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Random sample of size M , drawn from underlying pdf

Sampling distribution, derived from underlying pdf

Define an estimator – function of sample used to 
estimate parameters of the pdf

Hypothesis test – to decide if estimator is ‘acceptable’,
for the given sample size

In the frequentist approach, parameter estimation requires the 
definition of a lot of mathematical machinery

Random sample of size M , drawn from underlying pdf

Sampling distribution, derived from underlying pdf

(depends on underlying pdf, and on M )How do we decide what makes 
an ‘acceptable’ estimator?

3. Parameter Estimation and Goodness of Fit – part one
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Example: measuring the wavelength of a spectral line
True wavelength  =             (fixed but unknown parameter)

Compute sampling distribution for       and        , modelling errors

1. Low dispersion 
spectrometer

Unbiased:
Repeat observation a
large number of times
 average estimate is

equal to  1ẑp

 2ẑp

 zp ˆ

  010111 |)( zzdzzpzzE  


1z


2z

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Example: measuring the wavelength of a spectral line
True wavelength  =             (fixed but unknown parameter)

Compute sampling distribution for       and        , modelling errors

1. Low dispersion 
spectrometer

Unbiased:
Repeat observation a
large number of times
 average estimate is

equal to

BUT is large

 1ẑp

 2ẑp

 zp ˆ
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Example: measuring the wavelength of a spectral line
True wavelength  =             (fixed but unknown parameter)

Compute sampling distribution for       and        , modelling errors

2. High dispersion 
spectrometer
but faulty physicist!
(e.g. wrong calibration)

Biased:

 1ẑp

 2ẑp

 zp ˆ

  020222 |)( zzdzzpzzE  


BUT is small 2var z


1z


2z

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Example: measuring the wavelength of a spectral line
True wavelength  =             (fixed but unknown parameter)

Compute sampling distribution for       and        , modelling errors

2. High dispersion 
spectrometer
but faulty physicist!
(e.g. wrong calibration)

Biased:

 1ẑp

 2ẑp

 zp ˆ

  020222 |)( zzdzzpzzE  


BUT is small 2var z


1z


2z


Better choice of estimator (if we can correct bias)
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The Sample Mean

=  random sample from  pdf            with mean
and variance

=   sample mean

Can show that unbiased estimator

But bias is defined formally in terms of an infinite 
set of randomly chosen samples, each of size M.

 Mxx ,,1  )(xp 





M

i
ix

M 1

1

 )(


E

2
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The Sample Mean

=  random sample from  pdf            with mean
and variance

=   sample mean

Can show that unbiased estimator

But bias is defined formally in terms of an infinite 
set of randomly chosen samples, each of size M.

What can we say with a finite number of 
samples, each of finite size?
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The Sample Mean

=  random sample from  pdf            with mean
and variance

=   sample mean

Can show that unbiased estimator

as sample size increases, sample 
and mean increasingly concentrated

near to true mean
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Given sampled data                                 we can  estimate the 
linear correlation between the variables as follows:

where
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The bivariate normal distribution
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Question 5: A correlation coefficient of                    is calculated for a 

sample of paired data                drawn from a bivariate normal distribution.

Without being given any further information,  which of the following 

statements can we say is correct? 

  yx,

A As the x values increase, the y values decrease

B The data are scattered about a line of slope 0.8

C The data are scattered about a line of unknown positive slope

D None of the above

8.0r



We can also rewrite the formula for       in the slightly simpler 
forms:

or
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Question 6: Estimate         for the sample                data shown in the 
graph below 

x
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r   yx,

A

B

C

D

0r

5.0r

1r

1r



The Central Limit Theorem

For any  pdf with finite variance      ,  as  M 
follows a normal pdf with mean      and variance  

2 8

  M/2
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The Central Limit Theorem

For any  pdf with finite variance      ,  as  M 
follows a normal pdf with mean      and variance  

2 8

  M/2

Explains importance of normal pdf in statistics.

But still based on asymptotic behaviour of an 
infinite ensemble of samples that we didn’t 
actually observe!
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The Central Limit Theorem

For any  pdf with finite variance      ,  as  M 
follows a normal pdf with mean      and variance  

2 8

  M/2

Explains importance of normal pdf in statistics.

But still based on asymptotic behaviour of an 
infinite ensemble of samples that we didn’t 
actually observe!

No ‘hard and fast’ rule for defining ‘good’ 
estimators. FPT invokes a number of principles –
e.g. least squares, maximum likelihood
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Method of Least Squares

o ‘workhorse’ method for fitting lines and curves to data 
in the physical sciences

o method often encountered (as a ‘black box’?) in 
elementary courses

o useful demonstration of underlying statistical 
principles

o simple illustration of fitting straight line to  (x,y) data
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Ordinary Linear Least Squares

Advanced Data Analysis Course, 2019-20



Ordinary Linear Least Squares
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Ordinary Linear Least Squares
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Ordinary Linear Least Squares
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  LSLS aaE ˆ

  LSLS bbE ˆ

We can show that                                            i.e. LS estimators are  unbiased. 
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  LSLS aaE ˆ

  LSLS bbE ˆ

We can show that                                            i.e. LS estimators are  unbiased. 

Choosing the          so that                    we can make         and         independent. LSâ
LSb̂ ix   0ix



Weighted Linear Least Squares

Define

Again we find Least Squares estimators of  a  and  b satisfying
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Solving, we find
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Extensions and Generalisations

o Errors on  both variables?

Need to modify  merit function  accordingly.

Renders equations  non-linear;  no simple analytic solution!

See e.g. Numerical Recipes 15.3
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Extensions and Generalisations

o General linear models?

e.g.

We have

Can formulate as a matrix equation and solve for parameters

See e.g. Numerical Recipes 15.4
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Model:
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where we assume        is drawn from some 
pdf with mean zero and variance  
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Weighted Model:
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Inverting                    can be hazardous,  particularly if
is a  sparse matrix  and/or  close to singular.

Some inversion methods will break down, since they may give a formal 
solution, but are highly unstable to round-off error in the data.

Remedy: solution via  Singular Value Decomposition.

From linear algebra theory:

Any  matrix can be decomposed as the product of an 

column-orthogonal matrix  U,  an                  diagonal matrix  W with 

positive or zero elements  (the  singular  values)  and the transpose

of an                 orthogonal matrix   V

 AAT A

MN  MN 
MM 

MM 
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From linear algebra theory:

Any  matrix can be decomposed as the product of an 

column-orthogonal matrix  U,  an                  diagonal matrix  W with 

positive or zero elements  (the  singular  values)  and the transpose

of an                 orthogonal matrix   V
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Diagonal matrix of singular values



Let the vectors                                    denote the columns of
(each one is a vector of length      )

Let the vectors                                       denote the columns of
(each one is a vector of length      )

It can be shown that the solution to the general linear model 
satisfies

LSâ
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LSâ

Very small values of         will amplify any round-off errors in

Solution:

For these very small singular values,  set               .

This suppresses their noisy contribution to the 
least-squares solution for the parameters        .

SVD acts as a noise filter – see also Section 7

0
1


LSâ

LSâ

Very small values of         will amplify any round-off errors in



Extensions and Generalisations

o Non-linear models?

Suppose

Then

Model parameters

i drawn from pdf with mean zero, variance 2
i

S
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Extensions and Generalisations

o Non-linear models?

Suppose

Then

But no simple analytic method to minimise sum of squares
( e.g. no analytic solutions to                    ) 

Model parameters

i drawn from pdf with mean zero, variance 2
i

0 iS 

S



Extensions and Generalisations

o Non-linear models?

Methods of solution often involve assumingTaylor expansion   
of        around minimum, and solving by gradient descent 

See e.g. 
Numerical Recipes 15.5
and Section 6 

2
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Extensions and Generalisations

o Correlated errors?

We need to define a covariance matrix  

See e.g. Gregory, Chapter 10

),cov( jiij xxC 

    model1model2
jj

i j
ijii yyCyy  

Advanced Data Analysis Course, 2019-20



Extensions and Generalisations

o More general non-linear approaches?
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Suppose we want to derive a 
function   y = f(x) with errors 
from observed data    .

We might want to use this 
function to interpolate or 
extrapolate from our data.

A Gaussian process (GP) defines a distribution over functions         :  

[Note: not-examinable, and not 
included in video and audio files]



Extensions and Generalisations
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GPs are parametrized by a mean function            and a 
kernel function

We can learn about these functions 
from the data themselves → strong 
connections to machine learning 

and neural networks

[Note: not-examinable, and not 
included in video and audio files]



Extensions and Generalisations
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Vast, and rapidly growing, literature on GPs across the 
physical sciences.

Beyond the scope of ADA Course but very interesting!

See e.g. Sivia Chapter 6
for some introductory 
ideas, or some nice
recent articles / lecture notes:

https://arxiv.org/pdf/1505.02965v2.pdf

http://www.cs.toronto.edu/~hinton/csc2515/notes/gp_slides_fall08.pdf

[Note: not-examinable, and not 
included in video and audio files]



Extensions and Generalisations
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Some really excellent books available (all free, downloadable!)

http://www.gaussianprocess.org/gpml/ http://web4.cs.ucl.ac.uk/staff/D.Barber/textbook/090310.pdfhttp://www.inference.phy.cam.ac.uk/itprnn/book.pdf

[Note: not-examinable, and not 
included in video and audio files]


