
3.6: General Hypothesis Tests

The χ2 goodness of fit tests which we introduced in the previous section were an

example of a hypothesis test. In this section we now consider hypothesis tests

more generally.

3.6.1: Simple Hypothesis Tests

A simple hypothesis test is one where we test a null hypothesis, denoted by H1

(say), against an alternative hypothesis, denoted by H2 – i.e. the test consists of

only two competing hypotheses. We construct a test statistic, t, and based on the

value of t observed for our real data we make one of the following two decisions:-

1. accept H1, and reject H2

2. accept H2, and reject H1

To carry out the hypothesis test we choose the critical region for the test statistic,

t. This is the set of values of t for which we will choose to reject the null hypothesis

and accept the alternative hypothesis. The region for which we accept the null

hypothesis is known as the acceptance region. Note that we must choose the

critical region and acceptance region ourselves. For example we might choose the

critical region as the set of values of t for which t > 0.

3.6.2: Level of Significance

The level of significance of a hypothesis test is the maximum probability of in-

curring a type I error which we are willing to risk when making our decision. In

practice a level of significance of 5% or 1% is common. If a level of significance of 5%

is adopted, for example, then we choose our critical region so that the probability

of rejecting the null hypothesis when it is true is no more than 0.05.

If the test statistic is found to lie in the critical region then we say that the null

hypothesis is rejected at the 5% level, or equivalently that our rejection of the null

hypothesis is significant at the 5% level. This means that, if the null hypothesis is

true, and we were to repeat our experiment or observation a large number of times,

then we would expect to obtain – by chance – a value of the test statistic which lies
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in the critical region (thus leading us to reject the NH) in no more than 5% of the

repeated trials. In other words, we expect our rejection of the null hypothesis to be

the wrong decision in no more than 5 times out of every 100 experiments.

3.6.3: Goodness of Fit for Discrete Distributions

We can illustrate some of the important ideas of hypothesis testing by considering

how we test the goodness of fit of data to discrete distributions. We do this again

using the χ2 statistic.

Suppose we carry out n observations and obtain as our results k different discrete

outcomes, E1, ..., Ek which occur with frequencies o1, ..., ok (‘o’ for ‘observed’). An

example of such observations might be the number of meteors observed on n different

nights, or the number of photons counted in n different pixels of a CCD.

Consider the null hypothesis that the observed outcomes are a sample from some

model discrete distribution (e.g. a Poisson distribution). Suppose, under this null

hypothesis, that the k outcomes, E1, ..., Ek, are expected to occur with frequencies

e1, ..., ek (‘e’ for ‘expected’). We can test our null hypothesis by comparing the

observed and expected frequencies and determining if they differ significantly. We

construct the following χ2 test statistic.

χ2 =
k∑

i=1

(oi − ei)
2

ei

where
∑

oi =
∑

ei = n. Under the null hypothesis this test statistic has approxi-

mately a χ2 pdf with ν = k−1−m degrees of freedom. Here m denotes the number

of parameters (possibly zero) of the model discrete distribution which one needs to

estimate before one can compute the expected frequencies, and ν is reduced by one

further degree of freedom because of the constraint that
∑

ei = n. In other words,

once we have computed the first k−1 expected frequencies, the kth value is uniquely

determined by the sample size n.

This χ2 goodness of fit test need not be restricted only to discrete random variables,

since we can effectively produce discrete data from a sample drawn from a continuous

pdf by binning the data. Indeed, as we remarked in Section 2.2.7 the Central Limit

Theorem will ensure that such binned data are approximately normally distributed,

which means that the sum of their squares will be approximately distributed as a
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χ2 random variable. The approximation to a χ2 pdf is very good provided ei ≥ 10,

and is reasonable for 5 ≤ ei ≤ 10.

Example 1

A list of 1000 ‘random’ digits – integers from 0 to 9 – are generated by a computer.

Can this list of digits be regarded as uniformly distributed?

Suppose the integers appear in the list with the following frequencies:-

r 0 1 2 3 4 5 6 7 8 9

or 106 88 97 101 92 103 96 112 114 91

Let our NH be that the digits are drawn from a uniform distribution. This means

that each digit is expected to occur with equal frequency – i.e. er = 100, for all r.

Thus:-

χ2 =
k∑

i=1

(oi − ei)
2

ei

= 7.00

Suppose we adopt a 5% level of significance. The number of degrees of freedom,

ν = 9; hence the critical value of χ2 = 16.9 for a one-tailed test. Thus, at the 5%

significance level we accept the NH that the digits are uniformly distributed.

Example 2

The table below shows the number of nights during a 50 night observing run when r

hours of observing time were ‘clouded out’. Fit a Poisson distribution to these data

for the pdf of r and determine if the fit is acceptable at the 5% significance level.

r 0 1 2 3 4 > 4

No. of nights 21 18 7 3 1 0

Of course one might ask whether a Poisson distribution is a sensible model for

the pdf of r since a Poisson RV is defined for any non-negative integer, whereas r

is clearly at most 12 hours. However, as we saw in Section 1.3.2, the shape of the

Poisson pdf is sensitive to the value of the mean, µ, and in particular for small values

of µ the value of the pdf will be negligible for all but the first few integers, and so we

neglect all larger integers as possible outcomes. Hence, in fitting a Poisson model
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we also need to estimate the value of µ. We take as our estimator of µ the sample

mean, i.e.

µ̂ =
21× 0 + 18× 1 + +7× 2 + 3× 3 + 1× 4

50
= 0.90

Substituting this value into the Poisson pdf we can compute the expected outcomes,

er = 50 p(r; µ̂), where

p(0; 0.90) = 0.4066 p(1; 0.90) = 0.3659 p(2; 0.90) = 0.1647

p(3; 0.90) = 0.0494 p(4; 0.90) = 0.0111 p(5; 0.90) = 3.3× 10−5

If we consider only five outcomes, i.e. r ≤ 4, since the value of the pdf is negligible

for r > 4, then the number of degrees of freedom, ν = 3 (remember that we had to

estimate the mean, µ). The value of the test statistic is χ2 = 0.68, which is smaller

than the critical value. Hence we accept the NH at the 5% level – i.e. the data are

well fitted by a Poisson distribution.

3.6.4: The Kolmogorov-Smirnov Test

Suppose we want to test the hypothesis that a sample of data is drawn from the

underlying population with some given pdf. We could do this by binning the data

and comparing with the model pdf using the χ2 test statistic. This approach might

be suitable, for example, for comparing the number counts of photons in the pixels

(i.e. the bins) of a CCD array with a bivariate normal model for the ‘point spread

function’ of the telescope optics, where the centre of the bivariate normal defines

the position of a star.

For small samples this does not work well, however, as we cannot bin the data finely

enough to usefully constrain the underlying pdf.

A more useful approach in this situation is to compare the sample cumulative dis-

tribution function with a theoretical model. We can do this using the Kolmogorov-

Smirnov (KS) test statistic.

Let {x1, ..., xn} be an iid random sample from the unknown population. Suppose

the {xi} have been arranged in ascending order. The sample cdf, Sn(x), of X is

defined as:-
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Sn(x) =





0 x < x1

i
n

xi ≤ x < xi+1, 1 ≤ i ≤ n− 1

1 x ≥ xn

i.e. Sn(x) is a step function which increments by 1/n at each sampled value of x.

Let the model cdf be P (x), corresponding to pdf p(x), and let the null hypothesis

be that our random sample is drawn from p(x). The KS test statistic is

Dn = max |P (x)− Sn(x)|

It is easy to show that Dn always occurs at one of the sampled values of x. The

remarkable fact about the KS test is that the distribution of Dn under the null

hypothesis is independent of the functional form of P (x). In other words,

whatever the form of the model cdf, P (x), we can determine how likely it is that our

actual sample data was drawn from the corresponding pdf. Critical values for the

KS statistic are tabulated or can be obtained e.g. from numerical recipes algorithms.

The KS test is an example of a robust, or nonparametric, test since one can

apply the test with minimal assumption of a parametric form for the underlying

pdf. The price for this robustness is that the power of the KS test is lower than

other, parametric, tests. In other words there is a higher probability of accepting a

false null hypothesis – that two samples are drawn from the same pdf – because we

are making no assumptions about the parametric form of that pdf.

3.6.5: Hypothesis Tests on the Sample Correlation Coeffi-

cient

The final type of hypothesis test which we consider is associated with testing whether

two variables are statistically independent, which we can do by considering the value

of the sample correlation coefficient. In Section 3.1 we defined the covariance

of two RVs, x and y, as

cov(x, y) = E[(x− µx)(y − µy)]

and the correlation coefficient, ρ, as

ρ =
cov(x, y)

σxσy
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We estimate ρ by the sample correlation coefficient, ρ̂, defined by:-

ρ̂ =

∑
(xi − µ̂x)(yi − µ̂y)√

[
∑

(xi − µ̂x)2] [
∑

(yi − µ̂y)2]

where, as usual, µ̂x and µ̂y denote the sample means of x and y respectively, and all

sums are over 1, ..., n, for sample size, n. ρ̂ is also often denoted by r, and is referred

to as ‘Pearson’s correlation coefficient’.

If x and y do have a bivariate normal pdf, then ρ corresponds precisely to the

parameter defined in Section 3.1. To test hypotheses about ρ we need to know the

sampling distribution of ρ̂. We consider two special cases, both of which are when

x and y have a bivariate normal pdf.

(i): ρ = 0 (i.e. x and y are independent)

If ρ = 0, then the statistic

t =
ρ̂
√

n− 2√
1− ρ̂2

has a student’s t distribution, with ν = n− 2 degrees of freedom. Hence, we can use

t to test the hypothesis that x and y are independent.

(ii): ρ = ρ0 6= 0

In this case, then for large samples, the statistic

z =
1

2
loge

(
1 + ρ̂

1− ρ̂

)

has an approximately normal pdf with mean, µz and variance σ2
z given by

µz =
1

2
loge

(
1 + ρ0

1− ρ0

)
σ2

z =
1

n− 3
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