3.7 : The Student’s t Test

In Section 3.1 we introduced the notion of a hypothesis test, and gave some important
definitions, by considering a hypothesis test to determine the mean, u, of a normal pdf with
known variance, 02 = 1, based on a single Jsampled value, z. Effectively we constructed

the test statistic

where 4 = —2 under H; and u = 2 under Hs and z was a RV drawn from a standard normal
pdf, N(0,1), with mean zero and unit variance. (N.B. recall that a statistic cannot depend
on any unknown parameters, but here o is assumed known and p is specified exactly under

either H; and Ha, so it makes sense to regard z as a statistic).

The more realistic situation, on the other hand, is where o is not known a priori. In this
case we can infer nothing about y from a single observation since we have no idea of how
‘broad’ the pdfis. If n > 2, however, then we can construct a hypothesis test for the value
of the true mean, u, by first determining the sample mean and variance of our random

sample.

Suppose we want to test the hypothesis that the true mean takes some specific value, uy,

i.e. we take as our null and alternative hypotheses:-

NH : p=mp  AH: p # po

We construct the following test statistic

fi — po
%p

where f is the sample mean, ie. g = %Exi, and oy is the standard error on the

mean (see handout), i.e.
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t has a pdf known as the student’s ¢ distribution. It is similar in shape to a standard
normal pdf, N(0,1), but with wider ‘wings’ (i.e. positive kurtosis) and its shape also
depends on n — see the figure in the statistical tables. The pdf of ¢t has v = n — 1 degrees

of freedom. Thus, for a sample of size n, to carry out our hypothesis test we determine
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the value of the student’s ¢ statistic under the NH that y = pg and compare this value

with the critical values of the pdf, for the appropriate number of degrees of freedom.

Note that the hypothesis test given above, where our AH is u # uyg, calls for a two-tailed
test, since a value of ¢ significantly larger or smaller than zero would argue in favour of
the AH. If, on the other hand, we want only to test if 4 > po (1 < po) then we would take

as our critical region the upper (lower) tail of the student’s ¢ distribution.

3.8 : Difference of Means

Let {z1,...,2Zn, } and {y1, ..., Yn,} be iid random samples from N(ui,o?) and N(uz,o2)
respectively, where 0? = 03 = 02. Suppose we wish to test the NH that u; — u2 = o, i-e.
the means of the pdfs from which the two samples are drawn differ by a fixed amount.
Under the NH then the difference of the sample means, (i1 — iz, is a normal pdf with mean
o and variance o2 (i + L). If 02 were known then the appropriate test statistic to test

ni ng
the NH would be
(k1 — fi2) — o

1 1
T\ T
which under the NH would have pdf N(0,1). If, as in Section 3.7, o2 is not known a

priori, then we use the test statistic
(i = 4i2) — o

~ /1 1
g n_1+n_2

b = [m (2@ Y- u*zf)]

=1

t =

where

2

(i.e. &2 is the weighted mean of the unbiased estimators, from the first and second samples,

of the variance on a single observation — see lectures)

Under the NH ¢ has the student’s ¢ distribution with v = ni + no — 2 degrees of freedom.
Clearly to test if u1 = ps we simply set pg = 0.

3.9 : F Test for the Ratio of Variances

Let {1, ...,Zn, } and {y1, ..., Yn, } be iid random samples from N (u1,07) and N(usg,03) re-
spectively. Unlike Section 3.8, we do not now assume that o = 2. In fact we specifically

want a simple hypothesis test of:-
NH : o2 = o2 AH : o2 # o2
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We use the test statistic, f, defined by:-

;.8
= &%
where 2 . o 2 2 . s 2
5 = R—y d Y - i — L
61 = 3 ;(x m)’ and 63 = g izzl(yz fiz)

Under the NH, that the two distributions have equal variance, this test statistic has a pdf
known as the F' distribution, with v4 = n; — 1 and v9 = na — 1 degrees of freedom. (We
usually write this as F, ,,). The pdf of F' has a complicated analytic form which need
not concern us here. The essential idea of how it is used in practice is that, if the NH is
true, then values of the f statistic significantly larger or smaller than unity are unlikely.
Hence, by computing the f statistic and comparing the observed value with tabulated
critical values, we can make a decision whether to accept or reject the NH that the pdfs

from which the two samples were drawn have equal variance.

Typical astrophysical problems to which the F' test can be applied include comparing the
luminosity function of stars of different spectral types, or galaxies of different morpho-
logical type. One can also test, for example, whether the spatial distribution of galaxies
of different morphological types is significantly different — e.g. do spirals and ellipticals
have the same spatial distribution in galaxy clusters, or are ellipticals found preferentially
in the cores of clusters. (Primordial spirals which originally formed in cluster cores are
thought to have been torn apart and ‘cannibalised’ by ellipticals because of the strong
tidal forces in the cluster core, so that they are not found in the cores of clusters today).

See example sheet 4 for some similar applications of the F' test.

3.10 : Hypothesis Tests on the Sample Correlation Coefficient

The final type of hypothesis test which we consider is associated with testing whether two
variables are statistically independent, which we can do by considering the value of the
sample correlation coefficient. In Section 1.9 we defined the covariance of two RVs,
X and Y, as

cov(X,Y) = E[X — p)(Y — py)]

and the correlation coefficient, p, as

cov(X,Y)

0x0y
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While we defined p in Section 1.9 in the context of its role as a parameter of the bivariate
normal distribution, one can define the covariance and correlation coefficient of any two
RVs (i.e. with any bivariate distribution) using the above formulae. As in the case of a

bivariate normal pdf, it follows that

X and Y are independent <+ cov(X,Y)=0 <+ p=0

We estimate p by the sample correlation coefficient, p, defined by:-

. S (@i — i) (g = i)
VIS (@i — 12)? [y — )]

where, as usual, fi, and fi; denote the sample means of X and Y respectively, and all

sums are over 1,...,n, for sample size, n. p is also often denoted by r, and is referred to

as ‘Pearson’s correlation coefficient’.

Of course, if X and Y do have a bivariate normal pdf, then p corresponds precisely to
the parameter defined in Section 1.9. To test hypotheses about p we need to know the
sampling distribution of 5. We consider two special cases, both of which are when X and

Y have a bivariate normal pdf.

3.10.1 : p=0 (i.e. X and Y are independent)

If p = 0, then the statistic
ovn—2

1— 2

has a student’s ¢ distribution, with v = n — 2 degrees of freedom. Hence, we can use t to

t =

test the hypothesis that X and Y are independent. (See example sheets and lectures).

3.10.2: p=py #0

In this case, then for large samples, the statistic

1 1+p
has an approximately normal pdf with mean, u, and variance o2 given by
1 1+ P0> 2 1
= —l -
Mz 2 Oge<1_p0 g, n—3
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