
Chapter 1

Resumé of Gravitation & Relativity

Part I

1.1 Foundations of General Relativity

General relativity (GR) explains gravitation as a consequence of the curvature of space-

time. In turn spacetime curvature is a consequence of the presence of matter. Spacetime

curvature affects the movement of matter, which reciprocally determines the geometric

properties and evolution of spacetime. We can sum this up neatly as follows:-

“Spacetime tells matter how to move,

and matter tells spacetime how to curve”

1.1.1 The weak principle of equivalence

This simply states that the inertial mass, mI , and the gravitational mass, mG, of a body

are equal. GR incorporates this result by demanding that test particles have worldlines
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that are geodesics in curved spacetime. Hence the worldline is independent of the mass

of the test particle and depends only on the geometry of spacetime. Translating back

into Newtonian language, this means that all bodies accelerate in a gravitational field

at the same rate, regardless of their mass.

1.1.2 The strong principle of equivalence

This goes further and states that locally, i.e. in a local inertial frame (or free-falling

frame), all physical phenomena are in agreement with special relativity. There are two

important and immediate consequences of this principle. The first is that the path

of a light ray should be bent by gravitational fields, and secondly, there should be a

gravitational redshift.

1.1.3 Geodesic deviation

The separation, ξ, between the two free test particles is called the geodesic deviation.

In general ξ is a vector. (In fact, it is a four vector, if we consider time separations as

well). It is the acceleration of this geodesic deviation that indicates the presence of a

gravitational field, or equivalently, the curvature of spacetime. In the flat spacetime of

Minkowski free test particles have worldlines that are ‘straight’. Thus the acceleration

of the geodesic deviation is zero for Minkowski spacetime.

1.1.4 Covariance

In SR all inertial frames are equally valid; accordingly physical laws should be express-

ible in a manner such that they are covariant under all Lorentz transformations. This
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simply means that the same physical laws apply in all Lorentz frames. In GR we go one

step further: physical laws should remain valid under all coordinate transformations –

we call this the principle of general covariance.

1.1.5 Summation convention

Instead of constantly writing

~F =
∑

i

F i~ei (1.1)

for the components of a vector, ~F , with respect to a particular coordinate basis, we

can simply write

F i~ei (1.2)

Thus, where one encounters repeated indices (upper-lower or lower-upper), this implies

summation.

1.2 Manifolds and functions on a manifold

A manifold is a continuous space which is locally flat. More generally we can regard

a manifold as any set which can be continuously parametrised: the number of inde-

pendent parameters is the dimension of the manifold, and the parameters themselves

are the coordinates of the manifold. A differentiable manifold is one which is both

continuous and differentiable. This means that we can define a scalar function (or

scalar field) – φ, say – at each point of the manifold, and that φ is differentiable.

A Riemannian manifold is a manifold on which a distance function, or metric, is

defined. The Minkowski spacetime of special relativity is an example of a Riemannian
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manifold. If one imagines a curved manifold embedded in a higher dimensional Eu-

clidean space (e.g. a 2-D sphere embedded in E3) then there is a natural metric which

we can adopt, which is just the Euclidean distance function of the higher-dimensional

space in which the manifold is embedded.

1.2.1 Scalar functions on a manifold

A scalar function is a geometrical object the numerical value of which at each point

of the manifold is the same real number, no matter which coordinate representation is

used.

1.2.2 Contravariant vectors on a manifold

A contravariant vector is a geometrical object the components of which, at each

point of the manifold, in different coordinate systems transform linearly according to

the equation

A′µ =
∂x′µ

∂xν
Aν (1.3)

1.2.3 One-Forms on a manifold

A covariant vector, covector, or (in more modern literature) a one-form is a ge-

ometrical object the components of which, at each point of the manifold, transform

linearly according to the equation

B′
µ =

∂xν

∂x′µ
Bν (1.4)
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1.2.4 General tensors on a manifold

A tensor of type (l,m), defined on an n dimensional manifold, is a linear operator

which maps l one-forms and m (contravariant) vectors into a real number (i.e. scalar).

Such a tensor has a total of nl+m components. The transformation law for a general

(l,m) tensor is

A′u1 u2 ... ul
r1 r2 ... rm

=
∂x′u1

∂xt1
...
∂x′ul

∂xtl

∂xq1

∂x′r1
...
∂xqm

∂x′rm
At1 t2 ... tl

q1 q2 ... qm
(1.5)

A (2, 0) tensor, say T ij, is called a contravariant tensor of rank 2 and transforms

according to the transformation law

T ′ij =
∂x′i

∂xk

∂x′j

∂xl
T kl (1.6)

A (0, 2) tensor, say Bij, is called a covariant tensor of rank 2, and transforms ac-

cording to the law

B′
ij =

∂xk

∂x′i
∂xl

∂x′j
Bkl (1.7)

A tensor which has both upper and lower indices, which means that it has both con-

travariant and covariant terms in its transformation law, is known as a mixed tensor.

The simplest example (after the trivial case of a (0, 0) tensor) is a (1, 1) tensor, Di
j,

say. Its transformation law is

D′i
j =

∂x′i

∂xk

∂xl

∂x′j
Dk

l (1.8)

An important example of a (1, 1) tensor is the Kronecker delta, δi
j.

1.2.5 Contraction of tensors

We can form the inner product, or contraction of a vector and one-form; i.e. we

form the quantity AiBi (where, as usual, the summation convention is implied). This
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quantity can easily be shown to be an invariant or scalar in the sense that

A′jB′
j = AiBi (1.9)

We can generalise the operation of contraction to the case of any two tensors, and over

an arbitrary number of indices, provided that an equal number of upper and lower

indices are selected. In general, contraction over k indices will produce from a tensor

of type (l,m) a new tensor of type (l− k,m− k). For example, the contraction of the

two tensors Gijk
lm and Rs

tu over the indices i and t, j and u and l and s will give the

(1, 1) tensor Gijk
lmR

l
ij, where now only the indices k and m are free indices.

1.3 Spacetime and the metric

Spacetime is a 4 dimensional manifold. The points of this manifold are called events.

We can also define a distance, or interval, between neighbouring events – i.e. space-

time is a Riemannian manifold. If the interval between these events in timelike, we

use the interval between them to define the proper time recorded by a particle on

whose worldline the events lie.

Suppose a coordinate system has been set up in spacetime. Each event, P , is provided

with 4 coordinate values, say {x0, x1, x2, x3}. These coordinates can be quite general,

and are not necessarily assumed to represent time and spatial coordinates. A neigh-

bouring event, Q, has coordinates {x0 +dx0, x1 +dx1, x2 +dx2, x3 +dx3}. We can write

the (invariant) interval between these events as

ds2 = gµνdx
µdxν (1.10)

gµν is called the metric tensor (stricly speaking g, in coordinate-free notation, is the
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metric tensor and gµν is just the metric tensor components, but this distinction is rarely

made in practice).

To say that spacetime is locally Minkowskian (sometimes loosely stated as ‘locally

flat’) means that there exists a coordinate transformation that reduces equation (1.10)

to the form of the Minkowski metric in the neighbourhood of event P .

1.3.1 Transformation law for the metric

At any event, P , the value of gµν will depend on the coordinates used. It is easy to see

that the metric must, in fact, transform as a (0, 2) tensor, since ds2 is invariant, and

dxµdxν transforms as a (2, 0) tensor. Thus the metric has the transformation law

g′µν =
∂xα

∂x′µ
∂xβ

∂x′ν
gαβ (1.11)

1.3.2 Contravariant components of the metric tensor

We can also define contravariant components of the metric tensor gjk by requiring

gikg
jk = δj

i (1.12)

gjk defined in this way must be unique, since gij is nonsingular. gjk transforms as a

(2, 0) tensor, since gik transforms as a (0, 2) tensor and δj
i as a (1, 1) tensor.

1.3.3 Raising and lowering indices and contraction

Given any contravariant vector Ai it is possible to define, via the metric tensor, an

associated one-form, which we denote as Ai and which is defined by

Ai = gikA
k (1.13)
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This operation is often called lowering the index.

Similarly by using gij we can raise the index of a covariant quantity Bi to obtain a

contravariant quantity Bi, viz.

Bi = gijBj (1.14)

The process of raising or lowering indices can be carried out with tensors of any rank

and type. For example

Dijk..
lm = glpgmqD

ijkpq (1.15)

Some care must be taken in positioning the indices. The dots have been placed here

to indicate the indices over which contraction has taken place, although in general we

shall omit the dots and just write Dijk
lm. Note that D..ijk

lm defined by

D..ijk
lm = glpgmqD

pqijk (1.16)

is not the same as Dijk..
lm unless Dijkpq possesses some symmetry.

The magnitude of a vector Ai is gijA
iAj, which is of course invariant, since gij is a

(0, 2) tensor and Ai and Aj are both (1, 0) tensors. Notice

gijA
iAj = AjA

j = gijAiAj (1.17)

gijA
iBj may be regarded as the scalar product of two vectors.

1.4 Covariant differentiation

Any dynamical physical theory must deal in time varying quantities, and if this theory

is also to be relativistic, spatially varying quantities too. Since GR is a covariant
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theory, we are confronted with the problem of constructing quantities that represent

rates of change, but which can be defined in any coordinate system. In other words,

we need to define a derivative which transforms covariantly (i.e. as a tensor) under a

general coordinate transformation; we call this the covariant derivative, denoted by

a semi-colon.

1.4.1 Covariant differentiation of a scalar

We define the covariant derivative of a scalar function, φ, simply to be equal to the

partial derivative of φ, i.e.

φ;k = φ,k (1.18)

1.4.2 Covariant differentiation of a one-form

For a (0, 1) tensor, or one-form, with components Bi,

Bi;k = Bi,k − Γj
ikBj (1.19)

1.4.3 Covariant differentiation of a vector

For a (1, 0) tensor, or contravariant vector, with components Ai,

Ai
;k = Ai

,k + Γi
jkA

j (1.20)

1.4.4 Covariant differentiation of tensor

It is straightforward (although tedious) to define covariant differentiation of a tensor

of arbitrary rank. For example, the covariant derivative of a (3, 3) tensor is given by

T ijk
lmn;p = T ijk

lmn,p + Γi
rpT

rjk
lmn + Γj

rpT
irk
lmn + Γk

rpT
ijr
lmn − Γr

lpT
ijk
rmn − Γr

mpT
ijk
lrn − Γr

npT
ijk
lmr (1.21)
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1.4.5 Christoffel symbols

For a Riemannian manifold there is a very natural definition of the Christoffel sym-

bols, or affine connections, in terms of gij

Γi
jk =

1

2
gil(glj,k + glk,j − gjk,l) (1.22)

1.4.6 Geodesic coordinates

In a Riemannian manifold we can always find a coordinate system in which at a given

point not only does gij reduce to diagonal form (i.e. space is locally Minkowskian),

but the first derivates of gij are also zero, i.e. gij,k = 0. In such a coordinate system

the Christoffel symbols are all identically zero. We call such a coordinate system a

geodesic coordinate system.

1.5 Geodesics

Material particles not acted on by forces other than gravitational forces have worldlines

that are geodesics. Similarly photons also follow geodesics. One can define a geodesic

as an extremal path between two events, in the sense that the proper time along the

path joining the two events is an extremum. Equivalently, one can define a geodesic as

a curve along which the tangent vector to the curve is parallel-transported.
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1.5.1 Geodesics of material particles

Consider the worldline of a material particle. In a given coordinate system the worldline

may be written with the proper time, τ , along the worldline as the parameter, i.e.

xµ = xµ(τ) (1.23)

The four velocity of the particle is given by

vµ =
dxµ

dτ
(1.24)

and is the tangent vector to the worldline. Thus, we obtain the geodesic equation with

τ as parameter, i.e.

dvµ

dτ
+ Γµ

αβv
αvβ = 0 (1.25)

or alternatively

d2xµ

dτ 2
+ Γµ

αβ

dxα

dτ

dxβ

dτ
= 0 (1.26)

One can show (see Example Sheet I-5) that, along a geodesic

d

dτ
(gαβ

dxα

dτ

dxβ

dτ
) = 0 (1.27)

and, in fact, if τ is the proper time then

gαβ
dxα

dτ

dxβ

dτ
= −1 (1.28)

1.5.2 Geodesics of photons

For photons, the proper time τ cannot be used to parametrise the worldlines, since dτ

is zero. If we use an arbitrary affine parameter λ the null geodesics will be described

by

d2xµ

dλ2
+ Γµ

αβ

dxα

dλ

dxβ

dλ
= 0 (1.29)
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and since it is a null geodesic, necessarily

gαβ
dxα

dλ

dxβ

dλ
= 0 (1.30)

1.6 The energy momentum tensor

The energy momentum tensor (also known as the stress energy tensor) describes the

presence and motion of gravitating matter. In GR-I and GR-II we discuss it for the

particular case of a ‘perfect fluid’, which is a mathematical idealisation but one which

is a good approximate description of the gravitating matter in many astrophysical

situations.

1.6.1 Perfect fluids

The simplest type of relativistic fluid is known as ‘dust’. To a physicist, a fluid element

of dust means a collection of particles which are all at rest with respect to some

Lorentz frame. Many textbooks (including Schutz) refer to this Lorentz frame as the

momentarily comoving rest frame (MCRF) of the fluid element.

Generally the particles within a fluid element will have random motions, and these

will give rise to pressure in the fluid (c.f. motions of the molecules in an ideal gas).

A fluid element may also be able to exchange energy with its neighbours via heat

conduction, and there may be viscous forces present between neighbouring fluid

elements. When viscous forces exist they are directed parallel to the interface between

neighbouring fluid elements, and result in a shearing of the fluid.

A relativistic fluid element is said to be a perfect fluid if, in its MCRF, the fluid
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element has no heat conduction or viscous forces. It follows from this definition that

dust is the special case of a pressure-free perfect fluid.

1.6.2 Definition of the energy momentum tensor

We can define the energy momentum tensor, T, in terms of its components in some

coordinate system, {x1, x2, ..., xn}, for each fluid element. Thus we define Tαβ for a

fluid element to be equal to the flux of the α component of four momentum of

all gravitating matter across a surface of constant xβ.

1.6.3 Symmetry of the energy momentum tensor

An important property of the energy momentum tensor which we will state here, but

not prove, is that T is symmetric – i.e. in any coordinate system Tαβ = T βα,

(α, β = 0, 1, 2, 3). (See Example Sheet I-3 for a proof that the symmetry of a tensor

must hold under any coordinate transformation). To see a proof that the energy

momentum tensor is symmetric, in the MCRF of a fluid element and hence in any

frame, refer to e.g. Green Schutz, p.102 et. seq.

1.6.4 Energy momentum tensor for a perfect fluid

Components of T in the MCRF for dust

In this case the energy momentum tensor takes a very simple form. The only non-zero

component is T 00 = ρ, the energy density of the fluid element.
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Components of T in the MCRF for a general perfect fluid

This case is only slightly less straightforward than that of dust. We can write T as

T =



ρ 0 0 0

0 P 0 0

0 0 P 0

0 0 0 P


(1.31)

where P is the pressure of the fluid element.

Components of T in a general Lorentz frame

If ~u = {uα} is the four velocity of the fluid element, then equation (1.31) further

generalises to

Tαβ = (ρ+ P )uαuβ + Pηαβ (1.32)

Here ηαβ are the contravariant components of the metric tensor for Minkowski space-

time.

1.6.5 Conservation of Energy and Momentum

Conservation of momentum and energy requires that

T µν
,ν = 0 (1.33)

Thus, the divergence of the energy momentum tensor is equal to zero.

1.6.6 Extending to GR: ‘Comma goes to semi-colon’ rule

In the light of the properties of tensors, an immediate consequence of the strong prin-

ciple of equivalence is as follows
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Any physical law which can be expressed as a tensor equation in SR

has exactly the same form in a local inertial frame of a curved spacetime

This statement holds since, in the LIF, physics – and hence the form of physical laws

– is indistinguishable from the physics of SR. This is a very important result because

it allows us to generalise the form of physical laws which are valid in SR to the case

of GR, with semi-colons (denoting covariant derivatives) replacing commas (denoting

partial derivatives) where appropriate.

Hence, the energy momentum tensor for a perfect fluid in GR takes the form

T µν = (ρ+ P )uµuν + Pgµν (1.34)

where gµν denotes the contravariant metric tensor for a general curved spacetime (which

of course reduces locally to ηµν).

We can extend to GR in this way the result of equation (1.33), on the conservation of

energy and momentum. Thus, for a fluid element in a general curved spacetime

T µν
;ν = 0 (1.35)

If this were not the case – i.e. if there existed some point, P , at which T µν
;ν 6= 0 – then

we could construct a LIF at P (e.g. by changing to geodesic coordinates) in which all

Christoffel symbols are zero. In this new frame covariant derivatives reduce to partial

derivatives, implying that T µν
,ν 6= 0, which contradicts equation (1.33).
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The general technique of using the principles of covariance and equivalence to extend

the validity of tensor equations from SR to GR, usually by evaluating their components

in the LIF where Christoffel symbols vanish, is a very powerful one and is commonly

met in the relativity literature. It is sometimes referred to informally as the ‘comma

goes to semi colon rule’.

1.7 The Riemann Christoffel tensor

The curvature of a metric space is described by the Riemann Christoffel tensor

(often also referred to simply as the Riemann tensor), defined by

Rµ
αβγ = Γσ

αγΓ
µ
σβ − Γσ

αβΓµ
σγ + Γµ

αγ,β − Γµ
αβ,γ (1.36)

Notice that if the spacetime is flat then

Rµ
αβγ = 0 (1.37)

i.e. all components of the Riemann Christoffel tensor are identically zero.

1.7.1 Fully covariant form of the Riemann Christoffel tensor

We may obtain the components of the (0, 4) tensor corresponding to Rµ
αβγ by using

the covariant components of the metric tensor to lower the index, viz.

Rαβγδ = gασR
σ
βγδ (1.38)

Rαβγδ has the following important symmetries, which reduce the number of independent

components in 4d to 20.

Rαβγδ = −Rαβδγ (1.39)
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Rβαγδ = −Rαβγδ (1.40)

Rαβγδ +Rαδβγ +Rαγδβ = 0 (1.41)

1.7.2 The Bianchi identities

The Bianchi identities, for the derivatives of the Riemann Christoffel tensor, state that

Rαβγδ;λ +Rαβλγ;δ +Rαβδλ;γ = 0 (1.42)

Note that the three terms cyclically permute the final three indices.

1.8 Einstein’s equations

The Riemann Christoffel tensor, Rµ
αβγ, describes the curvature of spacetime. Einstein’s

equations relate this curvature to the matter and energy content of the Universe, as

described by the energy momentum tensor, T. But T is a tensor of rank (2, 0). Thus,

Einstein’s equations involve various contractions of the Riemann Christoffel tensor.

1.8.1 Ricci tensor

We can contract the Riemann Christoffel tensor to form a (0, 2) tensor, which we call

the Ricci tensor defined by

Rαγ = Rµ
αµγ (1.43)

i.e. contracting on the second of the lower indices. (N.B. some authors choose to define

Rαγ as minus this value). From equation (1.38) it follows that we can also write the

components of the Ricci tensor as

Rαγ = gσδRσαδγ (1.44)

20



It is easy to show (see Example Sheet I-6) that Rαβ = Rβα, i.e. the Ricci tensor is

symmetric.

1.8.2 Curvature Scalar, R, and contravariant Ricci tensor

By further contracting the Ricci tensor with the contravariant components of the met-

ric, one obtains the curvature scalar, viz:

R = gαβRαβ (1.45)

One may also use the metric to raise the indices of the Ricci tensor, and thus express

it in contravariant form, viz:

Rµν = gµαgνβRαβ (1.46)

Rµν is also symmetric.

1.8.3 The Einstein tensor

Using the contravariant form of the Ricci tensor, we define the Einstein tensor, G,

viz:

Gµν = Rµν − 1

2
gµνR (1.47)

where R is the curvature scalar. Note that since Rµν is symmetric, so too is Gµν .

The Einstein tensor is of crucial physical significance in general relativity, since it can

be shown from the Bianchi identities that

Gµν
;ν = 0 (1.48)
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1.8.4 Einstein’s equations

Conservation of energy and momentum implies that

T µν
;ν = 0 (1.49)

From the Bianchi identities

Gµν
;ν = 0 (1.50)

Thus we have automatically that

T µν
;ν = Gµν

;ν (1.51)

These are Einstein’s equations, and Einstein took as their solution

Gµν = kT µν (1.52)

i.e. the Einstein tensor is equal to the energy momentum tensor, multiplied by a

constant, k.

Thus, the geometry of spacetime (described by the Einstein tensor)

and the mass-energy content of spacetime (described by the energy

momentum tensor) are fundamentally interlinked.

Note that there are 10 independent equations incorporated in equation (1.52), since

Gµν and T µν are symmetric.

We determine the constant k by requiring that we should recover the laws of Newtonian

gravity and dynamics in the limit of a weak gravitational field and non-relativistic

motion.
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