5. Parameter Estimation and Goodness of Fit - part three

In the Bayesian approach, we can test our model, in the light of
our data (e.g. rolling a die) and see how our knowledge of its

parameters evolves, for any sample size, considering only the data
that we did actually observe

P : Likelihood Prior
osterior

/ \ /

p(model|data,/) o p(data|model,/)x p(model| )

Influence of our What we knew
observations before

What we know now

Simple example:

Probability of obtaining a "head” when a coin is tossed
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We want to know the probability of obtaining a *head” or "tail”.
How large a sample do we need to reliably measure this?
Model as a binomial pdf: € = probability of H from single toss

Suppose we make N coin tosses, and obtain r heads

Likelihood =

r1_ a\N-r | probability of obtaining
py(r) < 6(1-0) observed data, given
model
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We want to know the probability of obtaining a *head” or "tail”.
How large a sample do we need to reliably measure this?
Model as a binomial pdf: € = probability of H from single toss

Suppose we make N coin tosses, and obtain r heads

Likelihood =

r1_ a\N-r | probability of obtaining
py(r) « 6(1-0) observed data, given
model

Pos}erior Likeliliood P?OT

- : ;
‘p(model |data, /) o« p(data | model ,/)x p(model |I7) ‘

What we know now Influence of What we
our knew before
observations
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'Toy' model problem: What is the probability 8 of
throwing a head from a single toss?

We can generate fake data to see how the influence of the
likelihood and prior evolve.

Choose a 'true’ value of €@

Sample a uniform random number, x, from [0,1]

(see e.g. Numerical Recipes, and Sect 9)

3. Prob(x< @) =6

Hence, if x <46 = “Head”

otherwise — “Tail”

4. Repeat from step 2
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'Toy' model problem: What is the probability 8 of
throwing a head from a single toss?

We can generate fake data to see how the influence of the
likelihood and prior evolve.

Choose a 'true’ value of €@

Sample a uniform random number, x, from [0,1]

(see e.g. Numerical Recipes, and Sect 9)

3. Prob(x<@8) =86 Take
Hence, if x < & — “Head” 6=0.25
otherwise — “Ta1l”

4. Repeat from step 2
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Consider two different priors

Flat prior; all values of & equally probable

Y
—_
~
% (= 7]
=
” | Normal prior;
° | peaked at 8 = 0.5
- o 0.2 0.4 CI.I'E 0.8 H
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After tossing O coins

p(@| data, )
0.4 0.6 0.8

0.2

- . . a
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After tossing 1 coin: Head

p(6| data, I)

- . . .
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After tossing 2 coins: H+H

p(@| data, 1)

0.4

0.2

- . . .
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After tossing 3 coinst H+H+ T

p(6| data, I)
0.4 0.6 0.8

0.2

L, m - - -
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After tossing 4 coins:t H+ H+ T+ T

p(6| data, I)

L, m - - -
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After tossing O coins

p(@| data, )
0.4 0.6 0.8

0.2

- . . a
A University )
Qf GlangW Advanced Data Analysis Course, 2019-20 SUPA



After tossing 4 coins:t H+ H+ T+ T

p(6| data, I)

L, m - - -
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After tossing 5 coinst H+H+ T+ T+ T

p(6| data, I)

L, m - - -
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After tossing 10 coins: 5H+5 T

p(6| data, I)

0.4

0.2
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After tossing O coins

p(@| data, )
0.4 0.6 0.8

0.2

- . . a
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After tossing 10 coins: 5H+5 T

p(6| data, I)

0.4

0.2
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After tossing 20 coins: 7H+13 T

p(6| data, I)
0.4 0.6 0.8

0.2

0.8 | H
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After tossing 50 coins: 17 H+33 T

p(6| data, I)
0.4 0.6 0.8

0.2

0.8 | H
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After tossing 100 coins: 32 H+68 T

p(6| data, I)
0.4 0.6 0.8

0.2

0.6 | 0.8 |
0
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After tossing 200 coins: 59 H+ 141 T

0.8 1

p(6| data, I)

0.2

0.4 I t::.lﬁ | :::.IE |
0
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After tossing 500 coins: 126 H+ 374 T

p(6| data, I)
0.4 0.6 0.8

0.2

0.4 | 0.6 | 0.8 |
0
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After tossing 1000 coins: 232 H+ 768 T

p(6| data, I)

0.4

0.2
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What do we learn from all this?
o As our data improve (i.e. our sample increases), the
posterior pdf narrows and becomes less sensitive to
our choice of prior.

o The posterior conveys our (evolving) degree of belief in
different values of @, in the light of our data

o If we want to express our belief as a single number we
can adopt e.g. the mean, median, or mode

o We can use the variance of the posterior pdf to assign an
error for @

o Itisvery straightforward to define Bayesian confidence
intervals ( more correctly termed credible intervals )

Ay University ® )
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Bayesian credible intervals

"We are 95% sure that @
lies between o, and o, "

—~ ®|

~ o

< 95% of area

T o under posterior |

O of | 3

 — .

o, Ir .
3 ]
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Frequentist confidence intervals

Consider an example (following Gregory pg 152)

Let {X,} beaniidof n=10 drawn from a population N(,u, 02)
with unknown g but known o =1.

Let X be the sample mean RV, which has SD o, = J/«/E ~0.32

Thus [ Prob(u—0.32 < X < u2+0.32)=0.68 }
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Frequentist confidence intervals

Consider an example (following Gregory pg 152)

Let {X,} beaniidof n=10 drawn from a population N(,u, 02)
with unknown g but known o =1.

Let X be the sample mean RV, which has SD o, = J/«/E ~0.32

Thus [ Prob(u—0.32 < X < u2+0.32)=0.68 }

We can re-arrange this to write

[Prob()? ~0.32< 1< X +0.32)=0.68 ]
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Suppose that from our observed sample we measure X = 5.40

Can we simply write PI‘Ob(S.OS < U< 5.72) =0.68 2

- . . a
A University @
Qf GlangW Advanced Data Analysis Course, 2019-20 SU -



Suppose that from our observed sample we measure X = 5.40

Can we simply write Prob(5.08 < U< 5.72) =0.68 2

- . . -
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Question 12:  We can’t write Prob(5.08 < U< 5.72) = (.68
because (4, is a fixed (but unknown) parameter.
Hence, which of the following statements is true?

A Prob(5.08 < £ <5.72)# 0
B Prob(5.08 < 11 <5.72) =1
C 0 < Prob(5.08<u<572) < 1

D Prob(5.08 < 11 <5.72)=0 or 1



Suppose that from our observed sample we measure X = 5.40

Can we simply write Prob(5.08 < U< 5.72) =0.68 ?

In the frequentist approach, the true mean 4 is a fixed (although
unknown) parameter - it either belongs to the interval (5.08,5.72) or it
doesn't! Thus

[ Prob(5.08 < £ <5.72)=0 or 1 ]
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The statement  Prob(X —0.32 < u < X +0.32)=0.68

means that, if we were to repeatedly draw a large number of samples of
size p=10 from N(,u,az) , we expect that in 68% of these samples

x—032<u<x+0.32

20 realisations of 68% confidence interval

68% is known as
the coverage

4.25 4.5 4.75 5 5.25 b.5 .79
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The statement  Prob(X —0.32 < 4 < X +0.32)=0.68

means that, if we were to repeatedly draw a large number of samples of
size p=10 from N(,u,(fz) , we expect that in 68% of these samples

x—032<u<x+0.32

68 Yo IS known as 50 realisations of 95% confidence interval

il
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The statement  Prob(X —0.32 < 4 < X +0.32)=0.68

means that, if we were to repeatedly draw a large number of samples of
size p=10 from N(,u,(fz) , we expect that in 68% of these samples

x—032<u<x+0.32

68 Yo 1S known as 50 realisations of 95% confidence interval

il

See also Mathworld demonstration
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Compare the frequentist construction with Bayesian credible intervals

"We are 95% sure that @
lies between o, and o, "

0.8

95% of area
under posterior |

p(6| data, I)

0.4

0.2

A University * )
Qf GlangW Advanced Data Analysis Course, 2019-20 SUPA




Compare the frequentist construction with Bayesian credible intervals

"We are 95% sure that @
lies between o, and o, "

0.8

95% of area

under posterior | " . .
- P | . Note: credible interval

- | . not unique, but can
: \ define e.g. shortest C.I.

p(6| data, I)

0.4

0.2
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Example: Gregory, Section 14

Inference of a Poisson sampling rate

In many physics experiments the data = discrete events distributed in

space, time, energy, frequency etc.

Macroscopic events: rate of earthquakes, sky location of a star

Microscopic events: LHC interactions, DM particle detections...

4 - I
Model using Poisson distribution: (rT) e’
pn|r,l)=
n!
N /
UﬂiV@I'Sity .SUPA
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4 I
(rT )" e’

n!
\ J

Model using Poisson distribution: p(n | r,]) —

p(n|r,I) isthe probability that n discrete events will occur in
time interval T, given a positive, real-valued Poisson process with
event rate ;, and given other background information [ .

Suppose we make a single measurement of 5 events. From Bayes’
theorem:

4 N

p(r | Dp(n|r.I)
P ==

- /
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What should we choose as our prior p(r | [) ?

Later we will discuss this in more detail, and introduce the Jeffreys
prior appropriate for a scale parameter.

However, the motivation for choosing a Jeffreys prior breaks down if
the event rate 7 could be zero.

0<Lr<r

max

L

I8

max

Adopt instead a uniform prior p(r | [) —

(See Gregory, p 377 for further discussion)

University
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4 N
p(r|n,[):A(rT) , 0<r<r

max

- / " /
/

Normalisation constant (doesn’t depend on event rate)

Substituting

Can show that, if 7 7 >>n then the posterior is approximately:

University
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p(r|n,I)= ! (rTn):erT , >0
N J
Mode: Fnode = 1/ T
Mean: (r)=(n+1)/T
Sigma o, =+(n+1)/T

Un1vers1ty .
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1
= a8 i
_c:" 0.6
3 0.4
0.2
1 2 3 4 5 i1 2 3 4 5 6 7 8
Rate r Rate r
0.14 0.04
. 0.12 - =
= 0.1 ’{0.03
< 0.08 =
< 0.06 %0.02
= 0.04 0.01
0.02 N
5 10 15 2‘0 80 100 120 140
Rate r Rate r

From Gregory, pg 379
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NS, Qf G ASEOW Advanced Data Analysis Course, 2019-20




Now suppose the measured rate consists of two components:

1. Asignal, of unknown rate
} r=s+b

2. Abackground, of known rate p

Because we are assuming the background rate is known it follows
that
p(s|n,b,l)= p(r|n,b,I)

4 N\
n —(S—I—b)T
p(s|n,b,]):CT[(S+b)T']e . 520
N / " Y,

/

Normalisation constant

A University e )
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4 N
n —(s+b)T
p(s|n,b,]):CT[(S+b)T] e

!
N / " J
/

Normalisation constant

n (BT Ye™"
Canshowthat (C!= Z ( )
i !
Example: Dark Matter experimental results, reported Dec 2009

Simple analysis: 5 =2

b=0.8
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&) BBC News - The first glimpse of dark matter? - Mozilla
File Edit Wew Histary Eookmarks Tools  Help

@ - c L B hktp:/frews. bbc.couky 1/hif8420059, stm L] iy T -‘l - e dark matter )T
Back ward Reload Skof Hame ;
EX BBC Mews - The first glimpse of dark ... | = -

~

LT -
[FLVE BBC NEWS CHAMNNEL ’

News Front Page Fage last updated at 11:52 GMT, Friday, 18 December 2009
World B2 E-rnail this to a friend & Printable version B
UK
England The first glimpse of dark matter?
Morthern Ireland
Scotland By Wictoria Gill
Wales Science reparter, BBC News SEE ALSO
T . » Signals could be from dark matter

= us SC"?nt'Sts Il]aue reported the 01 Apr 09 | Science & Environment
Politics !:Iet.ectlcm of signals that could v CHERS sk HRmasls darl matksr
Health indicate the presence of dark 30 Aug 05 | Science & Environment
Education matter. » Giant black hioles just got bigger
Sci nce & I & team announced on Thursday 0% Jun 09 | Science & Environrent
Environment detecting two events with » Hubble makes 30 dark matter map
Technology characteristics "consistent with" 07 Jan 07 | Science & Environment
Entertainment what physicists believe make up RELATED INTERMET LINKS
Also in the news the elusive matter, + Fermilab

. Dark matter may make up most of the
Video and Audio The main announcement came . "cosmic web” of the Universe » COMS
from the Department of Energy's v Soudan Underground Labaoratory
Fermi Mational Accelerator Laboratory near Chicago.

Have Your Say ¥ g The BBEC is not responsible for the content of external
g The scientists were keen to stress that they could not confirm that pl s
In Pictures what they had seen was definitely dark matter.

TOP SCIEMCE & EMWIRONMENT STORIES
» Devil cancer source ‘identified’
» DMNA analysed from early European v

Country Profil A ) ) ) ) L :
Sy Fralies "hile this result is consistent with dark matter, it is also consistent

Special Reports with backgrounds," said Fermilab's director, Pier Oddone,

Done
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Results from the Final Exposure of the CDMS 11 Experiment

Z. Ahmed. ' D.S. Akerib.? S. Arrenberg,'® C.N. Bailey,? D. Balakishiveva,'® L. Baudis,'® D.A. Bauer,?
P.L. Brink,'® 1. Bruch,'® R. Bunker,'* B. Cabrera,'? D.O. Caldwell,'* J. Cooley,” P. Cushman,!”

M. Daal,'® F. DeJongh,® M.R. Dragowsky,? L. Duong.'” S. Fallows,'” E. Figueroa-Feliciano,® J. Filippini.'
M. Fritts,!” S.R. Golwala,'® D.R. Grant,2 J. Hall.® R. Hennings-Yeomans,? S.A. Hertel,> D. Holmgren,?
L. Hsu,? M.E. Huber.' O. Kz—n‘naev,” M. Kiveni,'* M. Kos,'' S.W. Leman.” R. 1\-Ialu—xpem'a‘,12 V. I\-Iandic,”
K.A. McCarthy,® N. Mirabolfathi,'? D. Moore,’® H. Nelson,'* R.W. Ogburn,'® A. Phipps,'® M. Pyle,'® X. Qiu,'”
E. Rambere,® W. Raw,® A. Reisetter,!™7 T. Saab,'® B. Sadoulet,* 3 J. Sander.'* R.W. Schnee,'! D.N. Seitz,!?
B. Serfass,!® K.M. Sundqvist,!® M. Tarka.'® P. Wikus,5 S. Yellin,'% 14 J. Yoo.® B.A. Young.® and J. Zhang!”
(CDMS Collaboration)
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We report results from a blind analysis of the final data taken with the Cryogenic Dark Matter
Search experiment (CDMS II) at the Soudan Underground Laboratory, Minnesota, USA. A total
raw exposure of 612 kg-days was analyzed for this work. We observed two events in the signal region;
based on our background estimate, the probability of observing two or more background events is
23%. These data set an upper limit on the Weakly Interacting Massive Particle (WIMP)-nucleon
elastic-scattering spin-independent cross-section of 7.0 x 107** em? for a WIMP of mass 70 GeV /c?
at the 90% confidence level. Combining this result with all previous CDMS II data gives an upper
limit on the WIMP-nucleon spin-independent cross-section of 3.8 x 1074 cm? for a WIMP of mass
70 GeV/c?. We also exclude new parameter space in recently proposed inelastic dark matter models.

912.3592v1 [astro-ph.CO] 18 Dec 2009
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(0.87)" e "

Predicted event rate, assuming no signal p(n|r=0.8,1)=

n!
0.5

& probability of observing two or
~ 04 | more background events ~ 20%
= 0
? L 4
2 0.3 4
oG
T
~ 0.2
S .
= 01

L 2
0 ‘ $ * *
0 2 4 6 8
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Posterior pdf for the signal rate

[(S + 0.8)]2 g (5+08)

p(s|n=2,b=081)=C o

, §=0

0.3 |

Posterior peaks away from zero,
although p(s=0) is ~15%

0.25 -

0.2 -

0.8, 1)

:2’ b:
o
o

p(s|n
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Further example: Gregory, Section 3.6

Fitting the amplitude of a spectral line.

] "(I/,‘ — I/”)2
Model M1:  Signal strength = 7Texp

/ 20’3

Amplitude

Assume other parameters are known
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1f ’ ‘ W ' ' R
08} / YT Parameter to be fitted is

\ | amplitude of signal (taken
il / ﬂ here to be unity)
0.4}

|

Signal strength (mK)

5 A . _/ ‘ ‘ e 3
0 10 20 30 40 50 60 T
Channel number -I'.
=27 1 ¥
X 3 '
£ . ! ¥ * )
~ T * ' ‘R * *
S 4@ ;o A S ]
2 b SR IR T SR Y SR R
& v"l N \‘ ) .\'nll * ; iy [
served data 5 | Y S SR x
-'(TJ Il >* * r”v :‘I ¥ *\ 1"“": * \ ! : N "I"f v‘
E 0 \ : \\ r' I| ! ’ Rl ; ' ‘l| ll |*‘r * T 1’1 I *"
[ U I.\ ! ‘\' [ 'l* i e ! X
B o L4 * 0 ' LT
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*
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p(T|D,M1,[) x p(T|M1,[)p(D|M1,T,[)

posterior prior likelihood
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Posterior sensitive to choice of prior (see later)

0.7}

i Uniform
0.6}
O T T o = Jeffreys

05F
0.4}

0.3}

p(T\D, My, I)

0.2}

0.1}

Line strength T

o m
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What if the frequency (channel number) is also unknown?

Can compute marginal

posterior for C.N.
o F
b
2t *
] 5 ‘i
£ * * . *
L T I U P A
2 Vg Bl RS T A .
o W R ko0 N
@ B TR ERE L SR T I W
B O '\ "I\l —— :k’\" ‘. I/*IA'“* - — f
5 N [ ; F o i
%] % ok ! H < o oo
= ] * | * ) * g
* * i y
i -
0 10 20 30 40 50 60

Channel number

Possible lines at ~20 and < 10
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1.2

0.8
0.6
0.4
0.2

Probability density

0.5 1 1.5 2 25 3 35

Allowing the C.N. to be a free parameter changes significantly
the marginal posterior for the amplitude.

(But should we be fitting only one line? See Section §8)
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Bayesian versus Frequentist statistics: Who is right?

If we adopt a uniform prior, results of Bayesian estimation
are formally equivalent o maximum likelihood

Po S}erior leehKOOd P?OI‘

- :
p(model |data, I) o p(data | model ,7)x p(model |[7) ‘

But underlying principle is completely different.

(and often we should not assume a uniform prior - see later)

A University L )
Qf GlangW Advanced Data Analysis Course, 2019-20 SUPA



Bayesian versus Frequentist statistics: Who is right?

If we adopt a uniform prior, results of Bayesian estimation
are formally equivalent o maximum likelihood

Po S}erior leehKOOd P?OI‘

- :
p(model |data, I) o p(data | model ,7)x p(model |[7) ‘

But underlying principle is completely different.

(and often we should not assume a uniform prior - see later)

"Fundamentalist” views expressed on both sides:
See my.SUPA (and Moodle) sites for some references.
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of Glasgow

Bayesian Analysis (2008) 3, Number 3, pp. 445-450

Objections to Bayesian statistics

Andrew Gelman®

Abstract. Bayesian inference is one of the more controversial approaches to
statistics. The fundamental objections to Bayesian methods are twofold: on one
hand, Bayesian methods are presented as an automatic inference engine, and this
raises suspicion in anyone with applied experience. The second objection to Bayes
comes from the opposite direction and addresses the subjective strand of Bayesian
inference. This article presents a series of objections to Bayesian inference, written
in the voice of a hypothetical anti-Bayesian statistician. The article is intended to
elicit elaborations and extensions of these and other arguments from non-Bayesians
and responses from Bayesians who might have different perspectives on these is-
sues.,

Keywords: Foundations, Comparisons to other methods

1 A Bayesian's attempt to see the other side

Bayesian inference is one of the more controversial approaches to statistics, with both
the promise and limitations of being a closed system of logic. There is an extensive
literature, which sometimes seems to overwhelm that of Bayesian inference itself, on
the advantages and disadvantages of Bayesian approaches, Bayesians’ contributions to
this discussion have included defense (explaining how our methods reduce to classical
methods as special cases, so that we can be as inoffensive as anybody if needed), af-
firmation (listing the problems that we can solve more effectively as Bayesians), and
attack (pointing out gaps in classical methods).

The present article is unusual in representing a Bayesian's presentation of what he
views as the strongest non-Bayesian arguments. Although this originated as an April
Fool's blog entry (Gelman, 2008), I realized that these are strong arguments to be taken
seriously—and ultimately accepted in some settings and refuted in others.
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This Physicist’s view of Gelman’s Bayes
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Abstract. The author offers fundamentalist commentary on Andrew Gelman’s
brilliantly provocative comments on Bayes, and the associated discussion.

Keywords: evidence, fundamentals, semi-Bayesian, Emperor’s Clothes.

1 Introduction

In publishing Gelman (2008) with commentaries, the Editor is to be congratulated on
allowing an exhilirating relaxation of the orthodox norms of professional presentation.
Consequently, each author’s contribution is seen with unusual clarity. There’s no fussy
detail. There’s no intricate symbolism designed to impress. There is just the natural
language of personal communication, so well suited to discussion of basic outlooks.

Yet that very clarity exposes what is oddly missing. The discussions lack any serious
account of why we MUST use Bayes or of how T think we SHOULD use Baves. Read-
ers would think there was a choice. There isnt. Here in complimentary response to
Andrew’s wonderfully successful provocation is my own polemical rant on the subject.

2 Why we MUST use Bayes

Probability calculus, often called “Bayesian”, is not an option to be accepted, modified
or rejected at whim. It has a firm logical basis as the unique calculus of rationality.
Over sixty vears ago, Richard Cox wrote a remarkable paper (Cox (1946)) which Jaynes
(2003) considered to be “the most important advance in the conceptual (as opposed
to the purely mathematical) formulation of probability theory since Laplace”. T have
long concurred with that view, except that I omit the bracketed qualification. Although
some of us continue to polish and refine the approach, I hold that Cox (1946) remains
the foundation authority.
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Bayesian versus Frequentist statistics: Who is right?

If we adopt a uniform prior, results of Bayesian estimation
are formally equivalent o maximum likelihood

Po S}CI'iOI' leehKOOd P?OI‘

- :
p(model |data, I) o p(data | model ,7)x p(model |[7) ‘

But underlying principle is completely different.

(and often we should not assume a uniform prior - see later)

Important to understand both Bayesian and Frequentist
approaches, and always to think carefully about their
applicability to your particular problem.
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Bayesian versus Frequentist statistics: Who is right?

Quote from Louis Lyons

Bayesians address the question evervone is interested in
by using assumptions that no one believes.

Frequentists use impeccable logic to deal with an issue of
no interest to anvone.

Louis Lyons
Academic Lecture at Fermilab
August 17, 2004
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