SECTION 2 : Statistical Building Blocks

In Section 1 we considered various mathematical aspects of probability theory. We now

apply some of those mathematical tools to study the statistics of real data samples.

2.1 : The Sampling Distribution

Consider a RV, X, with pdf p(z). Suppose we observe n different realisations (values) of
X. We call the set {X1, ..., X,,} a random sample from the population with pdf p(z).
The joint pdf, g(z1, ..., Zr), is known as the sampling distribution of the random sample.
We can think of this joint pdf in terms of the ‘histogram’ picture which we discussed in
Section 1; i.e. if we were to repeatedly random sample sets of n numbers from the pdf,
p(z), and construct an n-dimensional histogram of the sampled values, then in the limit as
the number of samples tends to infinity the ‘shape’ of the histogram will approximate the
sampling distribution, g(z1, ..., Z,). In this course we will consider only random samples in
which all the elements are independently and identically distributed (usually written
as iid). This means that the sampled value of X = z; is independent of X = z2 and so
on. In other words, the elements of the random sample are statistically independent of

each other. It then follows that
g(wl,---,fﬂn) = p(wl)p($2)---19($n)

i.e. the joint pdf of the random sample is product of the individual pdfs.

2.2 : Parameter Estimation

Suppose we wish to study a population which is known (or assumed) to have a pdf, p(z;6).
This notation indicates that the pdf is dependent upon a (possibly unknown) parameter,
0. If we observe a random sample from the population, {X1,..., X,,} say, how can we
estimate the parameter, 07 How do we decide how ‘good’ our estimate of 0 is (or even

what we mean by this question?).

2.2.1 : Statistics

A statistic is a function of observable random variables which does not depend upon
any unknown parameters. Thus if we have a random sample, {Xq,..., X}, from the
population with pdf p(z; ) then any function of {Xj, ..., X,,} which does not depend on

@ is an example of a statistic.
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Suppose, for example, that X ~ N(u,o0), where p and o are not known a priori. Then
X — u is not a statistic, since it depends on the value of the parameter, u. The key idea

in parameter estimation is to use statistics to estimate the unknown parameters of a pdf.

2.2.2 : Estimators

A statistic with which we estimate the value of a parameter is known as an estimator of
that parameter. Estimators are usually denoted by a caret, or ‘hat’, e.g. 0 is an estimator

of 6.

Note that § is not a function of 6 (if it depended on the value of 6 then it would be
redundant as an estimator of 8!). Note that 6 is, however, a RV since it is a function of
the RVs {Xj, ..., Xn}. Hence we can (in principle, at least) determine the pdf of 6 in terms
of the sampling distribution, g(z1, ..., Z,). This means that the pdf of g depends upon the
true value of the parameter, §. We can therefore write the pdf of 6 as p(é; 6), and we can

use the properties of p(é; ) to decide whether fis a ‘good’ estimator.

Consider the following illustrative example. (We take an example from cosmology, al-
though similar examples from any other branch of astronomy could be presented, since it

is not the astronomical details but the statistical details which are important here).

Suppose we are measuring the redshift of a nearby galaxy in (say) the Virgo cluster. We
do this, of course, by identifying features in the spectrum of the galaxy and comparing
their wavelengths with the laboratory values. Thus, if we denote the true redshift of the
galaxy by zp, then an estimator of zp, denoted by 2, will be a function of the observed

wavelengths of the (n) identifying spectral features, i.e.
2 = Z(A1,-An)

Since the sampling distribution of A1, ..., A\, depends on zy, the pdf of Z also depends on
20, i.e. p(2) = p(2; 20)-

We could measure the redshift using, e.g., a 1m-class ground based telescope with a low-
resolution spectrograph, but with these data our determination of the redshift will be
somewhat inaccurate (since our measured wavelengths of the identifying spectral features
will be imprecise). Thus, if we were to repeat our observations with such a telescope a large
number of times, a histogram of our estimated redshifts would tend in shape towards the
pdf of 21, shown in Figure 9. In simple terms, we would say that our observation carried

a large statistical error but small systematic error.

Suppose now we observe the same galaxy with e.g. the high-resolution spectrograph on
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HST, and denote by 22 our HST estimator of zg. With HST our wavelength measurements
of the galaxy’s spectral features will now be much more accurate, leading to a much
narrower range of values (i.e. realisations) of 22, if we were to repeat our HST observations
a large number of times. Suppose, however, that — for some reason — we mis-identify the
features in the galaxy’s spectrum, leading to a completely erroneous value of 29 in each of
these realisations (although, of course, we would only know this if we knew the true value
of ). In this case the pdf of Z3 would be as shown in Figure 9, and in simple terms we
would say that our observation carried a small statistical error but a large systematic

error.

Figure 9: PDF of two estimators of the true redshift, zg, of a galaxy.
p(z|zy)

| > 7z

We see from Figure 9 that p(21;29) is much broader than p(22;2p), so there is a higher
probability that 2; will differ considerably from zg than for 2. However, there is, at
least, a non-negligible probability that 2; lies very close to zg, whereas the ‘narrowness’ of
p(22; z0) means that 2o will almost always systematically underestimate the true red-
shift. These two extremes illustrate the essential difficulty in defining one single criterion
which determines which estimator is ‘best’ in a given situation. If one wishes specifically
to exclude large statistical errors, but is prepared to tolerate a small systematic ‘offset’
in the estimator of the parameter (particularly if it is possible to determine the size of
that offset, perhaps from independent data, and thus correct for it), then 23 would be

the better choice. If, on the other hand, even a small systematic error is unacceptable,
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then Z9 would have to be regarded as a ‘bad’ estimator. In this example we have used the

‘closeness’ of 21 and 25 to 2zg as a measure of which estimator is better. We can formalise

this idea of ‘closeness’ of an estimator to the true value of the parameter as follows:-

2.2.3 : Bias of an estimator

We define the bias, B(é; 6o), of an estimator, 6, by

B(f;60) =  E(8;60) 6o
_ / (6 — 80) p(6; 6) df

where 6y is the true value of the parameter . Hence, when an estimator is unbiased its

expected value is equal to the true value of the parameter.

2.2.4 : Risk of an estimator

We define the risk, R(é; 6o), of an estimator, 0, by

R(B:;60) = E[(6-60)%00)

The risk of an estimator is also known as the mean squared error. Note that when an

estimator is unbiased then the risk is identically equal to the variance of the estimator.

In the example of Figure 9, 2; is an unbiased estimator with a large risk (and variance),

whereas 23 is negatively biased, but has smaller risk (and very small variance).

Note that the bias of Z is itself a function of zg. This fact indicates two fundamental

difficulties:-

e If we apply a correction to remove the bias of 25 at zg it does not follow in general that
this correction will leave 22 unbiased for all true values of z; indeed the correction

may increase the bias of the estimator for other true redshifts.

e In any case, to completely remove the bias of Z at zg strictly speaking we need
to already know the value of zg — if we knew that, then we would have no need to

estimate the parameter!
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Fortunately, in practice one can frequently define estimators which are unbiased for a
wide range of, or indeed all, values of the unknown parameter, so that in particular we
don’t need to know the true value of the unknown parameter to know that its estimator

is unbiased. The simplest example of such an estimator is the sample mean.

2.2.5 : The sample mean

Let {X1,...,X,,} denote a random sample drawn from a population with pdf p(z), mean

value p and finite variance o2. We define the sample mean as

Clearly fi is an estimator. If each X; is independently and identically distributed (iid),
then f is an unbiased estimator of u, for all values of p. (For proof of this result see

handout and lectures).

The variance, 05, of the sample mean is given by

al% =o2/n

(For proof of this result see the handout: this proof is not examinable)

This result is extremely important in statistics, since it implies that, whatever the un-
derlying population (provided it has finite variance) the distribution of the sample mean
becomes increasingly concentrated near the population mean as the sample size increases.
Thus, the larger the sample, the more sure we can be that [ is a good estimator of u.

This idea is formalised quantitatively in the law of large numbers.

2.2.6 : The law of large numbers

Let p(z; u,0?) be the pdf of a RV, X, with mean, u, and finite variance, 2. Let i be
the sample mean of a random sample of size n drawn from p(z;u,0?). Let € and § be
two specified small numbers such that € > 0 and 0 < § < 1. If n is any integer such that
n > o2 /€5, then

Prob[|g—pu|<e] > 1-94

Thus, we can make the probability that i lies within € of u arbitrarily close to unity,
simply by taking a large enough sample of data.The proof of this theorem is, again, non-

examinable, but is provided on a handout for completeness.
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What is striking about the law of large numbers is the fact that we made no assumptions
about the form of the pdf of X (apart from its finite variance), and yet we can still make

precise statements about the probable ‘closeness’ of i and u for a given sample size.

In fact, we can go much further than this in determining the properties of the sample

mean, by using one of the most important theorems in statistics.

2.2.7 : The Central Limit Theorem

Let p(z; u, 02) denote a pdf with mean p and finite variance o2. Let ji denote the sample
mean of the iid random sample {X1,..., X,,}, of size n. Then as n — oo, the pdf of ji

approaches a normal pdf with mean value y and variance o2 /n.

We will not prove the central limit theorem in this course. We do, however, highlight
its importance. The CLT states that, no matter what pdf our random sample is drawn
from, the sample mean will have an approximately normal distribution as the sample
size increases. The CLT justifies the importance of the normal distribution — in applied
statistics in general, and in astronomy in particular. Astronomy is filled with situations
where one ‘bins’ or groups sets of observational data. The CLT tells us that, when we
bin data with a sufficiently large sample, the fluctuations in the average of the binned
data will look approximately normally distributed. Figure 10 illustrates this, for random
samples drawn from an exponential distribution — i.e. the underlying pdf is very different
from a normal pdf, and yet the distribution of the sample mean very closely approximates

a normal pdf as the sample size increases.

The sample mean is, thus, defined according to an intuitively simple expression, is un-
biased, and has very special asymptotic properties which are almost independent of the
pdf of the underlying population. This is rarely the case with other parameters of a pdf,
however, and we require in statistics more general methods for finding estimators — meth-
ods which take account of the form of the underlying pdf from which our sample data are

drawn.
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Figure 10: Histograms of the sample mean of sample of size n drawn from an exponential
distribution, for n = 10, n = 20, n = 40 and n = 100. Note the increasingly close

approximation to a normal distribution.
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