3.5 : Goodness of Fit for Discrete Distributions

We can illustrate some of the important ideas of hypothesis testing by considering how
we test the goodness of fit of data to discrete distributions. We do this using the x?2

statistic.

Suppose we carry out n observations and obtain as our results &k different discrete outcomes,
Eq, ..., Ex which occur with frequencies o1, ..., 0 (‘0’ for ‘observed’). An example of such
observations might be the number of meteors observed on n different nights, or the number

of photons counted in n different pixels of a CCD.

Consider the null hypothesis that the observed outcomes are a sample from some model
discrete distribution (e.g. a Poisson distribution). Suppose, under this null hypothesis,
that the k outcomes, Ej, ..., Ey, are expected to occur with frequencies ey, ..., e (‘e’ for
‘expected’). We can test our null hypothesis by comparing the observed and expected
frequencies and determining if they differ significantly. We construct the following x? test

statistic.
X = i ey ;.ei)2
i=1 g
where Y 0; =Y e; = n. Under the null hypothesis this test statistic has approximately a
x? pdf with v = k — 1 —m degrees of freedom. Here m denotes the number of parameters
(possibly zero) of the model discrete distribution which one needs to estimate before one
can compute the expected frequencies, and v is reduced by one further degree of freedom

because of the constraint that Y e; = n. In other words, once we have computed the first

k — 1 expected frequencies, the k** value is uniquely determined by the sample size n.

This x? goodness of fit test need not be restricted only to discrete random variables, since
we can effectively produce discrete data from a sample drawn from a continuous pdf by
binning the data. Indeed, as we remarked in Section 2.2.7 the Central Limit Theorem will
ensure that such binned data are approximately normally distributed, which means that
the sum of their squares will be approximately distributed as a x2 random variable. The

approximation to a x2 pdf is very good provided e; > 10, and is reasonable for 5 < e; < 10.

3.5.1 : Example 1

A list of 1000 ‘random’ digits — integers from 0 to 9 — are generated by a computer. Can

this list of digits be regarded as uniformly distributed?

Suppose the integers appear in the list with the following frequencies:-
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r 0 1 2 3 4 5 6 7 8 9
oo 106 88 97 101 92 103 96 112 114 91

Let our NH be that the digits are drawn from a uniform distribution. This means that

each digit is expected to occur with equal frequency — i.e. e, = 100, for all . Thus:-

2

. e.)2
vo= yleimelr e.ez) = 7.0

k
1=

1
Suppose we adopt a 5% level of significance. The number of degrees of freedom, v = 9;

hence the critical value of x2 = 16.9 for a one-tailed test. Thus, at the 5% significance

level we accept the NH that the digits are uniformly distributed.

3.5.2 : Example 2

A coin is tossed 200 times, and 115 heads and 85 tails are recorded. Test the null hypothesis

that the coin is fair, using a 5% level of significance.

Under the NH of a fair coin we have e; = es = 100. Thus:-

k 2

2 oize)”  _ 44
€;

X =

=1

Here, the number of degrees of freedom, v = 1, for which we have a critical value of

x? = 3.84. Hence we reject the NH at the 5% significance level —i.e. the coin is not fair.

3.5.3 : Example 3

The table below shows the number of nights during a 50 night observing run when r hours
of observing time were ‘clouded out’. Fit a Poisson distribution to these data for the pdf

of r and determine if the fit is acceptable at the 5% significance level.

T 0 1 2 3 4 >4
No. of nights 21 18 7 3 1 0

Of course one might ask whether a Poisson distribution is a sensible model for the pdf
of r since a Poisson RV is defined for any non-negative integer, whereas r is clearly at most
12 hours. However, as we saw in Section 1.3.2, the shape of the Poisson pdf is sensitive
to the value of the mean, u, and in particular for small values of u the value of the pdf

will be negligible for all but the first few integers, and so we neglect all larger integers as
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possible outcomes. Hence, in fitting a Poisson model we also need to estimate the value

of u. We take as our estimator of y the sample mean, i.e.

21 x 0+ 18 x1 4+ +7%x2+3x3+1x4
_ 5 = 0.90

Substituting this value into the Poisson pdf we can compute the expected outcomes, e, =

50 p(r; it), where

p(0;0.90) = 0.4066 p(1;0.90) = 0.3659 p(2;0.90) = 0.1647
p(3;0.90) = 0.0494 p(4;0.90) = 0.0111 p(5;0.90) = 3.3 x 1075

If we consider only five outcomes, i.e. r < 4, since the value of the pdf is negligible for
r > 4, then the number of degrees of freedom, v = 3 (remember that we had to estimate
the mean, 11). The value of the test statistic is x> = 0.68, which is smaller than the critical
value. Hence we accept the NH at the 5% level — i.e. the data are well fitted by a Poisson

distribution.

3.5.4 : The Binomial Distribution

In Section 3.5.3 we could have fitted the data with another discrete model — the binomial
distribution. Suppose there are a total of n hours in each observing night (e.g. n = 8 or
n = 12). Let 0 denote the probability of any single hour being ‘clouded out’. The binomial
distribution gives the probability of getting r out of n hours clouded out (r =0, 1,...,n),
viz:-

n!

p(r;0) = or(1- 6y

ri(n—r)!
p(r;0) is the binomial pdf. It is quite straightforward to show (see handout) that the

binomial distribution has mean, E(r) = nf and variance, var(r) = nf(1 — 0).

As in Section 3.5.3, we have to estimate a single parameter — in this case 6 (assuming that
the number of observing hours, n, is known) — in fitting the data to a binomial model.
We do this by equating the sample mean, i, with the expected value of 7, i.e. nf. We can
then construct a x? statistic exactly as in 3.5.3. (remembering to reduce the number of

degrees of freedom by one because we need to estimate 6).

3.6 : The Kolmogorov-Smirnov Test

Suppose we want to test the hypothesis that a sample of data is drawn from the underlying
population with some given pdf. We could do this by binning the data and comparing with
the model pdf using the x? test statistic. This approach might be suitable, for example,
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for comparing the number counts of photons in the pixels (i.e. the bins) of a CCD array
with a bivariate normal model for the ‘point spread function’ of the telescope optics, where

the centre of the bivariate normal defines the position of a star.

For small samples this does not work well, however, as we cannot bin the data finely
enough to usefully constrain the underlying pdf — particularly if our pdf is multivariate,
as in the case of the bivariate normal example above, and requires several parameters to

define it.

A more useful approach in this situation is to compare the sample cumulative distribu-
tion function with a theoretical model. We can do this using the Kolmogorov-Smirnov

(KS) test statistic.

Let {z1, ..., zn} be an iid random sample from the unknown population. Suppose the {z;}

have been arranged in ascending order. The sample cdf, S, (z), of X is defined as:-

0 r < I
Sn(x): % T; T < Titl, 1<1<n—-1
1 T > Tn

i.e. Sp(x) is a step function which increments by 1/n at each sampled value of z.

Let the model cdf be P(z), corresponding to pdf p(z), and let the null hypothesis be that

our random sample is drawn from p(z). The KS test statistic is
D, = max|P(z) — Sp(z)|

It is easy to show that D, always occurs at one of the sampled values of . The remark-
able fact about the KS test is that the distribution of D,, under the null hypothesis is
independent of the functional form of P(z). In other words, whatever the form of
the model cdf, P(z), we can determine how likely it is that our actual sample data was
drawn from the corresponding pdf. Critical values for the KS statistic are tabulated or

can be obtained from numerical algorithms.

Figure 17 shows the KS test applied to the log period distribution in a sample of LMC
Cepheids. Shown is the sample cdf of the 39 stars, together with the model cdf with
which they are being compared: a normal distribution with mean and variance equal to
the sample mean and variance of the real data. The observed value of the test statistic
for these data, Dy,s = 0.124. Comparison with the critical values of the distribution show
that Prob(D,, > Dops) = 0.562. Thus, if the NH is true, there is a more than 50% chance

that one would obtain as large, or indeed larger, a value of D, for a randomly chosen

92



sample of 39 Cepheids drawn from the model normal pdf. This clearly suggests that we
should accept the null hypothesis for these data — i.e. the distribution of log periods is
adequately described by a normal pdf.

Figure 17: Example KS Test

CDF of x
0.6 0.8

0.4

0.2

R T DT

-0.5 0

There is also a two-sample version of the KS test, where one tests the null hypothesis
that the two samples are drawn from the same underlying population. The test statistic

1S now

Dy = max|Sp(z) — Sp(z)]

I

where S;,, and S, denote the sample CDFs of two samples of size m and n respectively.
Again the distribution of D,, , under the null hypothesis is independent of the underlying
pdf. This is especially useful, because it means that we can test whether two samples
are drawn from the same underlying population without having to assume anything

about the form of that population.

The KS test is an example of a robust, or nonparametric, test since one can apply the
test with minimal assumption of a parametric form for the underlying pdf. The price for
this robustness is that the power of the KS test is lower than other, parametric, tests. In
other words there is a higher probability of accepting a false null hypothesis — that two
samples are drawn from the same pdf — because we are making no assumptions about the

parametric form of that pdf.
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