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Parameter estimation: 2-D case

2

1

Linear combination
of       and        well 
constrained by data

Length of axes 
determined by the
eigenvalues of the 
Fisher information 
matrix

1 2

  12
2







 ij
ji

ijF 



θθF 

F determines how much 
information we can learn 
about our parameters

Direction of axes are the eigenvectors  of  F

Advanced Data Analysis Course, 2019-20



Parameter estimation: N-dimensional case
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What is PCA?

Principal Component Analysis:

A method for transforming a multi-dimensional 
dataset, consisting of a number of statistically 
dependent (correlated) variables, into a set of 
uncorrelated variables:  principal components
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What is PCA?

Principal Component Analysis:

1st principal component = linear combination of 
the original variables that accounts for as much 
of the variation in the data as possible
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What is PCA?

Principal Component Analysis:

1st principal component = linear combination of 
the original variables that accounts for as much 
of the variation in the data as possible

2nd principal component = linear combination
that accounts for as much of the remaining
variation as possible, and is orthogonal to PC1
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In a high-dimensional problem we 
may need only a small number of 
PCs to describe most of the 
variation in the data
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Relationship between PCA and SVD

Yesterday we discussed briefly how we could obtain stable solutions to 

the general linear model                            via the SVD of matrix      :

From which the LS solution is:      
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Relationship between PCA and SVD

So in PCA, we find the eigenvalues and eigenvectors of the data 

covariance matrix – in our notation 

From linear algebra we can decompose this as

Here       is a diagonal matrix containing the eigenvalues of             and       is 
an orthogonal matrix the columns of which are the eigenvectors.

In SVD we construct  the matrix

It then follows that

So we see that the eigenvalues of the covariance matrix are equal to

the squares of the singular values of the original data matrix      . 
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Solution: for these very small singular values,  set             .

This suppresses their noisy contribution to the 
least-squares solution for the parameters        .

0
1


LSâ

LSâ

Very small values of         will amplify any round-off errors in

Relationship between PCA and SVD

Recall from yesterday

So it is often useful to perform an SVD and “switch off” the smallest

singular values  before  applying PCA .
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Beyond PCA:  ICA

• PCA works by diagonalising the covariance matrix of a 
dataset, producing new linear combinations of the data 
which are uncorrelated.

• If the data are Gaussian then PCA will produce combinations 
which are statistically independent  (all higher moments are 
zero for a Gaussian).

• For non-Gaussian data, uncorrelated does not in general 
imply independent.   Alternative method called independent 
component analysis:  linear transformation of data vector to 
minimise statistical dependence of components.
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Is the Gaussian approximation a good idea?

Parameter estimation: Gaussian approximation
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Parameter estimation: Gaussian approximation

Is the Gaussian approximation a good idea?
o Greatly simplifies calculations – only need to compute the elements of 

the Fisher matrix (covariance matrix)
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Parameter estimation: Gaussian approximation

Is the Gaussian approximation a good idea?
o Greatly simplifies calculations – only need to compute the elements of 

the Fisher matrix (covariance matrix)

o Nowadays, however, we can compute full posterior pdf.  Not too hard 
with present-day computers, even for large  N
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Parameter estimation: Gaussian approximation

Is the Gaussian approximation a good idea?
o Greatly simplifies calculations – only need to compute the elements of 

the Fisher matrix (covariance matrix)

o Nowadays, however, we can compute full posterior pdf.  Not too hard 
with present-day computers, even for large  N

Markov Chain Monte Carlo Methods – see later
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Defining Probabilities
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Bayesian versus Frequentist statistics: Who is right?

Frequentists are correct to worry about subjectiveness of 
assigning probabilities – Bayesians worry about this too!!!

Ed Jaynes
(1922 – 1998)

Probability is subjective; 
it depends on the available 
information

Subjective  arbitrary

Given the same background 
information, two observers should 
assign the same probabilities
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Bayesian versus Frequentist statistics: Who is right?

Frequentists are correct to worry about subjectiveness of 
assigning probabilities – Bayesians worry about this too!!!

Ed Jaynes
(1922 – 1998)

Probability is subjective; 
it depends on the available 
information

Subjective  arbitrary

Given the same background 
information, two observers should 
assign the same probabilities

But what should they be?...
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If we can enumerate a set of basic mutually 
exclusive possibilities,  and we have no reason 
to believe that any one of these is more likely 
to be true than another,  then we should 
assign the same probability to all.

Bernoulli  (1713)   ‘Principle of insufficient reason’
Keynes  (1921)   ‘Principle of indifference’
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If we can enumerate a set of basic mutually 
exclusive possibilities,  and we have no reason 
to believe that any one of these is more likely 
to be true than another,  then we should 
assign the same probability to all.

Bernoulli  (1713)   ‘Principle of insufficient reason’
Keynes  (1921)   ‘Principle of indifference’
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If we can enumerate a set of basic mutually 
exclusive possibilities,  and we have no reason 
to believe that any one of these is more likely 
to be true than another,  then we should 
assign the same probability to all.

Bernoulli  (1713)   ‘Principle of insufficient reason’
Keynes  (1921)   ‘Principle of indifference’

dots    has on top face iX i 

iIXp i   allfor )|( 6
1

Agrees with common sense, but can we justify more fundamentally?
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If we can enumerate a set of basic mutually 
exclusive possibilities,  and we have no reason 
to believe that any one of these is more likely 
to be true than another,  then we should 
assign the same probability to all.

Bernoulli  (1713)   ‘Principle of insufficient reason’
Keynes  (1921)   ‘Principle of indifference’
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iIXp i   allfor )|( 6
1

are just labels,  e.g. suppose we define
iX

Should still have
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If we can enumerate a set of basic mutually 
exclusive possibilities,  and we have no reason 
to believe that any one of these is more likely 
to be true than another,  then we should 
assign the same probability to all.

Bernoulli  (1713)   ‘Principle of insufficient reason’
Keynes  (1921)   ‘Principle of indifference’

iIXp i   allfor )|( 6
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are just labels
iX

Should still have
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Extending to continuum case,

Let  x  be a location parameter.

Principle of indifference means we should have

where       is a constant

Since                                              we must have  

)()|()|(  xdIxpdxIxp



)(  xddx

constant)|( Ixp
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Similarly,

Let  L  be a scale parameter.

Principle of indifference means we should have

where       is a positive constant

Since                                we must have  

)()|()|( LdILpdLILp 



dLLd  )( 1/L)|( ILp

Jeffreys’ prior
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constant)|(log dLILp

A Jeffreys’ prior represents complete ignorance about the value of 
a scale parameter.

It is equivalent to a uniform pdf for the logarithm of  L

i.e.
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constant)|(log dLILp

In fact what is referred to as a Jeffreys prior                                  
is just the special case of a more general result.

Suppose our inference problem is described by a likelihood with 
parameter(s)     .     

1/L)|( ILp




A Jeffreys’ prior represents complete ignorance about the value of 
a scale parameter.

It is equivalent to a uniform pdf for the logarithm of  L

i.e.

Advanced Data Analysis Course, 2019-20



The  Jeffreys prior  is a non-informative (objective) prior defined 
as:

Here             is the  Fisher Information defined as        

[ Note this expression reduces to that for the Fisher matrix given in 
Section 6 for the special case of a Gaussian likelihood. ]

Key feature:  the Jeffreys prior is invariant under any
re-parameterisation of  
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How do we deal with more complicated situations?

e.g. suppose we know that, when our die was rolled many
times, the average result was 4.5  (and not 3.5)

How do we use this information to constrain                      ?

Jaynes (1957) suggests maximising the  Entropy

subject to                    and

Testable information

)|( IXp i
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We can solve for the 
using Lagrange Multipliers.

But why MAXENT?

We can justify the importance of MAXENT via two approaches:

1) Independence argument  (the kangaroo problem)

2) Shannon’s Theorem and multiplicity 

From Sivia,  pg 114

ip
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Consider the Kangaroo problem!

Information: 1/3 of all kangaroos have blue eyes;
1/3 of all kangaroos are left-handed

Question: On the basis of the above information alone,
what proportion of kangaroos are  both  blue
eyed  and  left-handed?
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Question 15: Assuming that eye-colour and handedness are 

independent for kangaroos (humans?), we 

expect the proportion of kangaroos that are both 

blue-eyed and left-handed to be:

A zero

B 100%

C 1/9

D 1/3



Consider the Kangaroo problem!

Information: 1/3 of all kangaroos have blue eyes;
1/3 of all kangaroos are left-handed

Question: On the basis of the above information alone,
what proportion of kangaroos are  both  blue
eyed  and  left-handed?
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We know that:

What is  z  ?

Independence arguments favour

14321  pppp

3121  pp 3131  pp

91z
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MAXENT

We know that:

What is  z  ?

Independence arguments favour

14321  pppp

3121  pp 3131  pp

91z
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MAXENT and common pdfs

Suppose we only know the expected value,  , of a 

continuous physical quantity,  x

What should we assign as                    ?

Using MAXENT it can be shown that

)|( Ixp
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 x
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MAXENT and common pdfs

Suppose we only know the expected value,  , of a 

discrete physical quantity,  N

What should we assign as                    ?

Using MAXENT it can be shown that

)|( Ixp

!
)|(

N

e
Np

N 


 Poisson
distribution
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MAXENT and common pdfs

Suppose we only know the expected value,  , and

of a continuous physical quantity,  x

What should we assign as                    ?

Using MAXENT it can be shown that
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MAXENT and common pdfs

Suppose we only know the expected value,  , and

of a continuous physical quantity,  x

What should we assign as                    ?

Using MAXENT it can be shown that

MAXENT justifies the relevance of common pdfs
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