2.3 Principle of Maximum Likelihood

Suppose we have a random sample, {X1,..., X, }, drawn from the population with pdf
p(z;0). We define the likelihood function, L(6), as the sampling distribution, g(z1, ..., Zn; 6),
of {X1, ..., Xn}, but now considered as a function of 6. In other words we are now thinking

of A not as a fixed parameter, but as a variable. Thus,

L) = g(z1,..-,xn;0)

The principle of maximum likelihood essentially states that forming the likelihood function
is a useful way to define a ‘good’ estimator of the parameter . The maximum likelihood

estimator of §, denoted by 61, is the value of # which maximises L(6). Thus, O, satisfies

g—s =0 when 6= éML
We can think of this definition in the following way. Suppose the particular values observed
in our random sample are {z1,...,z,}. If we were to vary the parameter, 6, we would
generate a family of different pdfs. 6, is the value of 6 corresponding to the pdf from

which it is ‘most likely’ that the actual sample was drawn.

Note that if the {X;} are iid, then
L) = p(z1;0)p(z2;0) ... p(zn; 0)

We extend to the case where the pdf is a function of several unknown parameters in the

obvious way

AL (61, ..., 0x)

a0, =0 when 0;=6; (j=1,...k)

For an iid random sample, {Xi,..., X,,}, from a normal pdf, the maximum likelihood

estimators of the mean, y, and variance, o2, are

- 1 ¢ ) 1¢ A2
fivL = = Y T o, = — Y @i — ]
n 4 n -
=1 i=1
i.e. simply the sample mean and variance. These results are derived on the accompanying
handout and in the lectures. We already know from the preceding section that the sample
mean is an unbiased estimator. What about 637 After a great deal of rather tedious

(and non-examinable! But see the handout anyway if you want to follow the details of the

derivation) algebra, we can show that

—1
Bl63y) = ——o®
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i.e. the sample variance is a biased estimator of ¢2. In fact, for any pdf with finite

variance, we have:-

E

2
1 & 1 & n—1
—E (mi——gazi>]=—a2
n 4 n n
=1 =1

but we can easily define an unbiased estimator of o2 by multiplying the sample variance

by n/(n — 1), i.e.

1 & ) 1 [&
a-gorr = (‘Tz - /:LML) = lz .’E? — nﬂ%vlL
=1

n—li n—1 =

satisfies

corr

E [&2 } = o’
Why is 62, biased? If the mean, u, were known a priori, then one can show that
1 & 2 2
E |- Z (i —p)’| =0
iz
i.e. in this case the sample variance is unbiased. It is because in practice we also have to

estimate p that principle of maximum likelihood gives a biased estimator of o2.

2.4 : Least Squares Estimators

We now turn to another useful method for estimating parameters — the principle of least
squares — which is particularly useful in astronomy where we often try to fit a simple
functional relationship between two or more sets of observational data. To fix our ideas
we will develop the theory of least squares in the context of a specific astronomical example:

the period-luminosity (PL) relation for Cepheid variables.

2.4.1 : Preamble — The Cepheid PL relation

Cepheids are highly luminous pulsating stars whose pulsation period has been found to

be related to their luminosity by a power law, i.e.
L = AP

where A and b are constants. The relation is usually considered in terms of magnitudes,
ie.

M = a+ blogP

The usefulness of Cepheids derives from the fact that their periods can be measured
directly, thus allowing us to infer their absolute magnitude, and hence their distance via
the familiar equation:-

m = M 4+ blogr + 25
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It is the step of inferring the absolute magnitude from the measured period which concerns
us here, and which requires the application of statistical techniques. This is because, in
practice, any group of Cepheids will not satisfy exactly the above linear relation between
M and log P. If we plotted the ‘observed’ values of { M;, log P;} for a sample of Cepheids we
would expect the points to be scattered on the plane, due to a combination of observational
errors in the measurement of M; (which is, in any case, not measured directly but would
itself have to be inferred from the measured apparent magnitude of the Cepheid combined
with some independent estimate of its distance) and log P;, and intrinsic errors due to
the inadequacy of the linear relation which we are assuming holds between these two
quantities (recall the discussion in the introduction). Figure 11 shows the Cepheid PL
relations derived for calibrating data in the LMC and SMC at a series of wavelengths
from B to K. (In fact these plots show the apparent magnitude of the Cepheids, which is
directly observed, but since the LMC and SMC Cepheids can all be assumed equidistant
these apparent magnitudes are equivalent to absolute magnitudes, as is easily seen from

the distance modulus formula above.)

As can be seen, these data clearly display a linear relationship but there is indeed a
non-negligible scatter in the relation, so that — at a given period, there is a range, or
distribution, of absolute magnitudes consistent with that period. But in order to use the
PL relation to estimate the distance of a more remote Cepheid, we want to assign a single
value of M to the star. In other words we want to fit a straight line (or more generally,
a curve) through the {M;,log P;} scatterplot so that we have a one-to-one relationship

between the observed (log) period and the inferred absolute magnitude.

We want this straight line to be the one which, in some sense, is the ‘best fit’ to the data
—i.e. we want the observed data points (which we refer to as our ‘calibrating data’) to lie
‘closest’ to the best fit line. The principle of least squares provides us with a definition of
what we mean by ‘closest’ in this context. We also want a means of quantifying whether
the scatter of the data about this best fit straight line (what we call the residuals of the
best fit) is consistent with our assumption of a straight line model in the first place. If
a plot of our PL calibrating data looked like Figure 12, for example, then common sense
would tell us that a straight line model was inappropriate. Statistics provides us with a
means of quantifying this degree of ‘inappropriateness’ — what we call the goodness of

fit.
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Figure 11: PL relations for Cepheids in the LMC and SMC.
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Figure 12: Data for which a straight line model is not appropriate.

2.4.2 : Ordinary Linear Least Squares

Suppose that the scatter in our plot of {M;,log P;} is assumed to arise from errors in
only one of the two variables. This case is called Ordinary Least Squares. In the
context of the PL relation, it is probably reasonable to assume that there is no error on
the measured period of a Cepheid, or at least that this error is very small compared with
the uncertainty on the absolute magnitude. We then call log period the independent
variable, and absolute magnitude the dependent variable. Thus we suppose that we

can write, for each Cepheid:-
M; = a+ blogP;,+¢;

where ¢; is known as the residual of the i** Cepheid — i.e. the difference between the

observed value of M;, and the value predicted by the best-fit straight line (see Figure 13).

We assume that the {¢;} are an iid random sample from some underlying pdf with mean

2

zero and variance o° — i.e. the residuals are equally likely to be positive or negative and

all have equal variance.

The principle of least squares says that one should adopt as the best fit estimators of

a and b the values which minimise the sum of the squared residuals, S = 3" €2. Thus

S = Y [M;—(a+blogP))
=1

35



and & and b are obtained by differentiating S with respect to a and b, setting the resulting

equations (called the normal equations) equal to zero, and solving for a and b.

Figure 13: Schematic diagram indicating residuals of data points in the {M;,log P;}

plane.

" log P

In general, if we write the linear relation as
Y, = a4+ bX;+¢

where Xj; is the independent variable and Y; as the dependent variable, the least squares

estimators of ¢ and b minimise

S = > lyi—(a+bz))
=1
and ars and I;Ls satisfy
oS R oS N
%—0 when a = agg %—0 when b=brg

Solving these equations, arg and ELS are given by

Sy Dwl — Dyim Y w

ars =

nya? — (Tw)’
e — N YiTi — D Yi 2 Ti
LS —

nya? — (Czi)
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where n denotes the sample size and all summations are for ¢ = 1,...,n. If the residuals
are drawn from a normal pdf then it is straightforward to show that the least squares

estimators are also maximum likelihood estimators (see lectures).

It can also be shown that a1,5 and a1,5 are unbiased estimators of a and b respectively.

The variance of d1,5 and byg is given by

, o® Y}
var(arg) = STERS $i)2
2
var(brs) = on

nYz? - (Twi)?

We can use these formulae to assign an error (i.e. by taking the square root of the
variance) to the least squares fitted slope and intercept. In general, aps and I;LS will not
be statistically independent. This means that they have non-zero covariance. (Recall
that we defined in Section 1.9 the covariance of two random variables, X and Y, as
cov(X,Y) = E[(X —Z)(Y — 7)], and it follows that cov(X,Y) = 0 if X and Y are
independent). In fact,

—o? Y
nYz? — (Tzi)?

cov(ars,brs) =

2.4.3 : Weighted Least Squares

A common situation met in astronomy (and indeed in all the physical sciences) is where
one can model the relationship between bivariate data as a straight line, but it is not
reasonable to assume that the residuals are all drawn from the same pdf. In particular,
it is often the case that the residuals each have a different variance. For example, in the
case of the Cepheid PL relation, shorter period Cepheids are — on average — less luminous,
which could mean that the uncertainty on the measured apparent magnitude would be
larger than that for longer period Cepheids. Equally, it could be the case that the intrinsic
scatter (as opposed to the scatter due to observational errors) about the assumed straight
line relation is a function of the independent variable; this situation has recently been
suggested for the Tully-Fisher relation, which is a straight line relationship between the
absolute magnitude (dependent variable) and log rotation velocity (independent variable)

for spiral galaxies. Thus, in such cases, the i** residual, {¢;}, is assumed to be drawn from
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some underlying pdf with mean zero and variance oiz, where the variance is allowed to be

different for each residual.

If the residuals are not identically distributed, this will affect the best-fit straight line
relation derived for a given set of data. One must ‘weight’ the least squares solution
to take account of the different variance on each residual, since the residuals with large
variance should have less influence on determining the best-fit parameters. We call such
a procedure weighted least squares. We can find weighted least squares estimators of
a and b in a similar fashion to that for ordinary least squares, but with a modified sum of

squares function, S, given by
5 i [yi - (a+b96i)]2

which yields the solution

~ ] i i
awWwLs = ) D)

bwis = ( —
(2)

where as before all summations are for 7 = 1,...,n. The variance of awrs and bwrg is

given by
2
) o
var(awLs) = " * 3
shvd - (£3)
. > 2
Va.I‘(bWLs) = ; t 3
o .
shxd - (23)

(3)

In the case where ai? is constant, for all 7, these formulae reduce to those given in Section

2.4.2 for the unweighted case.
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2.4.4 : Least Squares and Linear Regression

In the case of a bivariate normal distribution we saw in section 1.9 that the conditional
distribution of Y given z, denoted p(y|z), was a normal distribution with mean value which
was a linear function of . In other words if we consider the conditional expectation
value of Y given z, denoted by E(Y|z), as we vary z, this conditional expectation defines
a straight line in the {z,y} plane. We call this straight line the linear regression or
regression line of Y on X. It can be shown that this regression line is identical to the
best-fit straight line obtained by an ordinary least squares fit to the {z;,y;} data, so that
in this sense least squares and linear regression are equivalent. In fact, this equivalence
holds not only for a bivariate normal distribution, but any bivariate distribution for which

the conditional expectation of Y given x is a linear function of x.

2.4.5 : Extending Ordinary Least Squares

The simple formulation of ordinary least squares considered in this course can be extended
in several different ways. For example, one can express the dependent variable as a linear
function of two or more independent variables (e.g. for the Cepheid PL relation we can
include a term which depends on the colour of a Cepheid; we call this the PLC relation).
This extension is known as multilinear least squares or multilinear regression and
can be formulated quite neatly — and completely generally — in terms of vectors and

matrices. We do not consider multilinear least squares in this course, however.

One can also modify the assumptions of ordinary least squares by accounting for errors,
or residuals, on both variables (e.g. for the Cepheid PL relation one could allow for an
uncertainty on the measured period). This means that one has to modify the form of
the sum of squares function S, which has to be minimised with respect to the unknown
parameters of the best-fit straight line. The details of this generalisation to errors on both
variables are quite straightforward in principle, but are algebraically rather messy and we

do not attempt them here.
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