SECTION 1: Mathematical Building Blocks

1.1: Probability

The theory of probability is a branch of *pure* mathematics. This means that we could deduce laws and theorems which describe how to manipulate probabilities, starting from a set of axioms – in a manner similar to the theory of arithmetic. Many modern textbooks take this approach, since it allows the mathematical machinery of **measure theory** to be directly applied.

The disadvantage to such an approach is that it is both abstract and complicated. We will instead try to develop ideas about probability which are more **intuitive**. (c.f. how we learn to count at school).

1.1.1: Counting (combinatorial) Definition of Probability

Suppose we observe some event (e.g. a physical experiment) for which there are a finite number, n, of possible outcomes. Suppose the outcomes can be grouped together according to some well-defined attribute or characteristic. e.g.:-

Event	example attributes
Tossing a coin	head, tail
Throwing a dice	1, 2, 3, odd number, even number

Suppose that attribute A occurs in m of the n possible outcomes. Then we could define the **probability** of an outcome having attribute A – which we write simply as P(A) – as:-

$$P(A) = \frac{\text{number of outcomes with attribute } A}{\text{total number of outcomes}} = \frac{m}{n}$$

For example, if a coin is equally likely to fall as a head or tail, we say that:-

$$P(\text{head}) = P(\text{tail}) = 1/2$$

1.1.2: 'Frequentist' Definition of Probability

How do we 'know' from the outset that a coin is equally likely to fall as a head or a tail? In truth we do *not* know this *a priori*, but our intuition might lead us to

reason as follows. Suppose we toss the coin a large number of times and, in the long run, the coin falls as a head half of the time and as a tail half of the time; we could then regard a head and a tail as equally probable outcomes. This intuitive idea of what happens to the coin when it is tossed a large number of times forms the basis of what is known as the **frequentist** definition of probability.

More generally, suppose we perform an experiment N times. (This can be something as simple as tossing a coin, or something as complex as measuring the Hubble constant). We define the **relative frequency** of an outcome with attribute A_i as:

rel. freq.
$$(A_i)$$
 = $\frac{\text{number of outcomes with attribute } A_i}{\text{total number of outcomes}}$ = $\frac{n(A_i)}{N}$

We then define the probability of outcome A_i as

$$P(A_i) = \lim \frac{n(A_i)}{N} \quad \text{as} \quad N \to \infty$$

Aside: Later in the course we will consider how to test e.g. whether a coin is $\underline{\mathbf{fair}}$ (i.e. P(head) = P(tail) = 1/2) by asking how close the experimentally determined ratio, n(head)/N, should be to 1/2, for a given number of 'experiments', N, in order to be confident that the coin is fair. We will see that we can never be $\mathbf{absolutely}$ sure that the coin is fair, but statistics allows us to make quantitative statements about how \mathbf{likely} it is that the coin is fair. Here the assumption of a fair coin ais an example of a $\mathbf{hypothesis}$, which we can test by tossing the coin a large number of times. Based on our accumulated data, we then decide to either accept or reject the hypothesis of a fair coin.

Tossing a coin is an example of a simple event because there are only two possible outcomes and these are mutually exclusive. Generally, however, we must deal with events which are *not* simple, but rather are composite - i.e. combinations of two or more simple events. Consider, for example, a pack of cards. (Assume that the probability of drawing each card is 1/52). Three such composite events would be:-

- Probability of drawing an ace **or** a spade
- Probability of drawing an ace **and** a spade
- Probability of drawing an ace **then** a spade

To handle such events we need laws for combining probabilities. We will not *prove* these, but justify them by counting arguments – essentially using our well-known ideas about the intersection and union of sets.

1.1.3: Law of Addition

Let X and Y be two different sets of outcomes of an experiment. Let X + Y denote the set of outcomes which occur in *either* X or in Y, and XY the set of outcomes which occur in *both* X and Y. Then

$$P(X+Y) = P(X) + P(Y) - P(XY)$$

We can justify this equation by counting arguments. Suppose we carry out the experiment N times. let n(X), n(Y), n(X + Y) and n(XY) denote the number of elements in the sets X, Y, X + Y and XY respectively (c.f. Figure 1).

Figure 1: Venn diagram showing two intersecting sets of outcomes

Simple counting gives

$$n(X+Y) = n(X) + n(Y) - n(XY)$$

Dividing by N and letting $N \to \infty$, we obtain the law of addition. Thus, in order to determine the probability that an outcome belongs to set X or set Y, we add the probability that the outcome belongs to set X to the probability that it belongs to

set Y. But this means that we have counted twice those outcomes which belongs to both X and Y, so we need to subtract, P(XY).

Ex:
$$P(\text{ace or spade}) = P(\text{ace}) + P(\text{spade}) - P(\text{ace and spade})$$

= $4/52 + 13/52 - 1/52$
= $16/52 = 4/13$

1.1.4: Conditional Probability

Consider an experiment which is repeated n times – i.e. we have a total of n outcomes. Let n_1 of these outcomes have some attribute A_1 , n_2 have another attribute A_2 and n_{12} have attributes A_1 and A_2 . Then,

$$P(A_1) = \frac{n_1}{n}$$
 (strictly $P(A_1) = \lim \frac{n_1}{n}$, as $N \to \infty$)

Also

$$P(A_2) = \frac{n_2}{n}$$

and

$$P(A_1 \text{ and } A_2) = \frac{n_{12}}{n}$$

We can write this last equation as

$$P(A_1 \text{ and } A_2) = \frac{n_{12}}{n_1} \frac{n_1}{n} = \frac{n_{12}}{n_1} P(A_1)$$

 n_{12}/n_1 is the relative frequency of those outcomes which have attribute A_1 , which also have attribute A_2 .

In the limit as $n_1 \to \infty$, n_{12}/n_1 is defined as the **conditional probability** of the outcome having attribute A_2 , given that it has attribute A_1 . It is usually written as $P(A_2|A_1)$.

1.1.5: Law of Multiplication

In the above notation

$$P(A_1 \text{ and } A_2) = P(A_1 A_2) = P(A_1) P(A_2 | A_1) = P(A_2) P(A_1 | A_2)$$

Thus

$$P(A_2|A_1) = \frac{P(A_1 A_2)}{P(A_1)}$$

which is often how conditional probabilities are defined in practice.