7. An Advanced Bayesian Toolbox - Part Two
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Parameter estimation: 2-D case
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Parameter estimation: N-dimensional case
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What is PCA?

Principal Component Analysis:

A method for transforming a multi-dimensional
dataset, consisting of a number of statistically
dependent (correlated) variables, into a set of
uncorrelated variables: principal components
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What is PCA?

Principal Component Analysis:
1st principal component = linear combination of

the original variables that accounts for as much
of the variation in the data as possible
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What is PCA?

Principal Component Analysis:

1st principal component = linear combination of
the original variables that accounts for as much
of the variation in the data as possible

2" principal component = linear combination
that accounts for as much of the remaining
variation as possible, and is orthogonal to PCl1
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The price of fish...
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The price of fish...
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Price of herring (skilling per skippund), Copenhagen 1720-1800
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may need only a small number of
PCs to describe most of the
variation in the data
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Relationship between PCA and SVD

Yesterday we discussed briefly how we could obtain stable solutions to
the general linear model b = Aa + e via the SVD of matrix A4 :

M parameters

,/ \ / \ Diagonal matrix of singular values
& /
S w1
.g .
: A = U - | VT
S .
;

\ /X /

M N
From which the LS solutionis: | da,4 = ( (i) ) Vi
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Relationship between PCA and SVD

So in PCA, we find the eigenvalues and eigenvectors of the data
covariance matrix — in our notation A4 A"

From linear algebra we can decompose this as [A AT = QDQT]

Here D is a diagonal matrix containing the eigenvalues of A A" and Q is
an orthogonal matrix the columns of which are the eigenvectors.

In SVD we construct thematrix 4 = UWV'

It then follows that 4 AT = (UWVT XUWVT )T = UWU'

So we see that the eigenvalues of the covariance matrix are equal to
the squares of the singular values of the original data matrix A .
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Relationship between PCA and SVD

4 )
Recall from yesterday e ([T i b)
(2)

aLSZE:

—1 Wy
g _ N J

Very small values of w; will amplify any round-off errors in b

Solution: for these very small singular values, set l =0.
w;

This suppresses their noisy contribution to the
least-squares solution for the parameters a, .

So it is often useful to perform an SVD and “switch off” the smallest
singular values before applying PCA .
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Beyond PCA: ICA

e PCA works by diagonalising the covariance matrix of a
dataset, producing new linear combinations of the data
which are uncorrelated.

e If the data are Gaussian then PCA will produce combinations
which are statistically independent (all higher moments are
zero for a Gaussian).

e For non-Gaussian data, uncorrelated does not in general
imply independent. Alternative method called independent
component analysis: linear transformation of data vector to
minimise statistical dependence of components.

[ Interesting applications to time series data]
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COCKTAIL PARTY PROBLEM

Imagme you're at a cocktail party. For vou it is no problem to follow the discussion of your neighbours. even if there are lots of other
sound sources m the room: other discussions m Enghsh and m other languages, different kinds of music. ete.. You might even hear a
siren from the passing-by police car.

It 15 not known exactly how humans are able to separate the different sound sources. Independent component analysis 1s able to do 1t
if there are at least as many microphones or 'ears’ in the room as there are different sumultaneous sound sources. In this demo, you can
select which sounds are present m your cocktad party. ICA will separate them without knowing anything about the different sound

sources or the positions of the mcrophones.
ORIGINAL SOUND SOURCES

By clickg the icons you can listen to the original sound sources.

B 9 B in &

SAMPLES AT THE COCKTAIL PARTY

Listen to the mixtures by clicking the microphones.
¢ ¢ ¢ ¢ ¢ < ¢ ¢ ¢

FOUND SOUND SOURCES

Below are the the sound sources separated by ICA. Note that they might be in different order than the original ones.
¢ < Q¢ ¢ W Q¢ Q ¢ ¢
http://research.ics.aalto.fi/ica/cocktail/cocktail en.cgi

https://www.cs.helsinki.fi/u/ahyvarin/papers/NNOOnew.pdf
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Parameter estimation: Gaussian approximation

Taylor expand £(6,,6,) around &, :

or ol
PY:) 1_‘901) + % 2_902) +
0;=0 0;=6

J

f(‘919‘92) = f(6’0196’02) +

1| 8% , 0% , . O
— 6,-6,,) + (6,-6,,) +2 6,-6,)6,-6,,) +...
2[ 8912 )t 1 01 8922 ) 2 02 00, 4, 1 01 A2 02
p(6,.6, |data, 1) = exp [¢(6,.0,)]

= exp [_ %Q] <+— (Gaussian approximation

Is the Gaussian approximation a good idea?
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Parameter estimation: Gaussian approximation

Taylor expand £(6,,6,) around &, :

o/ ol
10,0 = 0y.0,) + M . M) .

1| 0%
2[ 892 (‘91_‘901)(92_002)] T...
1

Is the Gaussian approximation a good idea?

0%/ 0%/

06,’

(‘91 o 901)2 +

0;=0y,

(02 o ‘902 )2 +2

_ 105
0,6y,

0;=6

o Greatly simplifies calculations - only need to compute the elements of
the Fisher matrix (covariance matrix)
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Parameter estimation: Gaussian approximation

Taylor expand £(6,,6,) around &, :

o/ ol
10,0 = 0y.0,) + M . M) .
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1

Is the Gaussian approximation a good idea?
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(‘91 o 001)2 +

0;=0y,

(02 o ‘902 )2 +2

_ 105
0,6y,

0;=6

o Greatly simplifies calculations - only need to compute the elements of
the Fisher matrix (covariance matrix)

o Nowadays, however, we can compute full posterior pdf. Not too hard
with present-day computers, even for large N
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Parameter estimation: Gaussian approximation

Taylor expand £(6,,6,) around &, :

o/ ol
10,0 = 0y.0,) + M . M) .

1| 0%
2[ 892 (‘91_‘901)(02_002)] T...
1

Is the Gaussian approximation a good idea?

0%/ 0%/

06,’

(‘91 o 001)2 +

0;=0y,

(02 o ‘902 )2 +2

_ 105
0,6y,

0;=6

o Greatly simplifies calculations - only need to compute the elements of
the Fisher matrix (covariance matrix)

o Nowadays, however, we can compute full posterior pdf. Not too hard
with present-day computers, even for large N

Markov Chain Monte Carlo Methods - see later ‘
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Defining Probabilities
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Bayesian versus Frequentist statistics: Who is right?

Frequentists are correct to worry about subjectiveness of
assigning probabilities - Bayesians worry about this tool!l

Probability is subjective;
it depends on the available
information

Probability Theory

The Logic of Science

Subjective # arbitrary

Ed Jaynes
(1922 - 1598) Given the same background
information, two observers should
assignh the same probabilities
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Bayesian versus Frequentist statistics: Who is right?

Frequentists are correct to worry about subjectiveness of
assigning probabilities - Bayesians worry about this tool!l

Probability is subjective;
it depends on the available
information

Probability Theory

The Logic of Science

Subjective # arbitrary

Ed Jaynes
(1922 - 1598) Given the same background
information, two observers should
assignh the same probabilities

But what should they be?...
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Bernoulli (1713) 'Principle of insufficient reason’
Keynes (1921) ‘Principle of indifference’

OXFORD SCIENCE PUBLICATIONS

(" If we can enumerate a set of basic mutually ) Al\[I) fLTYASIS
exclusive possibilities, and we have no reason A BAVESIAN TUTORIAL
to believe that any one of these is more likely SECOND EDITION
to be true than another, then we should

Kassign the same probability to all. Y, S
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Bernoulli (1713) 'Principle of insufficient reason’
Keynes (1921) ‘Principle of indifference’

ORFORD SCIENCE PUBLICATIONS
/; If we can enumerate a set of basic mutually ) Al\[I) £L11YASIS
exclusive possibilities, and we have no reason T
to believe that any one of these is more likely SECOND EDITION
to be true than another, then we should
Kassign the same probability to all. Y, =

X, =faceon top has i dots
p(X.|I)=+ forall i

6
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Bernoulli (1713) 'Principle of insufficient reason’
Keynes (1921) ‘Principle of indifference’

ORFORD SCIENCE PUBLICATIONS
/; If we can enumerate a set of basic mutually ) Al\[I) £L11YASIS
exclusive possibilities, and we have no reason T
to believe that any one of these is more likely SECOND EDITION
to be true than another, then we should
Kassign the same probability to all. Y, =

X, =faceon top has i dots
p(X.|I)=+ forall i

6

Agrees with common sense, but can we justify more fundamentally?
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Bernoulli (1713) 'Principle of insufficient reason'
Keynes (1921) ‘'Principle of indifference'

/" If we can enumerate a set of basic mutually N
exclusive possibilities, and we have no reason
to believe that any one of these is more likely
to be true than another, then we should

Kassign the same probability to all. )

X, are just labels, e.g. suppose we define

X, =tfaceon top has 7—i dots

Should stillhave  p(X,|I)=+ forall i

6
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Bernoulli (1713) 'Principle of insufficient reason'

Keynes (1921) ‘'Principle of indifference'

/" If we can enumerate a set of basic mutually N
exclusive possibilities, and we have no reason
to believe that any one of these is more likely
to be true than another, then we should

Kassign the same probability to all. )

X, are just labels

Should stillhave  p(X,|I)=+ forall i

6
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Extending to continuum case,
Let X be alocation parameter.

Principle of indifference means we should have

[p(x|[)dx = p(x+A|])d(x+A)J

where A is a constant

Since dx = d(x + A) we must have

[ p(x|I)=constant }
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Similarly,
Let L be a scale parameter.

Principle of indifference means we should have

p(LIDAL = p(BLIDA(BL)

where [3 is a positive constant

Since d(BL)= BdL wemust have [ p(LII)focl/LJ

/

Jeffreys’ prior

Umver51ty *
' 0 G ASEOW Advanced Data Analysis Course, 2019-20 SU@




A Jeffreys' prior represents complete ignorance about the value of
a scale parameter.

It is equivalent to a uniform pdf for the logarithm of L

ie. [ p(logL|I)dL = constant }
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A Jeffreys' prior represents complete ignorance about the value of
a scale parameter.

It is equivalent to a uniform pdf for the logarithm of L

ie. [ p(logL|I)dL = constant }

In fact what is referred to as a Jeffreys prior p(L|[)o«c1/L
is just the special case of a more general result.

Suppose our inference problem is described by a likelihood with
parameter(s) 4.

A University e )
Qf GlangW Advanced Data Analysis Course, 2019-20 SUPA



The Jeffreys prior is a non-informative (objective) prior defined

{6 en (6]

Here [ (@ ) is the Fisher Information defined as

16),, = E_ai@iln L(é)% In L(6)

J

[ Note this expression reduces to that for the Fisher matrix given in
Section 6 for the special case of a Gaussian likelihood. ]

Key feature: the Jeffreys prior is invariant under any
re-parameterisation of g




Testable information

How do we deal with more complicated situations?

e.g. suppose we know that, when our die was rolled many
times, the average result was 4.5 (and not 3.5)

#

How do we use this information to constrain p(Xl- | ]) ?

Jaynes (1957) suggests maximising the Entropy

6 6 6
_Z pi log[pl] SUbJCCT to Zpl o 1 and lel = 45
i=1 i=1 i=1
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,T From Sivia, pg 114
We can solve for the p;, 0.4

using Lagrange Multipliers.
0.3

But why MAXENT?

0.2

.1 —

I .1 _'1l | 5 M

Number of dots |

We can justify the importance of MAXENT via two approaches:

1) Independence argument (the kangaroo problem)

2) Shannon's Theorem and multiplicity
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Consider the Kangaroo problem!

/ Information:  1/3 of all kangaroos have blue eyes; \
1/3 of all kangaroos are left-handed

Question: On the basis of the above information alone,
what proportion of kangaroos are both blue
eyed and left-handed?

\_
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Question 15:  Assuming that eye-colour and handedness are
independent for kangaroos (humans?), we
expect the proportion of kangaroos that are both
blue-eyed and left-handed to be:

A Zero
B 100%
C 1/9

D 1/3



Consider the Kangaroo problem!

~

/ Information:  1/3 of all kangaroos have blue eyes;
1/3 of all kangaroos are left-handed

Question: On the basis of the above information alone,
what proportion of kangaroos are both blue
K eyed and left-handed? /
Blue eyes Left-Handed Blue eyes Left-Handed
True False True False
True 7 D> True 0<z7<+ T2
False D3 Dy False +-7 ++7
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We know that:

p+p,+ps+p, =1

P TP, :1/3

Whatis Z ?

Pt P :1/3

Independence arguments favour z =1/9

Left-Handed

Left-Handed

Blue eyes
True False

True 0<z<= +-Z

False Loy 14z

Advanced Data Analysis Course, 2019-20

Blue eyes
True False
True D 25
False D3 D
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We know that:  p, +p,+ p,+p, =1
p+p, =13 p+p,=1/3

Whatis Z ?

Independence arguments favour z =1/9

Variation Function Optimal z Implied Correlation
MAXENT — —>"p;Inp; L/% =1.1011 uncorrelated

— > p? 1/12 = 0.0833 negative

> Inp; 0.1303 positive

Zp} i~ 0.1218 positive
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MAXENT and common pdfs

Suppose we only know the expected value, Il , of a

continuous physical quantity, X

What should we assign as p(x | ]) ?

Using MAXENT it can be shown that
4 N

1 X .
p(x|p) = " GXP(— ;) Sonoution
\_ /
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MAXENT and common pdfs

Suppose we only know the expected value, U , of a

discrete physical quantity, N

What should we assignas p(x|1) »

Using MAXENT it can be shown that
4 N

N —u
€ oisson
p(N|u)="= Pois

N' distribution
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MAXENT and common pdfs

Suppose we only know the expected value, . , and

(x—u)" = of a continuous physical quantity, X

What should we assign as p(x | ]) ?

Using MAXENT it can be shown that

- B
plx| .0y =g L]
’ o) Pox 9) 02 distribution
N Y
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MAXENT and common pdfs

Suppose we only know the expected value, . , and

(x—u)" = of a continuous physical quantity, X

What should we assignas p(x|[) ?

Using MAXENT it can be shown that

4 D
plx| o) =g <AL
’ o) Pox 9) 02 distribution
N y

MAXENT justifies the relevance of common pdfs
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