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Gravitation and Relativity II: Example Sheet 1

1. Verify equations (2.13) and (2.14) of your notes – i.e. show that the geodesic equation
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2. Verify equations (2.24) of your notes – i.e. show that the Christoffel symbols for a static, spherically
symmetric spacetime with interval
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and all others are zero.

3. Given the results for the Christoffel symbols in Q.2, show that the components of the Ricci tensor in its
fully covariant form are given by, for this spacetime
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and all others are zero.

4. Given the results of Q.3, show that the curvature invariant, R, for a static, spherically symmetric spacetime
is given by
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Hence show that the covariant components of the Einstein tensor are given by
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and all others are zero.

5. Given that the Newtonian equation of motion for a material particle (with G = 1) takes the form of
equation (3.13):
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show that, changing variables from r to u = 1/r and t to φ, this equation may be written in the form of
equation (3.16):
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6. Given the General Relativistic equation of motion for a material particle(
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show that, changing variables from r to u = 1/r and τ to φ, this equation may be written as
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which in turn reduces to

d2u

dφ2
= −u +

M

h2
+ 3Mu2

7. Show that, for the Earth’s orbit, the ratio of the second and third terms on the right hand side of the
above equation, (3.20), satisfy
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as stated in equation (3.21) of your notes.

8. Verify that the particular integrals given in equations (3.28) – (3.30) are indeed solutions of the General
Relativistic equation, (3.26), for a planetary orbit. Hence, verify that the GR orbit for Mercury (ignoring
all other perturbations) predicts an advance of perihelion of approximately 43 arc seconds per century.

9. Show that the geodesic equation for a photon propagating in the Schwarzschild metric may be written as(
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where λ is an affine parameter. Hence show that, after changing variables from r to u = 1/r and λ to φ,
this reduces to
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10. By carrying out the appropriate substitutions in equation (3.68) of your notes, verify that in the two
gravitational lensing regimes of interest (i.e. distances on cosmological and galactic scales respectively)
the size of the angular Einstein radius may be written as
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