2.5 : Goodness of Fit

We have shown how to obtain (ordinary) least squares estimators of the slope and intercept
of the best-fit straight line. We must still ask how good is our linear model in the first
place; i.e. we can obtain the best-fit straight line but this may still be a very poor fit to
the data.

How can we test if our model is a good one? Answering this question is tantamount
to determining whether the residuals of the data are, indeed, drawn from the assumed

2

distribution — i.e. a pdf with mean zero and variance o2 (or o2 in the case of weighted

least squares). The true residuals are, in fact, unknown, since they are given by
€& = Y —a—bx;

and the true values of the parameters a and b are, of course, unknown. We can estimate
the residuals, however, in the obvious way simply by replacing a and b in the above formula

by their least squares estimators, i.e.

A

€& = Y — ars — brsw;

and ask whether these estimated residuals are consistent with our model assumptions.
This provides us with a means of assessing whether the linear model is a good one in the

first place.

Our assumptions are known as our hypothesis, and we test this hypothesis when we test
how well our data fit our model. We call such a hypothesis test a goodness of fit test.

(We will consider more general hypothesis tests in the next section).

2.5.1 : The x? statistic

We can test how well the data fits the linear model using the x? statistic. For the simple

case of one independent variable this is defined as

n R . 2
o= 3 lyi — ais — bsti]

i1 gi

where a? is the variance of the i** residual and is assumed known a priori. In other words,

x? is the sum of the squared residuals, weighted by their variance.

Note that we must know the o? a priori; if we don’t then we can say nothing about the

goodness of fit of the data to the model (see Figure 14 below).
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If the residuals are distributed as N (0, 0;) then the statistic given above has the x? pdf,

given by
2 2\¥/2 _y22 2
p() = o (x*) e X =0

Here v is known as the number of degrees of freedom of the pdf. The mean value of

the pdf is v and the variance is 2v.

For a sample size of n, the x? statistic has ¥ = n — 2 degrees of freedom: the number
of degrees of freedom is smaller than n because the statistic is formed not from the true
(and unknown) residuals, but from their estimates — i.e. we do not know the true values
of @ and b and must replace them by their least squares estimators when forming the 2

statistic.

2.5.2 : Using x? to measure goodness of fit

We use tables of the cumulative distribution function of the x2 RV in order to determine
whether the hypothesis that the data are well described by the linear model is justified?. If
the value of the x?2 statistic is found to be excessively large, or excessively small, compared

to its expected value, then we reject our hypothesis and seek a better model.

How does this work in practice? Tables tell us the value of the x? RV for which a certain
percentage of the pdf lies to the left of that value (we call this a percentile of the CDF).

For example:-
X3.995 = value of t for which Prob(x* < t) = 0.995 = 32.8 for v = 15

Xe9o = value of t for which Prob(x? < t) =0.90 = 9.24 forv =5

Thus we require to carry out the following steps to determine the goodness of fit for our

linear model, Y = a + bX.

1. Using the real data and the formulae of Section 2.4, determine the least squares

estimators of a and b.

2. Using these estimators of a and b, and the (assumed known) variance, ai?, of each

residual, calculated the observed value of the x? statistic, i.e.

n ~ i) 2
2 Yi — aLs — OLSZ;
Xobs = Z l : l]

i—1 gi

2Nowadays it is also common to use statistical packages on computer to determine the per-

centiles, rather than consulting tables
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3. For the appropriate number of degrees of freedom (in this case v = n — 2, since we
have two unknown parameters that we must replace with their estimators), compare
X2, With various percentiles of the x? CDF, in order to determine how likely it is
that one would obtain as large a value of X2, (or indeed larger) if the linear model

were correct.

4. Make a decision to accept or reject the hypothesis of a linear model, based on

how likely ngs is found to be.

Figure 14 shows how changing the size of the o;, and hence changing the value of X2,
changes our interpretation of the goodness of fit of the same observed data to a linear
model. In the left hand panel, the errors are sufficiently small (and hence the value of
x>, sufficiently large) to indicate that a linear model is a poor model for the data — i.e.
we need to consider a curve. In the right hand panel, conversely, the errors are so large
(and hence the value of X2, . so small) that the best-fit straight line is consistent with
the data, but so too are many other straight line fits, and indeed other model curves. We
need more or better data to tell if the linear model is the most appropriate. In the central
panel, the errors are of a size consistent with our hypothesis, as borne out by a value of
ngs which is close to the expected value for that number of degrees of freedom, and so

we conclude that the linear model is a good one.

Figure 14: Best linear fits, with different o; and different x?2, for the same data.
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2.6 : Fitting General Models

We can apply the x? goodness of fit test more generally than just to fit straight line
relations. Suppose we have a physical model for the functional relationship between some

variable, Y and another variable, X, i.e.

del _ del
Yot = ¢y (w01, .., k)

where the §; are unknown parameters of the model. Suppose we now observe {yf’bs; 1=

1,...,n}, where we suppose that

obs model
Y; = Y + €

where ¢; ~ N(0,0;), for all i, and the ¢; are mutually independent.

Suppose we obtain least squares estimators, él, ey ék, of the parameters of the model®.

Then, if our model is correct, it follows that

model |2

i=1 i
has a x? distribution with n — k degrees of freedom.

If the residuals are not normally distributed then we can still construct a statistic with an

obs

approximately x? distribution by first binning the data. The average value of y°°® in each

model for that bin, will have a residual which is approximately

bin, when compared to y
normal due to the Central Limit Theorem. The ‘closeness’ to normality depends on the
original pdf of the residuals and the number of points in each of the bins. Usually if this

number exceeds about 15 then the approximation to normality is quite adequate.

3the details of how we do this in practice need not concern us in this course. For a general
model it is often not possible to write down the analytic expression for the least squares estimators,
in the same way as for the linear model, but there exist computer packages for determining the

least squares estimators numerically in the general non-linear case.
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