SECTION 4: Point and Interval Estimation

In the previous sections we have discussed how to derive a **point estimator** of a parameter – i.e. a single number, $\hat{\theta}$, which we associate with the *true* (but unknown) value of some parameter, θ . We derived $\hat{\theta}$ by applying e.g. the principle of maximum likelihood or the principle of least squares. In order to assess the likely *range* of true values of of θ , we can derive the dispersion, $\sigma_{\hat{\theta}}$, of the estimator $\hat{\theta}$ (equal to the square root of the variance of the estimator) – or more generally the *covariance* in the multivariate case, where we are simultaneously estimating several parameters and our estimates may not be independent. Thus, we can adopt

$$\hat{ heta}$$
 \pm $\sigma_{\hat{ heta}}$

as a suitable measure of the range of likely true values of θ .

We can approach the problem in a complementary fashion, by deriving an **interval esti**mate for θ .

4.1: Defining Confidence Intervals

We illustrate the construction of confidence intervals for a specific example. Consider an iid random sample of size n from the normal distribution $N(\mu, \sigma^2)$, and suppose that the dispersion, σ is known a priori. If we define the variable

$$z = \frac{\sqrt{n} \left(\hat{\mu} - \mu\right)}{\sigma}$$

then it follows that $z \sim N(0,1)$. We therefore know that

$$Prob [-1.96 \le z \le 1.96] = 0.95$$

After some algebra one may easily show that this probability statement is precisely equivalent to

$$\operatorname{Prob}\left[\hat{\mu} - 1.96 \frac{\sigma}{\sqrt{n}} \le \mu \le \hat{\mu} + 1.96 \frac{\sigma}{\sqrt{n}}\right] = 0.95$$

We call the interval

$$\left[\hat{\mu} - 1.96 \frac{\sigma}{\sqrt{n}} , \ \hat{\mu} + 1.96 \frac{\sigma}{\sqrt{n}}\right]$$

a 95% confidence interval for the true mean, μ . We refer to the two ends of the confidence interval as 95% confidence limits for μ .

Confidence intervals involving the standard normal pdf, N(0, 1), are particularly common. Thus

$$\hat{\mu} \pm 2.58 \frac{\sigma}{\sqrt{n}}$$
 $\hat{\mu} \pm 2.64 \frac{\sigma}{\sqrt{n}}$ $\hat{\mu} \pm \frac{\sigma}{\sqrt{n}}$

are 99%, 90% and 68% confidence intervals for μ respectively.

4.2: Interpreting Confidence Intervals

We must be careful in interpreting the meaning of probability statements concerning confidence intervals.

In the above example of sampling from $N(\mu, \sigma^2)$, for a *given* sample of actual values from the pdf $\hat{\mu}$ is a unique number, so the probability that the true mean value, μ , lies within the chosen confidence interval is either zero or unity.

The meaning of a confidence interval requires one to think in terms of repeating the process of random sampling from the pdf a large number of times – each time obtaining a different value of of the sample mean, and hence different confidence limits for μ , for the same fixed (but unknown) true mean, μ . The probability statement

$$\operatorname{Prob}\left[\hat{\mu} - 1.96 \frac{\sigma}{\sqrt{n}} \le \mu \le \hat{\mu} + 1.96 \frac{\sigma}{\sqrt{n}}\right] = 0.95$$

means that we would expect μ to lie within the confidence limits in 95% of the large number of different samples. We are, thus, 95% confident that μ lies within in the interval that we obtain with our actual, observed, value of $\hat{\mu}$.

4.3: Shortest Confidence Intervals

Finally, note that confidence intervals of a given percentage level are *not* unique. One can prove, however, that the **shortest** confidence interval for the mean of a normal pdf corresponds to the case where the sample mean is taken to lie precisely in the centre of the confidence interval.

Thus, the shortest $100(1-\alpha)\%$ confidence interval for μ in the above example, is

$$\hat{\mu}$$
 \pm $z_{\alpha} \frac{\sigma}{\sqrt{n}}$

where z_{α} satisfies

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z_{\alpha}} e^{-t^2/2} dt = \frac{\alpha}{2}$$