
10.   Fourier Methods

In many diverse fields physical data is collected or analysed as Fourier 
components.

In this section we briefly discuss the mathematics of Fourier series 
and Fourier transforms.

1.  Fourier Series

Any ‘well-behaved’ function              can be
expanded in terms of an infinite sum of sines
and cosines.  The expansion takes the form:

Joseph Fourier
(1768-1830)
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The Fourier coefficients are given by the formulae:

These formulae follow from the  orthogonality properties of sin and cos:
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Some examples from Mathworld, approximating functions with a finite number of Fourier series terms



“Fourier's Theorem is not only one of the most beautiful
results of modern analysis, but it is said to furnish an 
indispensable instrument in the treatment of nearly  
every recondite question in modern physics”

The Fourier series can also be written in complex form:

where

and recall that
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The Fourier transform can be thought of simply as extending the idea of a 
Fourier series from an infinite sum over discrete, integer Fourier modes to 
an infinite integral over continuous Fourier modes.

Consider, for example, a physical process that is varying in the time domain,
i.e. it is described by some function of time         .

Alternatively we can describe the physical process in the  frequency domain 
by defining the Fourier Transform function             .

It is useful to think of           and             as two different representations 
of the same function;  the information they convey about the underlying 
physical process should be equivalent.
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Fourier Transform:  Basic Definition
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We define the Fourier transform as

and the corresponding inverse Fourier transform as

If time is measured in seconds then frequency is measured in cycles per 
second, or Hertz. 
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In many physical applications it is common to define the frequency domain 
behaviour of the function in terms of  angular frequency

This changes the previous relations accordingly:

Thus the symmetry of the previous expressions is broken.
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Fourier Transform:  Further properties

The FT is a  linear operation:  

(1) the FT of the sum of two functions is equal to the sum of their FTs
(2) the FT of a constant times a function is equal to the constant times the 

FT of the function.

If the time domain function           is a real function, then its FT is complex.

However, more generally we can consider the case where          is also a 
complex function – i.e. we can write

may also possess certain symmetries:   even function

odd function
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The following properties then hold:

Note that in the above table a star  (*)  denotes the  complex conjugate, 

i.e.   if     z  =  x  +  i y then     z*  =  x  − i y

See Numerical Recipes, Section 12.0
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For convenience we will denote the FT pair by

It is then straightforward to show that
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Suppose we have two functions             and

Their  convolution is defined as

We can prove the  Convolution Theorem

i.e. the FT of the convolution of the two functions is equal to the product 
of their individual FTs.
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Example application:  the observed spectrum of light from a 
galaxy is a convolution of stellar spectral templates ‘smeared out’ 
by the line of sight velocity distribution and the 

This is a particular type of integral equation:

Galaxy spectrum LOSVD ‘stellar spectra
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So by the convolution theorem:

and

Hence, we can in  principle invert the integral equation and 
reconstruct the LOSVD,                . LOSvF
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In  practice,  this method is vulnerable to noise on the observed 
galaxy spectrum,          , and uncertainties in the kernel          .

Need to filter out high frequency (k) noise

)(uG )(uS



Ratio of two small quantities: 
very noisy

Filter, denoting range of 
wavenumbers which give 

reliable inversion
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Suppose we have two functions             and

Their  convolution is defined as

We can prove the  Convolution Theorem

i.e. the FT of the convolution of the two functions is equal to the product 
of their individual FTs.

Also their  correlation, which is also a function of  t ,  is defined as 
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We can prove the  Correlation Theorem

i.e. the FT of the first time domain function, multiplied by the complex 
conjugate of the FT of the second time domain function, is equal to the 
FT of their correlation.

The correlation of a function with itself is called the  auto-correlation

In this case

The function                    is known as the  power spectral density,  or 
(more loosely)  as the  power spectrum.

Hence, the power spectrum is equal to the Fourier Transform of the 
auto-correlation function for the time domain function 
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The power spectral density

The power spectral density is analogous to the pdf we defined in previous 
sections.

In order to know how much power is contained in a given interval of 
frequency, we need to integrate the power spectral density over that 
interval.

The  total power in a signal is the same, regardless of whether we 
measure it in the time domain or the frequency domain:
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Parseval’s Theorem
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Often we will want to know how much power is contained in a frequency 
interval without distinguishing between positive and negative values.

In this case we define the  one-sided power spectral density:

And

When            is a real function

With the proper normalisation, the total power (i.e. the integrated area 
under the relevant curve) is the same regardless of whether we are 
working with the time domain signal, the power spectral density or the 
one-sided power spectral density. 
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From Numerical Recipes,
Chapter 12.0

Time domain 

One-sided PSD 

Two-sided PSD 
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i.e. the FT of a Gaussian function in the time domain is  also a Gaussian in 
the frequency domain.
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Question 20: If the variance of a Gaussian is doubled in the time 

domain

A the variance of its Fourier transform will be doubled in 
the frequency domain

B the variance of its Fourier transform will be halved in 
the frequency domain

C the standard deviation of its Fourier transform will be 
doubled in the frequency domain

D the standard deviation of its Fourier transform will be 
halved in the frequency domain  



i.e. the FT of a Gaussian function in the time domain is  also a Gaussian in 
the frequency domain.

The broader the Gaussian is in the time domain, then the narrower the 
Gaussian FT in the frequency domain, and vice versa.
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Although we have discussed FTs so far in the context of a continuous, 
analytic function,        ,  in many practical situations we must work instead 
with observational data which are sampled at a discrete set of times.

Suppose that we sample          in total             times at evenly spaced time 
intervals     , i.e.  (for      even)

[  If            is non-zero over only a finite interval of time, then we 
suppose that the             sampled points contain this interval.   Or if            
has an infinite range, then we at least suppose that the sampled points 
cover a sufficient range to be representative of the behaviour of          ].  

Discrete Fourier Transforms
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We therefore approximate the FT as

Since we are sampling          at            discrete timesteps,  in view of the 
symmetry of the FT and inverse FT  it makes sense also to compute      
only at a set of             discrete frequencies:

(The frequency                      is known as the  Nyquist (critical) frequency
and it is a very important value.  We discuss its significance later).
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Then

Note that

Hence, there are only       independent values.

Also, note that

So we can re-define the Discrete FT as:
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The discrete inverse FT, which recovers the set of          from the set of 
is

Parseval’s theorem for discrete FTs takes the form

There are also discrete analogues to the convolution and correlation 
theorems.   
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Consider again the formula for the discrete FT.  We can write it as

This is a  matrix equation:   we compute the            vector of
by  multiplying the             matrix             by the            vector of        .

In general, this requires of order         multiplications  (and the         
may be complex numbers).    

e.g. suppose                                       .   Even if a computer can perform 
(say)  1 billion multiplications per second, it would still require more 
than  115 days to calculate the FT.            

Fast Fourier Transforms
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Fortunately, there is a way around this problem.

Suppose (as we assumed before)        is an even number.  Then we can write

where

So we have turned an FT with       points into the weighted sum of  two FTs 
with            points.  This would reduce our computing time by a factor of two.    
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Why stop there, however?...

If        is also even, we can repeat the process and re-write the FTs of 
length         as the weighted sum of two FTs of length           .

If         is a   power of two (e.g. 1024, 2048, 1048576 etc)  then we can 
repeat iteratively the process of splitting each longer FT into two FTs half 
as long.   

The final step in this iteration consists of computing FTs of length unity:

i.e. the FT of each discretely sampled data value is just the data value itself.
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This iterative process converts                 multiplications into                                 
operations.

So our           operations are reduced to about
operations.

The Fast Fourier Transform (FFT) has revolutionised our ability to tackle 
problems in Fourier analysis on a desktop PC which would otherwise be 
impractical, even on the largest supercomputers.
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Data Acquisition
Earlier we approximated the continuous function           and its FT   

by a finite set of             discretely sampled values.

How good is this approximation?     The answer depends on the form of
and            .    In this short section we will consider:

1. under what conditions we can reconstruct            and              
exactly from a set of discretely sampled points?

2. what is the minimum sampling rate (or density, if      is a spatially 
varying function)  required to achieve this exact reconstruction?

3. what is the effect on our reconstructed            and              if our 
data acquisition does  not achieve this minimum sampling rate?  
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The Nyquist – Shannon Sampling Theorem

Suppose the function            is  bandwidth limited.   This means that  
the FT of           is non-zero over a finite range of frequencies.

i.e.  there exists a  critical frequency such that

The  Nyquist – Shannon Sampling Theorem  (NSST) is a very important 
result from information theory.   It concerns the representation of            
by a set of discretely sampled values 
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The  NSST  states that, provided the sampling interval        satisfies

then we can  exactly reconstruct the function            from the discrete 
samples          .    It can be shown that

is also known as the  Nyquist frequency  and                   is known as
the  Nyquist rate.
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So the function           is the sum of the sampled values           ,  weighted 
by the  normalised sinc function,  scaled so that its zeroes lie at those 
sampled values.  
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The NSST is a very powerful result.

We can think of the interpolating sinc functions, centred on each sampled 
point, as ‘filling in the gaps’ in our data.  The remarkable fact is that they 
do this job  perfectly,  provided           is bandwidth limited.    i.e. the 
discrete sampling incurs no loss of information about           and             .

(Note that formally we do need to sample an infinite number of 
discretely spaced values,          .   If we only sample the            over a 
finite time interval, then our interpolated          will be approximate).
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Suppose, for example, that                             .   Then we need only 
sample           twice every period in order to be able to reconstruct 
the entire function exactly.
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 tfy c2sin

tfx c

Sampling            at (infinitely many of) the  red points is sufficient to 
reconstruct the function for all values of  t, with no loss of information.
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There is a downside, however.

If          is  not bandwidth limited   (or, equivalently,  if we don’t sample   
frequently enough – i.e.  if the sampling rate                    )  then our 
reconstruction of           and              is badly affected by  aliasing.

This means that all of the power spectral density which lies outside the 
range                            is spuriously moved inside that range, so that the 
FT             of            will be computed  incorrectly from the discretely 
sampled data.

Any frequency component outside the range                     is falsely 
translated  ( aliased )  into that range.  
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Consider         as shown.

Suppose         is zero 

outside the range  T .

This means that               
extends to        .

The contribution to the 
true FT from outside the 
range                        gets 
aliased into this range, 
appearing as a ‘mirror 
image’.

Thus, at                     our 
computed value of               
is equal to  twice the true 
value.
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From Numerical Recipes, Chapter 12.1



How do we combat aliasing?

o Enforce some chosen         e.g. by filtering to remove the 
high frequency components              .    (Also known as anti-aliasing)

o Sample           at a high enough rate          so that                  - i.e. at 
least two samples per cycle of the highest frequency present
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To check for / eliminate aliasing  without pre-filtering:

o Given a sampling interval      ,  compute

o Check if discrete FT of            is approaching  zero as

o If  not, then frequencies outside the range                        are 
probably being folded back into this range.

o Try increasing the sampling rate, and repeat…    
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And finally….

Mock Data Challenge

x

y

1000 (x,y) data pairs, 

generated from an unknown 

model plus Gaussian noise.

Data posted on my.SUPA

and on Moodle (for MSc course)

Three-stage challenge:

1. Fit a linear model to these data, using ordinary least squares;

2. Compute Bayesian credible regions for the model parameters, using 
a bivariate normal model for the likelihood function;

3. Write an MCMC code to sample from the posterior pdf of the model 
parameters, and compare their sample estimates with the LS fits;

Part 1



And finally….

Mock Data Challenge

x

y

1000 (x,y) new data pairs, 

generated from an unknown 

model plus Gaussian noise.

Data posted on my.SUPA

and on Moodle (for MSc course)

1. Fit a quadratic model to these data, using e.g. an MCMC code to 
sample from the posterior pdf of the model parameters, presenting 
plots of the marginal posterior for each pair of parameters;

Part 2


