
University of Glasgow

Department of Physics and Astronomy

Session 2008-09: A345M Gravitation & Relativity II

Supplementary Notes for Chapter 5

A1: Einstein’s tensor in the weak field approximation

A1.1: The linearised Riemann Christoffel tensor

In Minkowski spacetime the Christoffel symbols are all identically zero. This reduces the Riemann

Christoffel tensor to

Rαβγδ = gαµR
µ
βγδ = gαµΓµβδ,γ − gαµΓµβγ,δ

Substituting for the Christoffel symbols in terms of the metric and its derivatives

Rαβγδ = gαµ
gµσ

2
(gσβ,δγ + gσδ,βγ − gβδ,σγ) − gαµ

gµσ

2
(gσβ,γδ + gσγ,βδ − gβγ,σδ)

This reduces to

Rαβγδ =
1
2

(gαδ,βγ + gβγ,αδ − gαγ,βδ − gβδ,αγ)

If gαβ = ηαβ + hαβ then

Rαβγδ =
1
2

(hαδ,βγ + hβγ,αδ − hαγ,βδ − hβδ,αγ)

A1.2: The linearised Ricci tensor and curvature scalar

Contracting the Riemann Christoffel tensor it then follows that

Rµν = Rσµσν = Γσµν,σ − Γσµσ,ν

To first order this reduces to

Rµν =
1
2
ησα(hαν,µσ + hµσ,αν − hµν,ασ − hασ,µν)



Since the partial derivatives of ησα are zero, we can write this as

Rµν =
1
2

[
(ησα hαν),µσ + (ησα hµσ),αν − η

σαhµν,α,σ − (ησα hασ),µν
]

which further reduces to

Rµν =
1
2

[
(hσν ),µσ +

(
hαµ
)
,να
− hµν,α,α − h,µν

]
Thus the curvature scalar R is given by

R = ηαβRαβ =
1
2
ηαβ

[(
hσβ
)
,ασ

+ (hσα),βσ − hαβ,σ
,σ − h,αβ

]

A1.3: The linearised Einstein tensor

Combining our results for the Ricci tensor and curvature scalar we find

Gµν =
1
2

[
(hσν ),µσ +

(
hαµ
)
,να
− hµν,α,α − h,µν

]
−1

4
ηµν η

αβ
[(
hσβ
)
,ασ

+ (hσα),βσ − hαβ,σ
,σ − h,αβ

]
To see that this expression reduces to equation 5.29 it is easiest to work backwards from that equation.

We have, from equation 5.29

LHS =
1
2

[
hµα,ν

,α + hνα,µ
,α − hµν,α,α − h,µν − ηµν

(
hαβ

,αβ − h,β ,β
)]

=
1
2

[
ηασ hµα,νσ + ηασ hνα,µσ − ηασ hµν,ασ − h,µν − ηµνηαγηβσ hαβ,γσ + ηµνη

βα h,βα

]
=

1
2

[
(ηασhµα),νσ + (ηασhνα),µσ − hµν,σ

,σ − h,µν − ηµνηαγ
(
ηβσhαβ

)
,γσ

+ ηµνη
αβh,αβ

]
=

1
2

[
(hσν ),µσ +

(
hσµ
)
,νσ
− hµν,σ,σ − h,µν − ηµνηαγ (hσα),γσ + ηµνη

αβh,αβ

]

The first four bracketed terms match the first four terms in the expression for the Einstein tensor

given above. If we now consider the remaining four terms in the above expression for the Einstein

tensor, then since ηαβ = ηβα

−1
4
ηµνη

αβ
[(
hσβ
)
,ασ

+ (hσα),βσ
]

= −1
2
ηµνη

αβ (hσα),βσ

Also

1
4
ηµνη

αβ [hαβ,σ,σ + h,αβ] =
1
4
ηµνη

αβ [ησγhαβ,σγ + h,αβ]



=
1
4
ηµνη

σγ
(
ηαβhαβ

)
,σγ

+
1
4
ηµνη

αβh,αβ

=
1
2
ηµνη

αβh,αβ

Thus, apart from some permutation of repeated indices, we see that the remaining four terms of our

expression for the Einstein tensor match exactly the final two terms of equation 5.29. This establishes

that equation 5.29 is indeed the correct expression for Gµν .

A1.4: Linearised Einstein tensor in barred form

Equation 5.31 is also easiest to establish in reverse – i.e. we start with equation 5.31 and show that

its terms can be rewritten in a manner that reduces to equation 5.29. Consider in turn each of the

four bracketed terms on the right hand side of equation 5.31.

hµν,α
,α = ηασhµν,ασ = ηασ

[
hµν,ασ −

1
2
ηνµ h,ασ

]

ηµν hαβ
,αβ = ηµν η

ασ ηβσ hαβ,γσ = ηµν η
ασ ηβσ

[
hαβ,γσ −

1
2
ηαβ h,γσ

]

hµα,ν
,α = ηασ hµα,νσ = ηασ

[
hµα,νσ −

1
2
ηµα h,νσ

]

hνα,µ
,α = ηασ hνα,µσ = ηασ

[
hνα,µσ −

1
2
ηνα h,µσ

]

Hence we can write equation 5.31 as

Gµν = −1
2
ηασ hµν,ασ +

1
4
ηασ ηµν h,ασ

−1
2
ηµν η

αγ ηβσ hαβ,γσ +
1
4
ηµν η

αγ ηβσ ηαβ h,γσ

+
1
2
ηασ hµα,νσ −

1
4
ηασ ηµα h,νσ

+
1
2
ηασ hνα,µσ −

1
4
ηασ ηνα h,µσ



= −1
2
ηασ hµν,ασ −

1
2
ηµν η

αγ ηβσ hαβ,γσ +
1
2
ηασ hµα,νσ

+
1
2
ηασ hνα,µσ +

1
2
ηασ ηµν h,ασ −

1
2
h,µν

Comparing with our expression for Gµν , we see that – after changing some repeated indices and using

the fact that the Minkowski metric is symmetric – the above expression is identical. This establishes

that equation 5.31 is indeed the correct expression for the Gµν in terms of hµν .

A2: The Lorentz Gauge Condition

First we show that, if hµα,α = 0, the final three terms on the right hand side of equation 5.31 vanish.

Consider the bracketed terms in turn

hαβ
,αβ =

(
ηαγ ηβσ h

γσ
),αβ

=
(
ηαγ ηβσ η

ατ ηβε h
γσ
,τε

)
= δτγ δ

ε
σ h

γσ
,τε

= h
γσ
,γσ =

(
h
γσ
,σ

)
,γ

= 0

hµα,ν
,α = ηµγ ηασ

(
h
γσ
,ν

),α
= ηµγ ηασ η

ατ h
γσ
,ντ

= ηµγ δ
τ
σ h

γσ
,ντ

= ηµγ h
γσ
,νσ = ηµγ

(
h
γσ
,σ

)
,ν

= 0

hνα,µ
,α = ηνγ ηασ

(
h
γσ
,µ

),α
= ηνγ ηαγ η

ατ h
γσ
,µτ

ηνγ δ
τ
σ h

γσ
,µτ

ηνγ h
γσ
,µσ = ηνγ

(
h
γσ
,σ

)
,µ

= 0

So we see that the final three terms do indeed equal zero provided h
µα
,α = 0 .



Finally we establish the equation which must be solved in order that the Lorentz gauge condition

h
µα
,α = 0 is satisfied.

Suppose we begin with arbitrary metric perturbation components h
(old)
µν 6= 0 . We define

h(LG)
µν = h(old)

µν − ξµ,ν − ξν,µ

where the components ξµ are to be determined. We can also define

h
(LG)
µν = h(LG)

µν − 1
2
ηµν η

αβ h
(LG)
αβ

= h(old)
µν − ξµ,ν − ξν,µ −

1
2
ηµν

[
ηαβ

(
h

(old)
αβ − ξα,β − ξβ,α

)]
= h(old)

µν − 1
2
ηµνh

(old) − ξµ,ν − ξν,µ + ηµν η
αβ ξα,β

= h
(old)
µν − ξµ,ν − ξν,µ + ηµν ξ

β
,β

Now

h
(LG)µν = ηµα ηνβ

[
h

(old)
αβ − ξα,β − ξβ,α + ηαβ ξ

σ
,σ

]
= h

(old)µν − ηµα ηνβ ξα,β − ηµα ηνβ ξβ,α + ηµν ξσ,σ

And

h
(LG)µν

,ν = h
(old)µν

,ν − ηνβ ξµ,βν − ηµα ξsigma,σα + ηµν ξσ,σν

i.e.

h
(LG)µν

,ν = h
(old)µν

,ν − ηνβ ξµ,νβ

So we can ensure that h
(LG)µν

,ν = 0 provided we can find gauge components ξµ satisfying

h
(old)µν

,ν = ηνβ ξµ,νβ =
(
− ∂2

∂t2
+ ∇2

)
ξµ

We can always solve this equation for well-behaved metrics using standard methods for finding par-

ticular solutions of second order partial differential equations.


