684 - 1686 

Principles of Equivalence 

amF II


Inertial Mass 

Gravitational Mass gmr
r

Mm
F G

G
G


 ˆ
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Weak Equivalence Principle 

 

 

 

 Gravity and acceleration are  equivalent 

GI mm 
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The Principia: 1684 - 1686 

The WEP implies: 

A object freely-falling in 

a uniform gravitational 

field inhabits an 

inertial frame in which 

all gravitational forces 

have disappeared. 
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The Principia: 1684 - 1686 

The WEP implies: 

A object freely-falling in 

a uniform gravitational 

field inhabits an 

inertial frame in which 

all gravitational forces 

have disappeared. 

But only LIF:  only local over 

region for which gravitational 

field is uniform. 
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The Principia: 1684 - 1686 

Strong Equivalence Principle 

 

Locally (i.e. in a LIF)   

all  laws of physics  

reduce to their SR  

form – apart from  

gravity, which simply  

disappears. 
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The Principia: 1684 - 1686 

The Equivalence principles 

also predict gravitational 

light deflection… 

 

 Light enters lift horizontally at X, at 

instant when lift begins to free-fall. 

 

Observer A is in LIF. Sees light 

reach opposite wall at Y (same 

height as X), in agreement with SR. 

 

To be consistent, observer B 

outside lift must see light path as 

curved, interpreting this as due to 

the gravitational field 

Light path 
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The Principia: 1684 - 1686 

The Equivalence principles 

also predict gravitational 

redshift… 

 

 
Light enters lift vertically at F, at 

instant when lift begins to free-fall. 

 

Observer A is in LIF. Sees light 

reach ceiling at Z with unchanged 

frequency, in agreement with SR. 

 

To be consistent,  observer B 

outside lift must see light as 

redshifted, interpreting this as due 

to gravitational field. 

Light path 
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The Principia: 1684 - 1686 

The Equivalence principles 

also predict gravitational 

redshift… 
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Measured in  Pound-

Rebka experiment 
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The Principia: 1684 - 1686 

From SR to GR… 
 

How do we ‘stitch’ all 

the LIFs together? 

 

Can we find a 

covariant description? 
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2. Introduction to Geodesic Deviation   (pgs.13 – 17) 

In GR trajectories of freely-falling particles are  geodesics – the 

equivalent of straight lines in curved spacetime. 
 

Analogue of Newton I:   Unless acted upon by a non-gravitational 

force, a particle will follow a geodesic. 

Einstein’s RelativityEinstein’s Relativity

Matter causes space Matter causes space 

to to curvecurve or or warpwarp
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The curvature of spacetime is revealed by the behaviour of 

neighbouring geodesics. 

 

Consider a 2-dimensional analogy. 

Zero curvature:  geodesic deviation unchanged. 

Positive curvature:  geodesics converge 

Negative curvature: geodesics diverge 
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Non-zero curvature 

 

 

Acceleration of geodesic deviation 

 

 

Non-uniform gravitational field 
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We can first think about geodesic deviation and curvature in a 

Newtonian context 

 

By similar triangles 

 

 

 

 

Hence 

Earth 

SUPAGWD, October 2012 



We can first think about geodesic deviation and curvature in a 

Newtonian context 

 

or 

 

 

 

 

which we can re-write as 

Earth 
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At Earth’s surface this equals 

We can first think about geodesic deviation and curvature in a 

Newtonian context 

 

or 

 

 

 

 

which we can re-write as 

Earth 
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Another analogy will help us to interpret this last term 

Differentiating: 

Sphere of 

radius  a 
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Another analogy will help us to interpret this last term 

Differentiating: 

 

 

 

 

Comparing with previous slide: 

 

 

 

 

represents radius of curvature of 

spacetime at the Earth’s surface 

Sphere of 

radius  a 
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At the surface of the Earth 
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3. A Mathematical Toolbox for GR   (pgs.18 – 32) 

Riemannian Manifold 

A continuous, differentiable 

space which is locally flat 

and on which a distance, or 

metric, function is defined. 
 

(e.g. the surface of a sphere) 

The mathematical properties of a Riemannian 

manifold match the physical assumptions of the 

strong equivalence principle 
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Vectors on a curved manifold 

We think of a vector as an 

arrow representing a 

displacement. 


 exx




components basis vectors 

In general,  components of vector different at X and Y, even if the 

vector is the same at both points.  

SUPAGWD, October 2012 



We need rules to tell us how to 

express the components of a 

vector in a different coordinate 

system, and at different points 

in our manifold. 

 

e.g. in new, dashed, coordinate 

system, by the chain rule 
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We need rules to tell us how to 

express the components of a 

vector in a different coordinate 

system, and at different points 

in our manifold. 

 

e.g. in new, dashed, coordinate 

system, by the chain rule 

We need to think more carefully 

about what we mean by a vector. 
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Tangent vectors 

We can generalise the concept of vectors to curved manifolds. 
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Tangent vectors 
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Simple example: 2-D sphere. 

 

Set of curves parametrised by 

coordinates 

 

                         tangent  to ith curve 

 

 

Basis vectors different at X and Y. 
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Summary  

Extends easily to more general curves, manifolds 
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Transformation of vectors  
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This is the transformation law for a contravariant vector. 

 

Any set of components which transform according to this 

law, we call a contravariant vector. 
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Transformation of basis vectors  
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This is the transformation law for a one-form or covariant 

vector. 

 

Any set of components which transform according to this 

law, we call a one-form. 

 

 

A one-form, operating on a vector, produces a real 

number  (and vice-versa) 
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Picture of a one-form  

Not a vector, but a way of ‘slicing up’ the manifold. 

The smaller the spacing, the 

larger the magnitude of the 

one-form. 

 

When one-form shown acts on 

the vector, it produces a real 

number: the number of ‘slices’ 

that the vector crosses. 

Example:   the gradient operator   (c.f. a topographical map) 
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Picture of a one-form  

SUPAGWD, October 2012 



Extension to tensors  

An  (l,m)  tensor is a  linear operator  that maps  l  one-forms and  

n  vectors to a real number. 

Transformation law  

If a tensor equation can be shown to be valid in a particular 

coordinate system, it must be valid in any  coordinate system. 
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Specific cases  

(2,0)  tensor 

(1,1)  tensor 

(0,2)  tensor 
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Example:  

metric  tensor 

 

 

 

which justifies 

Invariant interval 

(scalar) 

Contravariant vectors 

or  (1,0) tensors  
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We can use the metric tensor to convert contravariant vectors to 

one-forms, and vice versa. 

 

 Lowering the index 

 

 

 Raising the index 

 

 

Can generalise to tensors of arbitrary rank. 

(this also explains why we generally think of gradient as a vector operator. 

In flat, Cartesian space components of vectors and one-forms are identical) 
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Covariant differentiation 

Differentiation of e.g. a  vector field  involves subtracting vector 

components at two neighbouring points. 

 

This is a problem because the transformation law for the components 

of  A  will in general be different at  P and Q. 

 

 Partial derivatives are  not  tensors 

 
 

To fix this problem, 

we need a procedure for 

transporting the components 

of  A  to point Q. 
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Covariant differentiation 

We call this procedure  Parallel Transport 

A vector field is parallel transported along a curve, when it mantains a 

constant angle with the tangent vector to the curve 
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Covariant differentiation 

We can write 

 

 

 

where 

Christoffel symbols, connecting the basis 

vectors at Q to those at P 
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Covariant differentiation 

We can write 

 

 

 

where 

Christoffel symbols, connecting the basis 

vectors at Q to those at P 
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Covariant differentiation 

We can now define the  covariant derivative  (which does 

transform as a tensor) 

 
 

 Vector 

 

 

 One-form 

 
(with the obvious generalisation to arbitrary tensors) 
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Covariant differentiation 

We can show that the covariant derivatives of the metric tensor 

are identically zero, i.e. 

 

 

 

 

 

From which it follows that  
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Geodesics 

We can now provide a more mathematical basis for the 

phrase “spacetime tells matter how to move”. 

 

 

 

 

 

 

The covariant derivative of a tangent vector, along the 

geodesic is identically zero, i.e. 

0U
U
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Geodesics 

Suppose we parametrise the geodesic by the proper time,     , 

along it  (fine for a material particle).  Then 

 

 

 

 

i.e. 

 

 

 

 

with the equivalent expression for a photon (replacing      with       ) 



0
















d

dx

d

dx

d

dx

d

d
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4. Spacetime curvature in GR   (pgs.33 – 37) 

This is described by the  Riemann-Christoffel tensor,  which 

depends on the metric and its first and second derivatives. 
 

We can derive the form of the R-C tensor in several ways 
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In a flat manifold, parallel transport does not rotate vectors, while 

on a curved manifold it does. 
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After parallel transport around a 

closed loop on a curved manifold, 

the vector does not come back to its 

original orientation but it is rotated 

through some angle. 

The R-C tensor is related to this 

angle. 

If spacetime is flat then, for all indices 
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Another analogy will help us to interpret this last term 

Differentiating: 

 

 

 

 

Comparing with previous slide: 

 

 

 

 

represents radius of curvature of 

spacetime at the Earth’s surface 

Sphere of 

radius  a 
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5. Einstein’s Equations   (pgs.38 – 45) 

What about “matter tells spacetime how to curve”?... 
 

The source of spacetime curvature is the  Energy-momentum tensor 

which describes the presence and motion of gravitating matter (and 

energy). 

 

We define the E-M tensor for a  perfect fluid 

 

In a fluid description we treat our physical system as a smooth 

continuum, and describe its behaviour in terms of locally averaged 

properties  in each  fluid element. 
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Each fluid element may possess a  bulk motion  

with respect to the rest of the fluid, and this relative  

motion may be non-uniform. 

 

At any instant we can define 

Momentarily comoving rest frame (MCRF)  

of the fluid element – Lorentz Frame in which  

the fluid element as a whole is  

instantaneously at rest. 

 

 Particles in the fluid element will not be at rest: 
 

1. Pressure  (c.f. molecules in an ideal gas) 

2. Heat conduction  (energy exchange with neighbours) 

3. Viscous forces  (shearing of fluid) 
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Each fluid element may possess a  bulk motion  

with respect to the rest of the fluid, and this relative  

motion may be non-uniform. 

 

Perfect Fluid  if, in MCRF, each fluid  

element has no heat conduction or  

viscous forces, only pressure. 

 

Dust  =  special case of pressure-free perfect fluid. 
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Definition of E-M tensor 
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Pressure due to random motion 

of particles in fluid element 
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Pressure due to random motion 

of particles in fluid element 

SUPAGWD, October 2012 



SUPAGWD, October 2012 



Hence 

 

 

 

 

 

 

 and 
Covariant expression of 

energy conservation in 

a curved spacetime. 
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So how does “matter tell spacetime how to curve”?... 
 

Einstein’s Equations 
 

BUT   the E-M tensor is of rank 2, whereas the R-C tensor is of rank 4. 

 

Einstein’s equations involve  contractions  of the R-C tensor. 

 

 

Define the  Ricci tensor  by 

 

 

and the  curvature scalar  by 
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We can raise indices via 

 

 

and define the  Einstein tensor 

 

 

 

 

We can show that 

 

 

 

 so that 
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Einstein took as solution the form 

Solving Einstein’s equations 

Given the metric, we can compute the Christoffel symbols, then the 

geodesics of ‘test’ particles.  

 

We can also compute the R-C tensor, Einstein tensor  and E-M tensor.  
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What about the other way around?... 

Highly non-trivial problem, in general intractable, but given E-M  

tensor can solve for metric in some special cases. 

 

e.g. Schwarzschild solution, for the spherically symmetric 

 static spacetime exterior to a mass  M  

Coordinate singularity at  r=2M 
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Radial geodesic 

 

 

 

 

 

 

 

 

 

or 

Extra term, only in GR 
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Newtonian solution: 
 

Elliptical orbit 
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GR solution: 
 

Precessing ellipse 

 

 

 

 

 

 

Here 
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GR solution: 
 

Precessing ellipse 
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GR solution: 
 

Precessing ellipse 

 

Seen much more 

dramatically in the  

binary pulsar  

PSR 1913+16. 

 

Periastron is 

advancing at a rate of 

~4 degrees per year!  
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Radial geodesic for a photon 

 

 

 

 

 

or 

 

 

 

Solution reduces to 

 

 

 

So that asymptotically 
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1919 expedition, led by Arthur Eddington, to observe 

total solar eclipse, and measure light deflection. 
 

GR passed the test! 
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6. Wave Equation for Gravitational Radiation   (pgs.46 – 57) 

Weak gravitational fields 

In the absence of a gravitational field, spacetime is flat.  We define a 

weak gravitational field as one is which spacetime is ‘nearly flat’ 

 

i.e. we can find a coord system 

  such that 

 

 

where This is known as a 

Nearly Lorentz 

coordinate system. 
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If we find a coordinate system in which spacetime looks nearly flat, 

we can carry out certain coordinate transformations after which 

spacetime will still look nearly flat: 

 

1) Background Lorentz transformations 

 

 

 

 

 

 

 

 

 i.e. 
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If we find a coordinate system in which spacetime looks nearly flat, 

we can carry out certain coordinate transformations after which 

spacetime will still look nearly flat: 

 

1) Background Lorentz transformations 

 

 Under  this transformation 

SUPAGWD, October 2012 



If we find a coordinate system in which spacetime looks nearly flat, 

we can carry out certain coordinate transformations after which 

spacetime will still look nearly flat: 

 

1) Background Lorentz transformations 

SUPAGWD, October 2012 



If we find a coordinate system in which spacetime looks nearly flat, 

we can carry out certain coordinate transformations after which 

spacetime will still look nearly flat: 

 

2) Gauge transformations 
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If we find a coordinate system in which spacetime looks nearly flat, 

we can carry out certain coordinate transformations after which 

spacetime will still look nearly flat: 

 

2) Gauge transformations 

 

 

 
Then 

 

 

and we can write       
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If we find a coordinate system in which spacetime looks nearly flat, 

we can carry out certain coordinate transformations after which 

spacetime will still look nearly flat: 

 

2) Gauge transformations 
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To first order, the R-C tensor for a weak field reduces to 

 

 

 

 
and is invariant under gauge transformations. 

 

Similarly, the Ricci tensor is 

 

 
 

 where  
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The Einstein tensor is the (rather messy) expression 

 

 

 

 

 

but we can simplify this by introducing 

 
So that 

 

 

 

 

And we can choose the  Lorentz gauge  to eliminate the last 3 terms 
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In the Lorentz gauge, then Einstein’s equations are simply 

 

 

 

 

And in free space this gives 

 

 

 

 

Writing 

 

 

 or 
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then 

This is a key result. It has the mathematical form of a 

wave equation, propagating with speed c.  

We have shown that the metric perturbations – the 

‘ripples’ in spacetime produced by disturbing the metric – 

propagate at the speed of light as waves in free space. 
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7. The Transverse Traceless Gauge  (pgs.57 – 62) 

Simplest solutions of our wave equation are  plane waves 

Wave amplitude 
Wave vector 

Note the wave amplitude is symmetric    10 independent components. 

 

Also, easy to show that 

 

 

 i.e. the wave vector is a  null  vector 
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Thus 

 

 

 

 

Also, from the Lorentz gauge condition 

 

 

 

which implies that 

 

 

 

 

 

But this is 4 equations,  one for each value of the index      . 

 

Hence, we can eliminate 4 more of the wave amplitude components, 
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Can we do better?      Yes 

 

Our choice of  Lorentz gauge, chosen to simplify Einstein’s equations, 

was not unique.  We can make small adjustments to our original Lorentz 

gauge transformation and still satisfy the Lorentz condition. 

 

We can choose adjustments that will make our wave amplitude 

components even simpler – we call this choice the  Transverse 

Traceless  gauge: 

(traceless) 
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Suppose we orient our coordinate axes so that the plane wave is 

travelling in the positive  z  direction.  Then 

 

 

 

and 
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So in the transverse traceless gauge, 

 

 

 

 

where 

 

 

 

 

 

 

Also, since the perturbation is traceless 
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8. Effect of Gravitational Waves on Free Particles  (pgs.63 – 75) 

Choose Background Lorentz frame in which test particle initially at 

rest.  Set up coordinate system according to the TT gauge. 

 

Initial acceleration satisfies 

 

i.e. coordinates do not change, but adjust themselves as wave 

passes so  that particles remain ‘attached’ to initial positions. 

 

Coordinates are frame-dependent labels. 

 

What about  proper distance  between neighbouring particles?  
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Consider two test particles, both initially at rest, one at origin and the 

other at 

 

 

 

 

 

i.e. 

 

 

Now 

 

 

 so 

In general, 

this is time-

varying 
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More formally, consider geodesic deviation         between two particles, 

initially at rest   

i.e. initially with 

 

Then 

 

 

and 

 

 

 

 

Hence                                                                                        
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Similarly, two test particles initially separated by       in the       direction 

satisfy 

 

 

 

 

 

We can further generalise to a ring of test particles: one at origin, the 

other initially a                                                              : 
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So in the transverse traceless gauge, 

 

 

 

 

where 

 

 

 

 

 

 

Also, since the perturbation is traceless 
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Solutions are: 
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Rotating axes through an angle of                to define 

 

We find that 

 

 

 

 

 

 

 

These are identical to earlier solution, apart from rotation.  
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•   Distortions are  quadrupolar  -  consequence of fact that    

    acceleration of geodesic deviation non-zero only for tidal  

    gravitational field. 

 

•   At any instant, a gravitational wave is invariant under a rotation of  

   180 degrees about its direction of propagation. 

    (c.f. spin states of gauge bosons;  graviton must be  S=2,  

     tensor field) 

SUPAGWD, October 2012 



Design of gravitational wave detectors 
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Design of gravitational wave detectors 
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Design of gravitational wave detectors 
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34 yrs on - Interferometric ground-based detectors 
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Fractional change in proper separation 

Gravitational wave                        propagating along   z axis. 
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More generally, for 

 

Detector ‘sees’ 

 

 

 

 

Maximum response for 

 

 

 

 

Null response for 
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More generally, for 

 

Detector ‘sees’ 

 

 

 

 

Maximum response for 

 

 

 

 

Null response for 
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9. The Production of Gravitational Waves    (pgs 76 – 80) 

Net electric 

dipole moment 
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Gravitational analogues?... 

 
 

 Mass dipole moment: 

 

 

But 

                                                                        

 

  Conservation of linear momentum implies no mass dipole radiation 
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Gravitational analogues?... 

 

 

 

 

 

 

Conservation of angular momentum implies no mass dipole radiation 
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Also, the quadrupole of a spherically symmetric mass distribution 

is zero. 

 

 

Metric perturbations which are spherically symmetric don’t produce 

gravitational radiation. 

 

 

 

Example:   binary neutron star system. 
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Thus 

 

 

 

 

 

where 

 

 

 

So the binary system emits gravitational waves at  twice  the orbital 

frequency of the neutron stars. 

 

 

Also 
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Thus 

 

 

 

 

 

where 

 

 

 

So the binary system emits gravitational waves at  twice  the orbital 

frequency of the neutron stars. 

 

 

Also Huge 

Challenge! 
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