
Sivia Chapter 3 gives a very 
clear discussion of least 
squares fitting within a 
Bayesian framework.

In particular, contrasts, for 
Gaussian residuals:

o known  
o unknown   Student’s t
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4. Parameter Estimation and Goodness of Fit – part two



The principle of maximum likelihood

Frequentist approach:

A parameter is a fixed (but unknown) constant

From actual data we can compute Likelihood,  
L  =  probability of obtaining the observed data, given the value of 

the parameter 
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The principle of maximum likelihood

Frequentist approach:

A parameter is a fixed (but unknown) constant

From actual data we can compute Likelihood,  
L  =  probability of obtaining the observed data, given the value of 

the parameter

Now define  likelihood function:  (infinite) family of curves 
generated by regarding  L as 
a function of    , for data fixed.

Principle of Maximum Likelihood

A good estimator of      maximises  L -

i.e. and 
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
L
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


L



The principle of maximum likelihood

Frequentist approach:

A parameter is a fixed (but unknown) constant

From actual data we can compute Likelihood,  
L  =  probability of obtaining the observed data, given the value of 

the parameter

Now define  likelihood function:  (infinite) family of curves 
generated by regarding  L as 
a function of    , for data fixed.

Principle of Maximum Likelihood

A good estimator of      maximises  L -

i.e. and 







0



L

0
2

2





L

We set the parameter equal to 
the value that makes the actual 
data sample we did observe –
out of all the possible random 
samples we could have observed 
– the most likely. 



Observed value

x

 = 1

A good estimator of      maximises  L -

i.e. and 

Likelihood function has same definition in Bayesian probability theory, but subtle difference in    
meaning and interpretation – no need to invoke idea of (infinite) ensemble of different samples.

Aside:

Principle of Maximum Likelihood



0



L

0
2

2





L

Advanced Data Analysis Course, 2019-20



Observed value

x



0



L

0
2

2





L

 = 2

Principle of Maximum Likelihood

A good estimator of      maximises  L -

i.e. and 
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Observed value

x



0



L

0
2

2





L

 = 3

Principle of Maximum Likelihood

A good estimator of      maximises  L -

i.e. and 
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Observed value

x



0



L

0
2

2





L

 = ML



Principle of Maximum Likelihood

A good estimator of      maximises  L -

i.e. and 
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Least squares as maximum likelihood estimators

To see the maximum likelihood method in action,  let’s consider again 
weighted least squares  for the simple model

Let’s assume the pdf is a Gaussian
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Least squares as maximum likelihood estimators

To see the maximum likelihood method in action,  let’s consider again 
weighted least squares  for the simple model

Let’s assume the pdf is a Gaussian

Likelihood 












n

i i

i

i

L
1

2

2

2

1
exp

2

1





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Question 7: How can we justify writing the likelihood as a product?

A   Because the residuals are all equal to each other

B   Because the residuals are all Gaussian

C   Because the residuals are all positive

D   Because the residuals are all independent














n

i i

i

i

L
1

2

2

2

1
exp

2

1



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Least squares as maximum likelihood estimators

To see the maximum likelihood method in action,  let’s consider again 
weighted least squares  for the simple model

Let’s assume the pdf is a Gaussian

Likelihood

(note:  L is a product of 1-D Gaussians because we are assuming the      are independent)














n

i i

i

i

L
1

2

2

2

1
exp

2

1






i
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Substitute

and the ML estimators of      and      satisfy                 and

 









 


n

i i

ii

i

bxay
L

1
2

2

2

1
exp

2

1



a

iii bxay 

b 0 aL 0 bL
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Substitute

and the ML estimators of      and      satisfy                 and

But maximising        is equivalent to maximising

Here

 



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ii
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1
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1
exp
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1



a

iii bxay 

b 0 aL 0 bL

L Lln
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2 1

2

1










 
 

 


This is exactly the same 
sum of squares we 
defined earlier
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Substitute

and the ML estimators of      and      satisfy                 and

But maximising        is equivalent to maximising

Here

So in this case maximising L is  exactly equivalent to minimising the sum of squares.

i.e. for Gaussian, independent errors,  ML and weighted LS estimators are identical.
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This is exactly the same 
sum of squares we 
defined earlier



Example application
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In the previous section we have discussed how to estimate parameters 
of an underlying pdf model from sample data.

We now consider the closely related question:

How good is our pdf model in the first place?
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Hypothesis testing



In the previous section we have discussed how to estimate parameters 
of an underlying pdf model from sample data.

We now consider the closely related question:

How good is our pdf model in the first place?

Simple example.

Null hypothesis: sampled data are drawn from a normal pdf, 
with mean            and variance      .

We want to test this null hypothesis:  are our data consistent with it?
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2model

Hypothesis testing



Assume (for the moment) that          is known.

Example

Measured data:

Null hypothesis:                            with

Assume:

Under NH,  sample mean

Observed sample mean 
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Under NH:

From our measured data:

If NH is true, how probable is it that we would obtain a value 
of           as large as this, or larger?

We call this probability the p-value
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We transform to a  standard normal variable

obsZ



Question 8: Suppose that  X  is sampled from a normal distribution 
with mean    5  and variance            .

Which of the following is a standard normal variable?

A   

B   

C   

D   

92 

9

5


X
Z

3

5


X
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
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Simple programs to perform this probability integral (and many others) can be 

found in numerical recipes, or built into e.g. MATLAB or MAPLE.

Java applets also available online at  http://statpages.org/pdfs.html  (here).

 obsProb ZZ 



The  smaller the p-value, the less credible is the null hypothesis.

233.1Z 233.1Z

p-value   2176.0Prob obs  ZZ
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Question 9: A one-tailed hypothesis test is carried out. Under the NH 
the test statistic has a uniform distribution            .

The observed value of the test statistic is 0.8.

The p-value is:

A   0.8

B   0.9

C   0.2

D   0.1

 1,0U

We can also carry out a  one-tailed hypothesis test, if appropriate, 
and for statistics with other sampling distributions.



What if we don’t assume that          is known?

We can estimate it from our observed data  (provided            )

We form the statistic                                          

where

However, now            no longer has a normal distribution. 

2

2n










 


̂
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xx
t

 






n

i
i xx

nn 1

2
obs

2

)1(

1
ˆ

Accounts for the fact that we don’t know       , but 

must use              when we estimate


obsx 
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In fact           has a pdf known as the  Student’s t distribution

where               is the  no. degrees of freedom and

For small        the
Student’s t distribution
has more extended tails
than     , but as           
the distribution tends to 
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Question 10: The more extended tails of the students’ t distribution 
mean that, under the null hypothesis

A   larger values of the test statistic are more likely

B   larger values of the test statistic are less likely

C   smaller values of the test statistic are more likely

D   smaller values of the test statistic are less likely
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In a simple hypothesis test,  we test our null hypothesis against a 
single alternative hypothesis.

We choose a  critical region: set of values of the test statistic for 
which we choose to reject the NH and accept the AH. 

This means we need to consider the distribution of our test 
statistic under the NH and the AH.

Hypothesis tests and decision theory



Example

Measured data leads to test statistic    , estimator of     :

NH: AH:

Suppose we choose critical region to be 

)1,2(~;2  Nx )1,2(~;2 Nx

x 

0x

x

)|( xp
under NH

)|( xp
under AH
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Critical Region



x

)|( xp
under NH

)|( xp
under AH
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Critical Region

Probability of 
a type II error

Probability of 
a type I error

There are two ways in which we can make an incorrect decision:

Type I error:  we reject the NH when it is TRUE

Type II error:  we accept the NH when it is  FALSE
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Consequences of incorrect 
decision will be worse 
when the sampling 
distributions under NH 
and AH have a greater 
overlap.

This may influence our 
choice of critical region.

We want to reduce the 
probability of type I and 
type II errors – but we 
can’t do both at the same 
time... 

under NH

)|( xp

)|( xp
under AH

Critical Region
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Lots of terminology:

Type I error:  also known as false alarm or false positive

Type II error:  also known as  false negative  or  “miss”

Sensitivity  =  probability  (rate) of obtaining  true positive (“hit”)

Specificity  =  probability (rate) of obtaining  true negative  

Specificity   =   1  – prob(type I error)

Sensitivity (or power)   =   1  – prob(type II error)
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In many fields (particularly medical applications) a 
Receiver Operating Chracteristic (ROC) 
plot can be used to assess 
the performance of a 
simple hypothesis test.

x-axis  = (1 – specificity)

y-axis  = sensitivity

Blue dots  =  results for
different hypothesis tests.

Red diagonal  =  what we’d 
expect from a random 
guess alone.
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We can generate a ROC curve for a given test by varying the critical 
region.  This can help to optimise our choice of CR – trading off type 
I and type II error, and
getting us as close as 
possible to a perfect
decision / classification. 
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We can generate a ROC curve for a given test by varying the critical 
region.  This can help to optimise our choice of CR – trading off type 
I and type II error, and
getting us as close as 
possible to a perfect
decision / classification. 

The area under the ROC
curve can be used as a 
measure to compare 
different tests and
choose the best.

ROC curves for predictors of DNA-binding sites.
SUNY Albany Center for Excellence in Cancer Genomics
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We can generate a ROC curve for a given test by varying the critical 
region.  This can help to optimise our choice of CR – trading off type 
I and type II error, and
getting us as close as 
possible to a perfect
decision / classification.

)|( xp
under AH

Critical Region

TN FN

FP

TP As we move the CR 
from left to right, we 
move along the ROC 
curve (dashed line) 

1 - specificity
0 1

1



More generally, we now illustrate the frequentist approach to the 
question of how good is the fit to our model, using the Chi-squared 
goodness of fit test.

We take an example from Gregory (Chapter 7)

(book focusses mainly on Bayesian probability, but
is very good on frequentist approach too)

Advanced Data Analysis Course, 2019-20

Hypothesis testing



Model:  radio emission from a galaxy is constant in time.

Assume residuals are iid, drawn from  N(0,)
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Goodness-of-fit Test:   the basic ideas

From Gregory, pg. 164
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The  2 pdf     2/12
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2 2
2 
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n = 15 data points, but  = 14 degrees of 
freedom, because      statistic involves the 
sample mean  and not the true mean.

We subtract one d.o.f. to account for this.

 2
14 p

Advanced Data Analysis Course, 2019-20



Question 11: Given that the mean and variance of a chi-squared 
distribution with  n degrees of freedom are  n and  2n
respectively,  in the Gregory example (with 14 degrees 
of freedom)  estimate the number of sigma by which the 
value                  exceeds the expected value.

A   between 0 and 1 sigma

B   between 1 and 2 sigma

C   between 2 and 3 sigma

D   between 3 and 4 sigma

76.262
obs 



n = 15 data points, but  = 14 degrees of 
freedom, because      statistic involves the 
sample mean  and not the true mean.

We subtract one d.o.f. to account for this.

 2
14 p

If  the null hypothesis is true,  how probable is it that we 
would measure as large, or larger, a value of     ?



n = 15 data points, but  = 14 degrees of 
freedom, because      statistic involves the 
sample mean  and not the true mean.

We subtract one d.o.f. to account for this.

 2
14 p

If  the null hypothesis is true,  how probable is it that we 
would measure as large, or larger, a value of     ?



If  the null hypothesis were true,  how probable is it that we 
would measure as large, or larger, a value of     ?

Recall that we refer to this important quantity as the  p-value

  02.0
2

exp11value-p

2
obs

2

0

1
0

2
obs 






   dx

x
xpP






Advanced Data Analysis Course, 2019-20



If  the null hypothesis were true,  how probable is it that we 
would measure as large, or larger, a value of     ?

Recall that we refer to this important quantity as the  p-value

What precisely does the p-value mean?

If we obtain a very small p-value  (e.g. a few percent?)   we can interpret this as 
providing little support for the null hypothesis, which we may then choose to reject.

(Ultimately this choice is subjective, but       may provide objective ammunition for doing so)
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



“If the galaxy flux density really is constant,  and we repeatedly obtained sets 

of 15 measurements under the same conditions,  then only 2% of the       

values derived from these sets would be expected to be greater than our one 

actual measured value of 26.76”

2

From Gregory, pg. 165

2



If  the null hypothesis were true,  how probable is it that we 
would measure as large, or larger, a value of     ?

Recall that we refer to this important quantity as the  p-value

What precisely does the p-value mean?
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“If the galaxy flux density really is constant,  and we repeatedly obtained sets 

of 15 measurements under the same conditions,  then only 2% of the       

values derived from these sets would be expected to be greater than our one 

actual measured value of 26.76”

2

From Gregory, pg. 165

“At this point you may be asking yourself why we should care 
about a probability involving results never actually obtained”

From Gregory, pg. 166
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Sergio Bertolucci:  "I think 
we may get indications that 
are not consistent with its 
non-existence"



Nevertheless,  p-value based frequentist hypothesis testing remains very 
common in the literature:

Type of problem test References

Line and curve NR: 15.1-15.6
goodness-of-fit

Difference of means Student’s  t NR: 14.2

Ratio of variances F test NR: 14.2

Sample CDF K-S test NR: 14.3, 14.6
Rank sum tests

Correlated variables? Sample correlation NR: 14.5, 14.6
coefficient

Discrete RVs test  / NR: 14.4

contingency table                  

test
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Nevertheless,  p-value based frequentist hypothesis testing remains very 
common in the literature:

Type of problem test References

Line and curve NR: 15.1-15.6
goodness-of-fit

Difference of means Student’s  t NR: 14.2

Ratio of variances F test NR: 14.2

Sample CDF K-S test NR: 14.3, 14.6
Rank sum tests

Correlated variables? Sample correlation NR: 14.5, 14.6
coefficient

Discrete RVs test  / NR: 14.4

contingency table                  

test
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See also supplementary notes on my.SUPA and Moodle



)|model(),model|data()data,|model( IpIpIp 

Likelihood Prior
Posterior

What we know now Influence of our 
observations

What we knew 
before

In the Bayesian approach, we can test our model, in the light of 
our data (e.g. rolling a die) and see how our knowledge of its 
parameters evolves, for any sample size, considering only the data 
that we did actually observe
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What do we choose as our prior?

Good question!

Source of much argument between
Bayesians and frequentists

Blood on the walls

Advanced Data Analysis Course, 2019-20



What do we choose as our prior?

Good question!

Source of much argument between
Bayesians and frequentists

If our data are good enough, it shouldn’t matter

)|model(),model|data()data,|model( IpIpIp 

Likelihood PriorPosterior

Dominates
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Blood on the walls



From Gregory, pg 8.
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Hubble’s Law: 1929

Hubble parameter = expansion rate of the Universe
= slope of Hubble’s law


