SECTION 3 : Hypothesis Tests

The goodness of fit tests which we introduced in the previous section using the x? statistic
were an example of a hypothesis test. In this section we now consider hypothesis tests

more generally.

3.1 : Simple Hypothesis Tests

A simple hypothesis test is one where we test a null hypothesis, denoted by H;
(say), against an alternative hypothesis, denoted by Hs — i.e. the test consists of only
two competing hypotheses. We construct a test statistic, ¢, and based on the value of ¢

observed for our real data we make one of the following two decisions:-

1. accept Hi, and reject Hy

2. accept Ho, and reject Hy

As an example of a simple hypothesis test, let X be a RV drawn from a normal pdf with
variance equal to unity and mean value equal to u, where it is known that either u = 2
or i, = —2. Let our test statistic be simply ¢ = x, the observed value of X in a random

sample of size one. Let our null and alternative hypotheses be:-
Hy: p=-2 Hy: p=2

(Note that we could equal have chosen the null hypothesis to be H; : p = 2. The choice
of which is the null and which is the alternative hypothesis — abbreviated as NH and AH —
is basically up to the experimenter). Figure 15 shows the distribution of the test statistic,

t, under the NH and AH specified above.

To carry out the hypothesis test we choose the critical region for the test statistic, ¢.
This is the set of values of ¢ for which we will choose to reject the null hypothesis and
accept the alternative hypothesis. The region for which we accept the null hypothesis
is known as the acceptance region. Note that we must choose the critical region and
acceptance region ourselves. For example we might choose the critical region as the set
of values of ¢ for which ¢ > 0. In other words, if our sampled value of = is found to be
positive then we accept the alternative hypothesis that x was sampled from a normal pdf
with mean p = 2, whereas if our sampled value of z is found to be negative, or equal to
zero, then we accept the null hypothesis that x was sampled from a normal pdf with mean
@ = —2. In Figure 15, this particular choice of acceptance region and critical region is

shown as the horizontally and vertically striped area respectively under the normal pdfs.
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Note that our decision about whether the accept or reject the NH depends on the critical
region, which has to be chosen by the observer. A different choice of critical region might
lead to a different decision. This might seem to make the business of hypothesis testing
a little subjective, but in some ways this subjectivity is inevitable. Statistical theory can
never absolutely determine which of two competing hypotheses is correct — all it can
do is tell us, provided certain assumptions are valid, how probable the two competing
hypotheses are. Whether one (or indeed both!) of the hypotheses is then deemed to be
too improbable to be accepted is — in the final analysis — up to the observer to decide.
Very often this decision will depend on whether one is trying to prove one’s own theory
or model (i.e. by finding observational evidence to back it up), or disprove someone else’s

theory! We will return to this point shortly when we discuss significance.

Figure 15: PDF of test statistic under NH and AH for a simple hypothesis test.
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While the choice of critical region may be subjective, once we have specified our choice of
critical region we can objectively quantify what is the probability of making an incorrect

decision.

3.2 : Incorrect Decisions

We can make an incorrect decision in one of two ways
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3.2.1 : Type I error

A type I error occurs when we reject the null hypothesis when it is TRUE — i.e. when
we should have accepted it. P(I) often denotes the probability of incurring a type I error.

3.2.2 : Type 1II error

A type II error occurs when we accept the null hypothesis when it is FALSE — i.e.
when we should have rejected it. P(II) often denotes the probability of incurring a type

II error.

We can calculate P(I) and P(II) in the simple example introduced above (see lectures),
where the areas under the appropriate normal pdf can be found by consulting the tables

provided.

A good hypothesis test should have small P(I) and P(II). Broadly speaking, this means
that the distributions of the test statistic under H; and Hs should have little overlap. We
can always reduce P(I) by suitable choice of critical region, but this is inevitably at the
cost of increasing P(II). It is often useful to choose the critical region which minimises
some weighted combination of P(I) and P(II), but there is no general strategy suitable for

all situations.

One frequently adopted criterion is the power of a hypothesis test, defined as the prob-
ability of rejecting Hi when it is false, i.e. power = 1 - P(II). Choosing a critical region
which maximises the power for a given alternative hypothesis is generally a useful strategy

for defining a good hypothesis test.

3.3 : Level of Significance

The level of significance of a hypothesis test is the maximum probability of incurring
a type I error which we are willing to risk when making our decision. In practice a level
of significance of 5% or 1% is common. If a level of significance of 5% is adopted, for
example, then we choose our critical region so that the probability of rejecting the null

hypothesis when it is ¢true is no more than 0.05

If the test statistic is found to lie in the critical region then we say that the null hypothesis
is rejected at the 5% level, or equivalently that our rejection of the null hypothesis is
significant at the 5% level. This means that, if the null hypothesis is true, and we were

to repeat our experiment or observation a large number of times, then we would expect
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to obtain — by chance — a value of the test statistic which lies in the critical region (thus
leading us to reject the NH) in no more than 5% of the repeated trials. In other words,
we expect our rejection of the null hypothesis to be the wrong decision in no more than 5
times out of every 100 experiments. Yet another way to express this is to say that we are

‘95 % confident’ that we have made the correct decision in rejecting the null hypothesis.

As mentioned above, the choice of significance level is somewhat subjective. Suppose, for
example, that one is comparing the model prediction of another astronomer’s favourite
theory (here the NH) to the prediction of one’s own pet theory (here the AH). In this case
one might regard rejection at the 10% significance level to be sufficient grounds for ruling
out the other astronomer’s theory. Why? Because if the other astronomer’s theory is true,
there is at most a one in ten chance of the test statistic falling in the critical region (i.e. a
one in ten chance of obtaining data similar to — as ‘bad’ as, if you like — the actual data
which we do obtain). If, on the other hand, one were seeking support for one’s own theory
as the NH, then rejection at the 10% significance level might not be sufficient grounds to
give up on one’s theory, since one can argue that the actual data obtained happens to be
one of those one in ten data sets which, by chance (or ‘bad luck’, if you like), yield a test

statistic lying in the critical region — even when the NH is true.

How can we get around this? As remarked in section 3.1, we can always choose a more
stringent critical region. For example, if we could reject the NH at, say, the 1% or 0.1%
level, then we can be much more sure that the test statistic obtained for our real data
does not lie in our critical region by chance, even though the NH is true. In other words,
we reduce the probability of a type I error. But recall from section 3.1 that this will
inevitably increase the chances of accepting the alternative hypothesis when it is false —
i.e. making a type II error. Again, the key here is for the distribution of the test statistic
to be so nearly disjoint under the null and alternative hypotheses (i.e. having so little
overlap) that we can afford to adopt a ‘tough’ critical region without increasing P(II) too
much. Clearly one effective way to reduce the overlap between the pdf of test statistics is
to acquire more, and better, data, but in astronomy this is often a painful — and expensive

— solution!

3.4 : Two Tailed Tests

It is common for the critical region to be defined as both the upper and lower tails of
the distribution of the test statistic under H;. For example, consider the random variable

X ~ N(u,1) and the test statistic ¢ = . Consider the null and alternative hypotheses
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H : pu=0 Hy : u#0

Then a value of t either much larger or smaller than zero might lead us to reject H; and
accept Ho, since Hy only states that the mean value is different from zero. In this example,
adopting a 5% level of significance with a two tailed test would give as the critical region

for t
{t:|t| > 1.96}
while for a 1% level of significance with a two tailed test, the critical region for ¢ would be

{t:t| > 2.57}

Figure 16: Two-tailed critical regions
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In these examples t = +1.96 and ¢ = £+2.57 are the critical values for the test statistic;
i.e. they indicate the boundary between the critical region and acceptance region. These

two-tailed critical regions are shown in Figure 16.
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