3. Parameter Estimation and Goodness of Fit - part one

In the frequentist approach, parameter estimation requires the
definition of a lot of mathematical machinery

° Random sample of size M, drawn from underlying pdf
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3. Parameter Estimation and Goodness of Fit - part one

In the frequentist approach, parameter estimation requires the

definition

of a lot of mathematical machinery

° Random sample of size M, drawn from underlying pdf

e,

AL_e

Le

How do .we.decide what makes

an ‘acceptable’ estimator?

estimate parameters of the pdf

° Hypothesis test - to decide if estimator is ‘acceptable’,
for the given sample size
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o of Glasgow

Advanced Data Analysis Course, 2019-20




Example: measuring the wavelength of a spectral line

True wavelength = Z5  (fixed but unknown parameter)

Compute sampling distribution for z, and 2z, , modelling errors

1. Low dispersion
spectrometer

g
r giCN
N

Unbiased: \

Repeat observation a

large number of times

=> average estimate is
equal to z, p(2)

By =JasGlze = 5 | o>—f |
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Example: measuring the wavelength of a spectral line

True wavelength = Z5  (fixed but unknown parameter)

Compute sampling distribution for z, and 2z, , modelling errors

1. Low dispersion p(2)
spectrometer A () |
Unbiased: \

Repeat observation a

large number of times

=> average estimate is
equal to z, p(2)

By =JasGlze = 5 | o>—f |

BUT Var[El] is large
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Example: measuring the wavelength of a spectral line

True wavelength =z, (fixed but unknown parameter)

Compute sampling distribution for z, and 2z, , modelling errors

2. High dispersion p(2)
spectrometer A p(z) |

but faulty physicist! \

(e.g. wrong calibration)

Biased:
E(z) =2 pE | 2)d2, # z

BUT varl|z,| is small M
> 7
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Example: measuring the wavelength of a spectral line

True wavelength =z, (fixed but unknown parameter)

Compute sampling distribution for z, and 2z, , modelling errors

2. High dispersion p(2)
spectrometer A p(z) |

but faulty physicist! \

(e.g. wrong calibration)

Biased:
E(z) =2 pE | 2)d2, # z

BUT varl|z,| is small M
> 7

Better choice of estimator (if we can correct bias)
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The Sample Mean

{x,...,x,,} = random sample from pdf p(x) with mean u
and variance 2

_ 1
U = MZX,- = sample mean

Can show that ‘ FE ( I[[) = U ‘ unbiased estimator

But bias is defined formally in terms of an infinite
set of randomly chosen samples, each of size M.
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The Sample Mean

{x,,...,x,,} = random sample from pdf p(x) with mean u
and variance 2

Ho= —in = sample mean

Can show that ‘ FE ( ,[l) = U ‘ unbiased estimator

But bias is defined formally in terms of an infinite
set of randomly chosen samples, each of size M.

What can we say with a finite number of

i .. samples, each of finite size?
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The Sample Mean

{x,,...,x,,} = random sample from pdf p(x) with mean u
and variance 2

u = — X, = [
H Y; 121: sample mean
Can show that ‘ FE ( ,[l) = U ‘ unbiased estimator
R o’ as sample size increases, sample
and |varfu] = — mean increasingly concentrated
M near to true mean
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Linear correlation

Given sampled data {(xl.,yl.);i = 1,...,n} we can estimate the
linear correlation between the variables as follows:

Pearson’s product moment ( \
correlation coefficient
v — —
\*r _ 1 Z X —x | y,—y
n—130 s, S,
_ 1Y 1 & 2
where  x=—) x, s.= |—> (x,—x)
n

& _14

Sample mean Sample standard deviation
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Linear correlation

Given sampled data {(xl.,yl.);z’ = 1,...,n} we can estimate the
linear correlation between the variables as follows:

Pearson’s product moment ( \
correlation coefficient
v — —
\*r _ Z X, =X | y,—y
n—130 s, S,
_ 1Y 1 & 2
where  x=—) x, s.= |—> (x,—x)
n

& _14

Sample mean Sample standard deviation

If p(x,y) is bivariate normal then r is an estimator of p
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The bivariate normal distribution

py + z—l p(x — px) is often referred to as the conditional expecta-

tion (value) of y given x, and the equation

[ Yy =ty + g=p(T — px) J

is called the regression line of y on =.
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Question 5: A correlation coefficientof »=0.8 s calculated for a
sample of paired data {(x, )} drawn from a bivariate normal distribution.
Without being given any further information, which of the following
statements can we say is correct?

A As the x values increase, the y values decrease

B The data are scattered about a line of slope 0.8

C The data are scattered about a line of unknown positive slope

D None of the above



Linear correlation

We can also rewrite the formula for 7 in the slightly simpler

forms:
4 : )
> (x5 =%y~ )
P i=I
(S 057
\ i=1 i=1 J
4 )
or nzxiyi _inzyi
r =
\/nzxiz _(in)z \/nzyz'z _( yi)2
g J
' Umver51ty
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Question 6:  Estimate /° for the sample {(x,y)} data shown in the

graph below
V1t
A r=>0
o B r=0.5
C r=1

D r=-—1



The Central Limit Theorem

For any pdf with finite variance g%, as M — o
u follows a normal pdf with mean & and variance o’ I M

: =10 i . n=20
g E

..... lmnm\HH\H\H\\\H\||||||m............_..___
1 15

.E__ N4 | g =100
E: ‘I ] B
' Umver51ty
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The Central Limit Theorem

For any pdf with finite variance g%, as M — o
u follows a normal pdf with mean & and variance o’ I M

Explains importance of normal pdf in statistics.

But still based on asymptotic behaviour of an
infinite ensemble of samples that we didn't
actually observe!

BL 4 4 Bl nm10G

Y Wl
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The Central Limit Theorem

For any pdf with finite variance g%, as M — o
u follows a normal pdf with mean & and variance o’ I M

Explains importance of normal pdf in statistics.

But still based on asymptotic behaviour of an
infinite ensemble of samples that we didn't
actually observe!

No 'hard and fast’ rule for defining ‘good’
estimators. FPT invokes a number of principles -
e.qg. least squares, maximum likelihood

T ... Al

Un1vers1ty
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Method of Least Squares

o ‘'workhorse’ method for fitting lines and curves to data
in the physical sciences

o method often encountered (as a 'black box?) in
elementary courses

o useful demonstration of underlying statistical
principles

o simple illustration of fitting straight line to (x,y) data
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Ordinary Linear Least Squares

Suppose that the scatter in a plot of {x;, y;} is assumed to arise from
errors in only one of the two variables. This case is called Ordinary
Least Squares. We then call = the independent variable, and
y the dependent variable. Thus we suppose that we can write,

for each data point:-
¥y = a + bxz;+ ¢

where €; is known as the residual of the i?” data point — i.e. the
difference between the observed value of y;, and the value predicted

by the best-fit straight line, characterised by parameters a and b.
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Ordinary Linear Least Squares

We assume that the {¢;} are an independently and identically dis-

tributed random sample from some underlying pdf with mean zero

2

and variance o< — i.e. the residuals are equally likely to be positive

or negative and all have equal variance.

The least squares estimators of ¢ and b minimise

n

g - la,b) = Z lyi — (a + bﬂf??;)]Q

=l
and apg and bpg satisfy

05 05 ;
— =0 when a=arg — =0 when b=bg

da Ob
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Ordinary Linear Least Squares

We assume that the {¢;} are an independently and identically dis-
tributed random sample from some underlying pdf with mean zero

2

and variance o< — i.e. the residuals are equally likely to be positive

n
S=> ¢
il
The least squares estimators of a and b minimise/

or negative and all have equal variance.

n

g - la,b) = Z lyi — (a + bﬂf??;)]Q

=l
and apg and bpg satisfy

05 05 ;
— =0 when a=arg — =0 when b=bg
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Solving these equations, arg and bpg are given by

4 )
. DY T — T 2 &
aLs =— . 2

nyr; — ()

g J

4 )

b = Ny Yiti — D Yi DT
w52l = (D)

where n denotes the sample size and all sums are for ¢ = 1, ..., n.

A University ° )
Qf GlangW Advanced Data Analysis Course, 2019-20 SUFA




E (d LS ) = dg , , ]
We can show that 1.e. LS estimators are unbiased.

E(bALS ): bLS

Also /

var(ars) = | ;

var(f)L__c_;) = . 5

N T

4 )
—0? ¥ z;

nea? — (Do)

\§ J

A University * )
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We can show that

E(dLS ): ds

1.e. LS estimators are unbiased.

E (bLS ): bLS
Also / (aLs) -
var(ars =
LS ny 2?2 — (3 ;T--a‘)z
,\ a?n
var(brs =
(brs) ny el ~ (L)
and
. )
_0_2 Zmi

cov(ars, brs)

"y et — (D)

Choosing the {x,} so that Z x; =0 wecanmake d,, and p

LS

independent.




Weighted Linear Least Squares

" residual, {€;}, is assumed to be drawn from some

Suppose the i’
underlying pdf with mean zero and variance o2, where the variance

is allowed to be different for each residual.

n. yi — (a bf--a'. 2
Define g — Xz(arb):Z[y ({1—|— 1 )]

Again we find Least Squares estimators of a and b satisfying

dS dS
%2 9 R
da b
University
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Solving, we find

4 _ )

awLs =

_ M,

4 )

) ED LS P 5L
VLS = 5
1 5_17.2 T
L4 - (D)
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Al
* PR

, X
var(awrs) = — 5
1 T T,
s&vh - (Tu)
N\ J
4 ) )
) 253
var(bwrs) = “

.
4 X, )

. ~ _ j
COV(aWLS Dy ) =

\ o O,
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Al
e A

var(awrs) =

_ | 7
r ™

var(bwrs) =

i) - 2
COV\Ayy1s5Owrs =

y;y: _(Z;]
- /

&
4 X )

\_

In the case where o7 is constant, for all ¢, these formulae reduce to

those for the unweighted case.



Extensions and Generalisations

o Errorson both variables?

Need to modify merit function accordingly.

4 . )
2 oo (yi —a—bxy)?
X {{11'&')—; J§i+bggﬁa
. J

Renders equations non-linear; no simple analytic solution!

See e.g. Numerical Recipes 15.3
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Extensions and Generalisations

o General |

e.g.

We have

inear models?

& M—1
[ 'y(.’l.’.‘-) — Q1 — QT +— A3 T T Ap T }

/ -

N

1

T

\_

i =S o Xl
2z i~ 2 k=1 A E\T;

~

/

Can formulate as a matrix equation and solve for parameters

See e.g. Numerical Recipes 15.4

A Universit
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Define @@ =

A Universit
of Glasgovz

aM\

Vector of model
parameters

X () e X ()

Xy () Xy ()

V1

Y

AN

\

Vector of
observations

Matrix of model

basis functions
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Model: Vector of model
parameters

/
y = Xal+8

Vector of
\ errors

Vector of , ,
observations Design mqtrlx of .
model basis functions
&
= - where we assume g, is drawn from some
pdf with mean zero and variance ¢
E
TN
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Weighting by errors

a i / ]
I Y1/ 0,
Define aq=| : b =
a \ / \
 “m  Vn/On |
Vector of model Vector of
parameters weighted

observations

C Xi(x) X () |

XyO) | Ko | N

Oy Oy Design matrix

University
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Weigh’red Model: Vector of model

parameters
/
R
Vector of
\ weighted
Vect f errors
RN Weighted design
weighted . .
observations matrix of model basis
functions
€
o
e = . where we assume g, is drawn from some
. . 2
En pdf with mean zero and variance o,
Oy
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We solve for the parameter vector ;¢ that minimises

S=e -e= Zel.z
i=1
4 )
| . A T (Y! 4T
This has solution aLS — (A A) A . b
\_ \\ J
M xM matrix

and  cov(d,g) = (ATA)_1

A University L )
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Inverting (ATA) can be hazardous, particularly if A4
is a sparse matrix and/or close to singular.

Some inversion methods will break down, since they may give a formal
solution, but are highly unstable to round-off error in the data.

Remedy: solution via Singular Value Decomposition.

From linear algebra theory:

Any N x M matrix can be decomposed as the product of an N x M
column-orthogonal matrix U, an M x M diagonal matrix W with
positive or zero elements (the singular values) and the transpose

ofan M x M orthogonal matrix V

A University L )
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From linear algebra theory:

Any N x M matrix can be decomposed as the product of an N x M
column-orthogonal matrix U, an Af x A/ diagonal matrix W with
positive or zero elements (the singular values) and the transpose

of an M/ x M orthogonal matrix V

M parameters

y/ \ / \ Diagonal matrix of singular values
: /
S w1
g o
e
-
\ / A\ /




i

Let the vectors Ug;) @ = 1,...,M denote the columns of U

(each one is a vector of length NV )

Let the vectors V(Z-); i = 1,...,M denote the columns of V

(each one is a vector of length Jf)

It can be shown that the solution to the general linear model

satisfies

-

g=1

\_

M -
A : -["1 ‘b
a,. :Z( (Lz

v

()

~

J

University
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Very small values of W; will amplify any round-off errors in b

Solution:

For these very small singular values, set b 0.
y

This suppresses their noisy contribution to ’ahe
least-squares solution for the parameters a, .

[ SVD acts as a noise filter — see also Section 7 ]




Extensions and Generalisations

o Non-linear models? godel = ymS e .., i)

/

Model parameters

obs ~ model 4

Suppose Y = Y; €i

&; drawn from pdf with mean zero, variance o’

Then [
S= X

i=1

|

0bs

Yi

model

— Y

T;

3

J
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Extensions and Generalisations

o Non-linear models? etel =
Suppose yobe yodel g o

&; drawn from pdf with mean zero, variance o’

Model parameters

Then [ -

~ model

— Y

2 = Z[ya

i=1

T;

3

J

But no simple analytic method to minimise sum of squares
( e.g. no analytic solutions to 65/06,

=0 )



Extensions and Generalisations

o Non-linear models?

Methods of solution often involve assumingTaylor expansion
of ¥° around minimum, and solving by gradient descent

See e.q.
Numerical Recipes 15.5

and Section 6

University
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Extensions and Generalisations

o Correlated errors?

We need to define a covariance matrix C, =cov(x;,x;)

- ~
2= ZZ(yi _y?OdGIXCy}l(yj _y;'mdel)
P

- J

See e.g. Gregory, Chapter 10
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Extensions and Generalisations [Note: not-examinable, and not

included in video and audio files]

o More general non-linear approaches?

Suppose we want to derive a
function y =f{x) with errors
from observed data D.

We might want to use this
function to interpolate or
extrapolate from our data.

A Gaussian process (GP) defines a distribution over functions p(f) :

) p(f)p(Dl|f)
) lr) —

A University . )
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Extensions and Generalisations [Note: not-examinable, and not

included in video and audio files]

GPs are parametrized by a mean function /¢(') and a
kernel function /A (. 1)

B p(x) o K(z,z) Kl(z,z")
o= /l(-l',) o [\w(.r'/. ) ]&f(.!',. ")

/

We can learn about these functions
from the data themselves — strong
connections to machine learning
and neural networks

University
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Extensions and Generalisations [Note: not-examinable, and not

included in video and audio files]

Vast, and rapidly growing, literature on GPs across the
physical sciences.

Beyond the scope of ADA Course but very interesting!

See e.g. Sivia Chapter 6

for some introductory

ideas, or some nice

recent articles / lecture notes:

https://arxiv.org/pdf/1505.02965v2.pdf

http://www.cs.toronto.edu/~hinton/csc2515/notes/gp_slides_fall08.pdf
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[Note: not-examinable, and not
included in video and audio files]

Extensions and Generalisations

Some really excellent books available (all free, downloadable!)

Db & oy tracking e Injefence
uncertainty ;‘aéqc data

Information Theory, Inference,

and I.ﬂmlng Algnﬂthm; BAXQESS lAN

REASONING

mpling

and algorlthms

etworks " prediction

MACHINE

tics MATLAB

LEARNING

Carl Edward Rasmussen and Christopher K. 1. Williams Da\”d Ba rber

http://www.inference.phy.cam.ac.uk/itprnn/book.pdf http JIwWww. gaussianprocess.org/ gpml/ http://web4.cs.ucl.ac.uk/staff/D.Barber/textbook/090310.pdf
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