4. Parameter Estimation and Goodness of Fit - part two

OXFORD SCIENCE PUBLICATIONS

DATA Sivia Chapter 3 gives a very
ANALYSIS clear discussion of least

ABAYESIAN TUTORIAL squares fitting within a
SECOND EDITION

D.S.SIVIA
with . SKILLING

Bayesian framework.

In particular, contrasts, for
Gaussian residuals:

o known G

o unknown G - Student’s ¢
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The principle of maximum likelihood

Frequentist approach:

A parameter is a fixed (but unknown) constant

From actual data we can compute Likelihood,

L = probability of obtaining the observed data, given the value of
the parameter ¢
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The principle of maximum likelihood

Frequentist approach:

A parameter is a fixed (but unknown) constant

From actual data we can compute Likelihood,

L = probability of obtaining the observed data, given the value of
the parameter ¢

Now define likelihood function: (infinite) family of curves
generated by regarding L as
a function of @, for data fixed.

Principle of Maximum Likelihood

A good estimator of & maximises L -

2
i.e. a_L:o and 0L

<0
00 06°




The principle of maximum likelihood

Frequentist approach:

A parameter is a fixed (but unknown) constant

From actual data we can compute Likelihood,

L = probability of obtaining the observed data, given the value of
the parameter ¢

Now define likelihood function: (infinite) family of curves
generated by regarding L as
a function of @, for data fixed.

Principle of Maximum Likelihood e ™
We set the parameter equal to
. o the value that makes the actual
A good estimator of & maximises L - data sample we did observe -
5 out of all the possible random
ie. a_L _0 and 0L <0 samples we could have observed

ae 892 k— the most llkely /




Aside: Likelihood function has same definition in Bayesian probability theory, but subtle difference in
meaning and interpretation - no need to invoke idea of (infinite) ensemble of different samples.

Principle of Maximum Likelihood

A good estimator of & maximises L -

O°L

Py <0

i.e. oL =0 and
00

6= 6,

v

-@

Observed value
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Principle of Maximum Likelihood

A good estimator of & maximises L -

- .
7

Observed value

v
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Principle of Maximum Likelihood

A good estimator of & maximises L -

Observed value
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Principle of Maximum Likelihood

A good estimator of & maximises L -

2
ie. —=0 and 8L<O
06°
0= O
® .

7 ] X

Observed value
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Least squares as maximum likelihood estimators

To see the maximum likelihood method in action, let's consider again
weighted least squares for the simple model y; = a + bx;+¢€;

h

Suppose the i residual, {e;}, is assumed to be drawn from some

underlying pdf with mean zero and variance o2, where the variance

is allowed to be different for each residual.

Let's assume the pdf is a Gaussian
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Least squares as maximum likelihood estimators

To see the maximum likelihood method in action, let's consider again
weighted least squares for the simple model y; = a + bx;+¢€;

h

Suppose the i residual, {e;}, is assumed to be drawn from some

underlying pdf with mean zero and variance o2, where the variance

is allowed to be different for each residual.

Let's assume the pdf is a Gaussian

I L 1 .
Likelihood [ = ———exp| ———
1:1[ 2ro, 2 o,
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Question 7:

How can we justify writing the likelihood as a product?

n 2
L = H 1 exp{—% ::2 :|

Because the residuals are all equal to each other

Because the residuals are all Gaussian

Because the residuals are all positive

Because the residuals are all independent



Least squares as maximum likelihood estimators

To see the maximum likelihood method in action, let's consider again
weighted least squares for the simple model y; = a + bx;+¢€;

h

Suppose the i residual, {e;}, is assumed to be drawn from some

underlying pdf with mean zero and variance o2, where the variance

is allowed to be different for each residual.

Let's assume the pdf is a Gaussian

n 2
Likelihood ] = H I exp g

2

(note: L is a product of 1-D Gaussians because we are assuming the &, are independent)
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Substitute & =y, —a—bx,

N

= L

1 l(yi—a—bxl.)z}
exp| ——
LR R

and the ML estimators of a and p satisfy or/6a=0 and oL/6b=0
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Substitute & =y, —a—bx,

N

2
exp _l(yi _a_bxz‘)

1
-1 \/7 O'iz

and the ML estimators of a and p satisfy or/6a=0 and oL/6b=0

= L

But maximising L is equivalent to maximising ¢ =1n L

i=1 O,

1

2
Her'e f — _gln(zﬂ')_lnzal_%Z(yl_a_bxlj
i=1

= constant — E S

This is exactly the same
sum of squares we
defined earlier
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Substitute & =y, —a—bx,

N

2
exp _l(yi _a_bxz‘)

1
=] \/7 O-iz

and the ML estimators of a and p satisfy or/6a=0 and oL/6b=0

= L

But maximising L is equivalent to maximising ¢ =1n L

2
Her'e f — _gln(zﬂ')_lnzal_%Z(yl_a_bXZ]
i=1

i=1 O;

1

= constant — 5 S

This is exactly the same
sum of squares we
defined earlier

So in this case maximising L is exactly equivalent to minimising the sum of squares.

i.e. for Gaussian, independent errors, ML and weighted LS estimators are identical.



Example application
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Cern test ‘breaks speed of light’

0.0024 seconds 0.00000006 seconds 732 km

faster than the expected time

time taken by neutrinos distance travelled through rock

SWITZERLAND
u]
Genava
ITALY

bt | [
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Cern, Switzerland: A beam of neutrino particles is
sent through rock towards ltaly

Gran Sasso, Italy: Bricks with ultrasensitive
covering at underground laboratory detect arrival
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L, (Eatk )=]_[ W, (t ;Tot, ) k = 1,2 extractions
]

Near the maximum the likelihood function can be approximated by a Gaussian whose
variance 1s a measure of the statistical uncertainty on ot. The data used for the maximum

likelihood calculation are unbinned and the dependence on ot 1s computed by making a scan in

steps of 1 ns. A parabolic fit 1s performed on the log-likelihood function for the evaluation of the
maximum and of the statistical uncertainty (Fig. 10). As seen 1 Fig. 11, the PDF representing the
time-structure of the proton extraction is not flat but exhibits a series of peaks and valleys,
reflecting the features and the iefficiencies of the proton extraction from the PS to the SPS via
the Continuous Transfer mechanism [41]. Such structures may well change with time. The way
the PDF are built automatically accounts for the beam conditions corresponding to the neutrino
mteractions detected by OPERA.
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Hypothesis testing

In the previous section we have discussed how to estimate parameters
of an underlying pdf model from sample data.

We now consider the closely related question:

How good is our pdf model in the first place?
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Hypothesis testing

In the previous section we have discussed how to estimate parameters
of an underlying pdf model from sample data.

We now consider the closely related question:

How good is our pdf model in the first place?

Simple example.

Null hypothesis: sampled data are drawn from a normal pdf,
with mean g .. and variance &°.

We want to test this null hypothesis: are our data consistent with it?
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Assume (for the moment) that 62 is known.

Example

10
Measured data: {x,:i=1,..,10} le. =47.8

Null hypothesis:  x ~ N(u,0”) with u . =4

2
Assume: g =2 o, =04

Under NH, sample mean [ X a1 ~ N(4, 22/10)]

Observed sample mean X, =4.78

Un1vers1ty *
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We transform to a standard normal variable

Under NH: 7 = [xo — xm‘)del) ~ N(0,1)

O,

4.78—4

obs — \/07

From our measured data: 7 —=1.233

If NH is true, how probable is it that we would obtain a value
of Z . aslarge as this, or larger?

[ We call this probability the p-value ]

$ Un1vers1ty * )
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Question 8:  Suppose that X is sampled from a normal distribution
with mean p =5 and variance ¢*>=9.

Which of the following is a standard normal variable?

Az
B z-"
c z-°-
D z--°



/N
/ N\

V N\
| -

-4 -3 -2 -1 0 1 2 3 4

Z=-1.233 Z=1.233
Z s
p-value = PronZ‘Z Zobs) = 1- J‘J;—ﬂexp(—%zz)dz
_Zobs

Simple programs to perform this probability integral (and many others) can be
found in numerical recipes, or built into e.g. MATLAB or MAPLE.
Java applets also available online at http://statpages.org/pdfs.html ( ).
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/N

V N\
| |

-4 -3 -2 -1 0 1 2 3 4

p-value = PronZ‘Z ) = 0.2176

obs

The smaller the p-value, the less credible is the null hypothesis.

Umver51ty *
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We can also carry out a one-tailed hypothesis test, if appropriate,
and for statistics with other sampling distributions.

Question 9: A one-tailed hypothesis test is carried out. Under the NH
the test statistic has a uniform distribution U[0,1] .
The observed value of the test statistic is 0.8.

The p-value is:

A 038
B 009
C o2



What if we dont assume that 02 is known?

We can estimate it from our observed data (provided n>2 )

X

obs

We form the statistic L ps =

where &2—#2’1:()@.—)? )

RS =R

Accounts for the fact that we don’t know M, but

X imat
must use xobs when we estimate o,

However, now [, No longer has a normal distribution.

University

= Qf GlangW Advanced Data Analysis Course, 2019-20




Infact ¢,  hasa pdf known as the Student’s t distribution

_(LH)
o) (. )
P= mr<v>(”v]

2

where v=n-1 is the no. degrees of freedom and T'(v)= va‘le‘xdx
0

P(t) ous

0,4

— =1
—_— =2

0,35

— =8
v=10

V=00

For small n the
Student’s t distribution
has more extended tails
than Z,butas n— o

the distribution tends to
N(0,1)

0,3
0,25
0,2
0,15
0,1

0.05
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Question 10: The more extended tails of the students’ t distribution
mean that, under the null hypothesis

A larger values of the test statistic are more likely
B larger values of the test statistic are less likely
C smaller values of the test statistic are more likely

D smaller values of the test statistic are less likely



Hypothesis tests and decision theory

In a simple hypothesis test, we test our null hypothesis against a
single alternative hypothesis.

We choose a critical region: set of values of the test statistic for
which we choose to reject the NH and accept the AH.

This means we need to consider the distribution of our test
statistic under the NH and the AH.

A University L )
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Example

Measured data leads to test statistic x, estimator of 1 :
NH: u=-2; x~N(-2]) AH: u=+2; x~N(2])

Suppose we choose critical region to be x>0

p(x| ) i/ i FN

/ g oo p(x| )
N\ / \ / \\ P

/ . __..r.’x‘ihj‘tuh_ . i\w- -
o

p(x| p)

> X

-

Critical Region
University
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There are two ways in which we can make an incorrect decision:

Type I error: we reject the NH when it is TRUE

Type II error: we accept the NH when it is FALSE

0.4

p(x| 1) i/ // \\

f/ \

| Probability of Probability of
/ a type II error a type I error \
’ & Ijtflr —
0

] ) x

p(x|p)
under AH

p(x| @)
-/
\-\\“‘E

o —— - - S
—5 = iy -2

Critical Region
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Consequences of incorrect
decision will be worse
when the sampling
distributions under NH f22
and AH have a greater x| 1) 03
overlap. under NH

\ p(x| 1)

0.24 under AH

This may influence our /

choice of critical region.

0:451

0.4 -

We want to reduce the \
- , VD

probability of type I and A | |
type II errors - but we 4 3 2 0 ~. ,z _, R
can't do both at the same Critical Region

time...
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Lots of terminology:

Type I error: also known as false alarm or false positive

Type II error: also known as false negative or "miss”

-
Sensitivity = probability (rate) of obtaining true positive ("hit”)

_ Specificity = probability (rate) of obtaining true negative y

Sensitivity (or power) = 1 — prob(type Il error)

Specificity = 1 — prob(type | error)

Un1vers1ty .
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In many fields (particularly medical applications) a
Receiver Operating Chracteristic (ROC)

plot can be used to assess ROC Space
1 I I I I I I I I i 1
----- Random guess
The performance Of a Og.j\ Pefect Clagsification /f/ a
simple hypothesis test. | '
//
08| . /./ |
_ o - _ . . . C’ // B
x-axis = (1 - specificity) o7 v i
. . . . . //
- = 206 A ’ _
y-axis = sensitivity : P
Blue dots = results for ¥ Better i

o
-9

|

N
~
AN
AN
~
~

different hypothesis tests.

~
N
~
AN
AN
~
Qe

Red d|090n0| - WhGT We,d 02 // Worse b
expect from a random o/ -
guess alone. 3 " ! | ! | | ! | |

o 01 02 03 04 05 06 07 08 08 1

FPR or (1 - specificity)
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We can generate a ROC curve for a given test by varying the critical
region. This can help to optimise our choice of CR - trading of f type
I and type IT error, and ROC Space

getting us as close as 1\ [ Reneomgues]

Pefect Clagsification /
09 / -

possible to a perfect | /
decision / classification. 0sf- 8 -

<
|
[
e
AN
~
\
o
|

o
o
|
e
~
A Y
I

TPR or sensitivity
o
on
[
A
Y
|

o
-9

|

N
~
AN
AN
~
~

0.3 4
/
/
/
N
0.2 Fla

0.1 2% -

Oe

0 0.1 0.2 03 0.4 05 06 0.7 0.8 09 1
FPR or (1 - specificity)

University

: Qf Glasgow Advanced Data Analysis Course, 2019-20




We can generate a ROC curve for a given test by varying the critical
region. This can help to optimise our choice of CR - trading of f type

I and type II error, and o
getting us as close as - s
possible to a perfect - o |

decision / classification.

bir

i

The area under the ROC
curve can be used as a
measure to compare

0.5

Ture positive rate (Sensitivity)

different tests and 02k i ﬁ_%%.r i
-4 - [DEEM W
choose the best. 0.1 -2 - Essm-str_sw i

| 1 1
0 0.1 b2 &3 0.4 0.5 05 0.7 .8 5 1
False positive rate (1- specificity)

ROC curves for predictors of DNA-binding sites.
SUNY Albany Center for Excellence in Cancer Genomics
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We can generate a ROC curve for a given test by varying the critical
region. This can help to optimise our choice of CR - trading off type
I and type II error, and
getting us as close as

possible to a perfect /
decision / classification.

1 &

—
- .
-
- "
-
-

sensitivity

< >

Y

1 - specificity

p(x| )
under AH

As we move the CR
from left to right, we
move along the ROC

curve (dashed line)

Critical Region
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Hypothesis testing

More generally, we now illustrate the frequentist approach to the
question of how good is the fit to our model, using the Chi-squared
goodness of fit test.

PHIL GREGORY
Bayesian Logical

Data Analysis
We take an example from Gregory (Chapter 7) for the Physical Sciences

A Comparative Approach with
Mathematica Support

(book focusses mainly on Bayesian probability, but
is very good on frequentist approach too)
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Time (days)
Model: radio emission from a galaxy is constant in time.

Assume residuals are iid, drawn from N(O,c)
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Goodness-of-fit Test: the basic ideas

1. Choose as our null hypothesis that the galaxy has an unknown but constant flux density.
If we can demonstrate that this hypothesis is absurd at say the 95% confidence level, then this

provides indirect evidence that the radio emission 1s variable. Previous experience with the
measurement apparatus indicates that the measurement errors are independently normal
witha o = 2.7.

2. Select a suitable statistic that (a) can be computed from the measurements, and (b) has a
predictable distribution. More precisely, (b) means that we can predict the distribution of
values of the statistic that we would expect to obtain from an infinite number of repeats of the
above set of radio measurements under identical conditions. We will refer to these as our
hypothetical reference set. More specifically, we are predicting a probability distribution for
this reference set.

To refute the null hypothesis, we will need to show that scatter of the individual measure-
ments about the mean 1s larger than would be expected from measurement errors alone.

3. Evaluate the \* statistic from the measured data. Let’s start with the expression for the y?
statistic for our data set:

From Gregory, pg. 164
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the 2pst | p(e) = px() e ]

Here v is known as the number of degrees of freedom of the pdf.

The mean value of the pdf is » and the variance is 2v.

1.0 — T I r r ~ T r -+ * 1
p(7?) T} .
0.8-— — v=1 _-
P —v=2 -
i — v=3 o
I — v =4 |
0.6/ —— v =5 7
0.4+ -
B i -
02/ -
o™ | L e e —]

%™ University ’ e B -
é[a SUPA)
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Day Number

Flux Density (mly)

0.0 14.2
718.0 5.0
1097.0 3.3
1457.1 15.5
25241 4.2
3607.7 9.2
3630.1 8.2
4033.1 3.2
4161.3 5.6
5355.9 9.9
5469.1 7.4
6012.4 6.9
6038.3 10.0
6063.2 3.8
6089.3 11.4
University
of Glasgow
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0.08

Probability density

0.02

(2, —ZF o= {x;— 7.98)°

: o2 : 2.72
= i=1

— 26,70

n =15 data points, but v = 14 degrees of
freedom, because X~ statistic involves the
sample mean and not the true mean.

We subtract one d.o.f. to account for this.

0.06

0.04 1

i)

Measured \°=26.76 |




Question 11:

Given that the mean and variance of a chi-squared
distribution with » degrees of freedom are » and 2n
respectively, in the Gregory example (with 14 degrees
of freedom) estimate the number of sigma by which the
value ;2 =26.76 exceeds the expected value.

between 0 and 1 sigma

between 1 and 2 sigma

between 2 and 3 sigma

between 3 and 4 sigma



Day Number

Flux Density (mJy)

0.0
718.0
1097.0
1457.1
2524.1
3607.7
3630.1
4033.1
4161.3
3355.9
5469.1
6012.4
6038.3
6063.2
6089.3

14.2
5.0
3.3

15.5
4.2
9.2
8.2
L
5.6
9.9
7.4
6.9

10.0
5.8

11.4

o= (xi =% & (xi—798)7
A = Z B = Z 272 = 26.76.

0.08 r

Probability density

0.02

0.06 r

0.04 1

I:] f':l

n = 15 data points, but v = 14 degrees of
freedom, because X~ statistic involves the
sample mean and not the true mean.

We subtract one d.o.f. to account for this.

---------------------------------------

Measured \?=26.76 1

If the null hypothesis is true, how probable is it that we
would measure as large, or larger, a value of \? ?
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If the null hypothesis were true, how probable is it that we
would measure as large, or larger, a value of X ?

Recall that we refer to this important quantity as the p-value

( )

2

Zob
p-value = l—P(;(fbs) = l—fp0 X exp(—gjdx = 0.02
0

. J
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If the null hypothesis were true, how probable is it that we
would measure as large, or larger, a value of X ?

Recall that we refer to this important quantity as the p-value

( )

Zc%bs
p-value = l—P(;(fbs) = 1- f P, X+ exp(—gjdx = 0.02
0

. J

What precisely does the p-value mean?

“If the galaxy flux density really is constant, and we repeatedly obtained sets
of 15 measurements under the same conditions, then only 2% of the »°
values derived from these sets would be expected to be greater than our one

29
actual measured value of 26.76 From Gregory, pa. 165

If we obtain a very small p-value (e.g. a few percent?) we can interpret this as
providing little support for the null hypothesis, which we may then choose to reject.

(Ultimately this choice is subjective, but y* may provide objective ammunition for doing so)
y J X yp J g



If the null hypothesis were true, how probable is it that we
would measure as large, or larger, a value of X ?

Recall that we refer to this important quantity as the p-value

( )

Zzb
p-value = l—P()(fbs) = I—Jp0 X exp(—gjdx = 0.02
0

\_ J

What precisely does the p-value mean?

“If the galaxy flux density really is constant, and we repeatedly obtained sets
of 15 measurements under the same conditions, then only 2% of the »°
values derived from these sets would be expected to be greater than our one

29
actual measured value of 26.76 From Gregory, pg. 165

“At this point you may be asking yourself why we should care
about a probability involving results never actually obtained”

From Gregory, pg. 166
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Nevertheless, p-value based frequentist hypothesis testing remains very
common in the literature:

Type of problem test References
Line and curve 2 NR: 15.1-15.6
X test

goodness-of-fit

Difference of means Student’s ¢ NR: 14.2

Ratio of variances F test NR: 14.2

Sample CDF K-S test NR: 14.3, 14.6
Rank sum tests

Correlated variables? Sample correlation NR: 14.5, 14.6
coefficient

Discrete RVs X ? test / NR: 144

A Universit
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contingency table
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Nevertheless, p-value based frequentist hypothesis testing remains very
common in the literature:

Type of problem test References
Line and curve 2 NR: 15.1-15.6
X test

goodness-of-fit

Difference of means Student’s ¢ NR: 14.2

Ratio of variances F test NR: 14.2

Sample CDF K-S test NR: 14.3, 14.6
Rank sum tests

Correlated variables? Sample correlation NR: 14.5, 14.6
coefficient

Discrete RVs X ? test / NR: 144

contingency table

See also supplementary notes on my.SUPA and Moodle
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In the Bayesian approach, we can test our model, in the light of
our data (e.g. rolling a die) and see how our knowledge of its

parameters evolves, for any sample size, considering only the data
that we did actually observe

p : Likelihood Prior
osterior

/ \ /

p(model|data,/) o p(data|model,/)x p(model| )

Influence of our What we knew
observations before

What we know now
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What do we choose as our prior?

Good questionl

Source of much argument between e ] R

Bayesians and frequentists

Blood on the walls
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What do we choose as our prior?

Good questionl

Source of much argument between e e

Bayesians and frequentists

Blood on the walls

If our data are good enough, it shouldn't matter

POS}GI'iOI' leehROOd Pfor

- :
‘p(model |data, /) o p(data | model ,/)x p(model |I7) ‘

| |
Dominates
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L Likelihood {l |+ Prior

- p(D|HO=M1sl) . - p(HO|M1sl)
Prior Likelihood
p(HolM;, 1) p(D|Ho,My,1)

1 \ |
| Posterior 11 || Posterior
p(Ho|D,M;, 1) p(Ho| D, My, 1)
Parameter H, Parameter H,

From Gregory, pg 8.
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Hubble's Law: 1929

Jsj{J_A:)fJI
:)J_I J Cl,
s, .

&
S n"'m!nsm: ] £.10% PARSECE

RIGITRR 1

Hubble parameter = expansion rate of the Universe
= slope of Hubble’s law



