Astronomy A3/A4M, Physics P4M
Gravitation and Relativity II: Example Sheet 2

. Assuming the equation of motion of a test mass orbiting a star in the Schwarzschild form given by equation

ar\> h2  2M h2
<E> =k _1_7'_2+T<1+7“_2)

show that the values of h and k for a circular orbit of coordinate radius a are given by

(3.11) of your notes:-
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Why are there no circular orbits for a < 3M?

. Using equation (3.52), show that a photon could be moving in a circular orbit about a Schwarzschild
black hole (i.e. a static black hole with exterior metric given by the Schwarzschild metric). Find the

coordinate radius of the orbit, and the corresponding value of the angular momentum, h.

. Verify that equation (4.26) of your notes may be re-written in the form of equation (4.29), i.e.
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. Using equation (4.44) to eliminate v’ from equation (4.35), derive the Oppenheimer-Volkoff equation, i.e.
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and show that this equation reduces to the classical Newtonian equation of hydrostatic equilibrium in the
weak-field limit.

. Verify, using the method of partial fractions or otherwise, that equation (4.51)
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reduces to equation (4.52)
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Integrating both sides, and applying the boundary conditions that P = P, for r =0, and P = for r = R,

show that the central pressure for a spherically symmetric star of constant density is given by
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Show also that
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6. Prove that, if we are considering Background Lorentz Transformations —i.e. transformations for which the
weak-field metric perturbations, h,,, transform as if they are a (0,2) tensor on a Background Minkowski

spacetime, then the linearised Riemann-Christoffel tensor reduces to the form of (equation 5.22)
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7. Show, further, that if we carry out a gauge transformation of the weak-field metric perturbations

hlaﬁ = haﬁ - ga,ﬁ - gﬁ,a

where
€% 5l <<1 forall a,p

then to first order the linearised Riemann-Christoffel tensor in this new coordinate system is unchanged,
ie.

1
Rapys = Rlapys = 5 (hasgy + hgy.as = hav,p5 = hpsay)

8. Consider the hypersurface
12— 22 — 2 — 22 = T?
in Minkowski spacetime, where T is a constant. Show that the interval between two neighbouring points

on this hypersurface is spacelike. Show further that all inertial observers that were present at the spatial

origin at time ¢t = 0 will cross this hypersurface a proper time, 7', later — regardless of their velocity.
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