
8.  Bayesian Model Selection
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“Everything should be made as 
simple as possible, but not simpler”
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Bayes’ theorem:

Laplace rediscovered work of
Rev. Thomas Bayes (1763)
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 dMpM )|(),|p(dataEvidence 

Average likelihood, weighted by prior
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• We can compute the odds ratio of two competing models.  This can be divided into 
the prior odds and the Bayes factor

• The Bayes factor is just the ratio of the evidences.
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Selecting Between Competing Models
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prior, p(θ | M)

likelihood,  L(θ)  = p(d | θ,M) 

a
prior_range

likelihood_range
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We can split the evidence into two approximate parts: 
the maximum of the likelihood and an “Occam factor”:
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prior, p(θ | M)

likelihood,  L(θ)  = p(d | θ,M) 

a
prior_range

likelihood_range

Lmax

We can split the evidence into two approximate parts: 
the maximum of the likelihood and an “Occam factor”:

The Occam factor penalises models that include wasted 
parameter space, even if they show a good ML fit.
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“It is vain to do with more what 
can be done with less.”

Occam’s Razor

William of Ockham
(1288 – 1348 AD)

Everything else being equal, we 
favour models which are simple.
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What if the error bars were over-estimated?

e.g. divide by factor  
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What if the error bars were over-estimated?

e.g. divide by factor   = 2.0

9.513 O

4.612 O
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What if the error bars were over-estimated?

e.g. divide by factor   = 3.0

02.013 O

2.512 O
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Question 16       In this example, when the error bars are reduced 

by a factor of 3, then                  can be interpreted as  

A indicating a much better fit to the quadratic 
model  than the constant model, sufficient that  
we can justify including an extra 2 parameters

B indicating that, with the smaller error bars, the 
constant model no longer gives an acceptable 
fit to the data

C indicating that the quadratic model is much 
more likely than the constant model

D all of the above

113 O
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Ireland et al. (2008)
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Ireland et al. (2008)

Significant peak?



Example from Sivia, Section 4.2:  How many spectral lines?

Model: Spectral lines

where
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Observed data:

+  noise

Blurring function
(assumed known) background
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Taking a uniform prior on  M  implies

where

and

likelihood prior
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Taking uniform priors on the                 implies

Simulated example
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Assume blurring function known….
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Highest evidence 
for 5 spectral lines
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Question 17 The evidence is smaller for                most 

likely because

A the ML fit is poorer for 

B the prior on        is smaller for 

C the improvement in the ML fit for                 is 
more than offset by the reduced Occam factor

D none of the above
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Amplitudes and 
angles for  M=5
model
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Taking uniform priors on the                 implies

Evaluating this integral can be a 
major computational challenge
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 dMpM )|(),|p(dataEvidence 

Average likelihood, weighted by prior

• Calculating the evidence can be computationally very costly
(e.g. CMBR      spectrum in cosmology)

• How to proceed?...

1. Information criteria (see e.g. Liddle 2004, 2007)

1. Laplace and Savage-Dickey approximations
(see e.g. Trotta 2005)

3. Nested sampling (Skilling 2004, 2006;  http://www.inference.phy.cam.ac.uk/bayesys/ )

C

Approximating the Evidence
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Akaike Information Criterion     (Akaike 1974)

• Models with too few parameters give poor fit   first term large

• Models with too many parameters penalised by second term

• MC testing (e.g. Kass & Rafferty 1995):  can favour models with too 
many parameters

• ‘dimensionally inconsistent’

• Can give useful upper limit on number of parameters 

kL 2ln2AIC max 

Number of parameters in model
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Bayesian Information Criterion     (Schwarz 1978)

• Approximation to the Bayes factor

• Dimensionally consistent

• If  BIC(1) – BIC(2)  >  2             positive evidence favouring Model 2

• If  BIC(1) – BIC(2)  >  6             strong evidence favouring Model 2

( Jeffreys 1961; Mukherjee et al. 1998) 

NkL lnln2BIC max 

Number of datapoints used in fit




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Can we do better than the BIC?

• Laplace approximation to the Bayes factor:  
assume posterior well described by a multivariate Gaussian around    
best-fit parameters

Following Trotta (2005)

Unnormalised posterior

Best-fit (i.e. ML) parameters

Covariance matrix
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Comparing models        and        , the Bayes factor         satisfies

where

Likelihood ratio

Occam
factor

‘Width’ of prior

Number of parameters
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Comparing models        and        , the Bayes factor         satisfies

where

Likelihood ratio

Occam
factor

‘Width’ of prior

Number of parameters
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Testing the Laplace approximation

From Trotta (2005)

Good agreement between
(MCMC sampled) posteriors
and Laplace approximation.

Advanced Data Analysis Course, 2019-20


