Astronomy A3/A4M, Physics P4M

Gravitation and Relativity II: Example Sheet 2

1. Assuming the equation of motion of a test mass orbiting a star in the Schwarzschild form given by equation (3.11) of your notes:-

$$\left(\frac{dr}{d\tau}\right)^{2} = k^{2} - 1 - \frac{h^{2}}{r^{2}} + \frac{2M}{r}\left(1 + \frac{h^{2}}{r^{2}}\right)$$

show that the values of h and k for a circular orbit of coordinate radius a are given by

$$h^2 = \frac{Ma}{\left(1 - \frac{3M}{a}\right)}$$

and

$$k^2 = \frac{\left(1 - \frac{2M}{a}\right)^2}{\left(1 - \frac{3M}{a}\right)}$$

Why are there no circular orbits for a < 3M?

- 2. Using equation (3.52), show that a photon could be moving in a circular orbit about a Schwarzschild black hole (i.e. a static black hole with exterior metric given by the Schwarzschild metric). Find the coordinate radius of the orbit, and the corresponding value of the angular momentum, h.
- 3. Verify that equation (4.26) of your notes may be re-written in the form of equation (4.29), i.e.

$$\frac{d}{dr}\left[r\left(1-e^{-\lambda}\right)\right] = 8\pi\rho r^2$$

4. Using equation (4.44) to eliminate ν' from equation (4.35), derive the Oppenheimer-Volkoff equation, i.e.

$$\frac{dP}{dr} = -\frac{(\rho + P)(4\pi P r^3 + m)}{r(r - 2m)}$$

and show that this equation reduces to the classical Newtonian equation of hydrostatic equilibrium in the weak-field limit.

5. Verify, using the method of partial fractions or otherwise, that equation (4.51)

$$\frac{dP}{(\rho_0 + P)(\rho_0 + 3P)} = -\frac{4\pi r dr}{3\left(1 - \frac{8\pi \rho_0 r^2}{3}\right)}$$

reduces to equation (4.52)

$$\frac{1}{2\rho_0} \left[\frac{3dP}{(\rho_0 + 3P)} - \frac{dP}{(\rho_0 + P)} \right] = -\frac{4\pi}{3} \frac{rdr}{\left(1 - \frac{8\pi\rho_0 r^2}{3}\right)}$$

Integrating both sides, and applying the boundary conditions that $P = P_0$ for r = 0, and P =for r = R, show that the central pressure for a spherically symmetric star of constant density is given by

$$P_0 = \frac{\rho_0 \left[1 - \left(1 - \frac{2M}{R} \right)^{1/2} \right]}{3 \left(1 - \frac{2M}{R} \right)^{1/2} - 1}$$

Show also that

$$P_0 \to \infty$$
 when $\frac{M}{R} \to \frac{4}{9}$

6. Prove that, if we are considering Background Lorentz Transformations – i.e. transformations for which the weak-field metric perturbations, $h_{\mu\nu}$, transform as if they are a (0,2) tensor on a Background Minkowski spacetime, then the linearised Riemann-Christoffel tensor reduces to the form of (equation 5.22)

$$R_{lphaeta\gamma\delta} = rac{1}{2} \left(h_{lpha\delta,eta\gamma} + h_{eta\gamma,lpha\delta} - h_{lpha\gamma,eta\delta} - h_{eta\delta,lpha\gamma}
ight)$$

7. Show, further, that if we carry out a gauge transformation of the weak-field metric perturbations

$$h'_{\alpha\beta} = h_{\alpha\beta} - \xi_{\alpha,\beta} - \xi_{\beta,\alpha}$$

where

$$|\xi^{\alpha}_{,\beta}| << 1$$
 for all α, β

then to first order the linearised Riemann-Christoffel tensor in this new coordinate system is unchanged, i.e.

$$R_{lphaeta\gamma\delta}=R'_{~lphaeta\gamma\delta}=rac{1}{2}\left(h_{lpha\delta,eta\gamma}+h_{eta\gamma,lpha\delta}-h_{lpha\gamma,eta\delta}-h_{eta\delta,lpha\gamma}
ight)$$

8. Consider the hypersurface

$$t^2 - x^2 - y^2 - z^2 = T^2$$

in Minkowski spacetime, where T is a constant. Show that the interval between two neighbouring points on this hypersurface is spacelike. Show further that all inertial observers that were present at the spatial origin at time t=0 will cross this hypersurface a proper time, T, later – regardless of their velocity.

Dr. Martin Hendry Room 607, Kelvin Building Ext 5685; email martin@astro.gla.ac.uk