SECTION 1 : Mathematical Building Blocks

1.1 : Probability

The theory of probability is a branch of pure mathematics. This means that we could
deduce laws and theorems which describe how to manipulate probabilities, starting
from a set of axioms — in a manner similar to the theory of arithmetic. Many
modern textbooks take this approach, since it allows the mathematical machinery
of measure theory to be directly applied.

The disadvantage to such an approach is that it is both abstract and complicated.
We will instead try to develop ideas about probability which are more intuitive.

(c.f. how we learn to count at school).

1.1.1 : Counting (combinatorial) Definition of Probability

Suppose we observe some event (e.g. a physical experiment) for which there are
a finite number, n, of possible outcomes. Suppose the outcomes can be grouped

together according to some well-defined attribute or characteristic. e.g.:-

Event example attributes
Tossing a coin head, tail
Throwing a dice 1, 2, 3, odd number, even number

Suppose that attribute A occurs in m of the n possible outcomes. Then we could

define the probability of an outcome having attribute A — which we write simply

as P(A) — as:-

P(A = _
(4) total number of outcomes

number of outcomes with attribute A m
n

For example, if a coin is equally likely to fall as a head or tail, we say that:-

P(head) = P(tail) = 1/2

1.1.2 : ‘Frequentist’ Definition of Probability

How do we ‘know’ from the outset that a coin is equally likely to fall as a head or

a tail? In truth we do not know this a priori, but our intuition might lead us to
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reason as follows. Suppose we toss the coin a large number of times and, in the long
run, the coin falls as a head half of the time and as a tail half of the time; we could
then regard a head and a tail as equally probable outcomes. This intuitive idea of
what happens to the coin when it is tossed a large number of times forms the basis

of what is known as the frequentist definition of probability.

More generally, suppose we perform an experiment N times. (This can be something
as simple as tossing a coin, or something as complex as measuring the Hubble

constant). We define the relative frequency of an outcome with attribute A; as:-

el freq.(4]) = number of outcomes with attribute 4;  n(A4;)
STAAS) = total number of outcomes B N

We then define the probability of outcome A; as

n(A;)
N

P(4;) = lim as N — oo

Aside: Later in the course we will consider how to test e.g. whether a coin is fair (i.e.
P(head) = P(tail) = 1/2) by asking how close the experimentally determined ratio,
n(head)/N, should be to 1/2, for a given number of ‘experiments’, N, in order to
be confident that the coin is fair. We will see that we can never be absolutely
sure that the coin is fair, but statistics allows us to make quantitative statements
about how likely it is that the coin is fair. Here the assumption of a fair coin ais
an example of a hypothesis, which we can test by tossing the coin a large number
of times. Based on our accumulated data, we then decide to either accept or reject

the hypothesis of a fair coin.

Tossing a coin is an example of a simple event because there are only two possible
outcomes and these are mutually exclusive. Generally, however, we must deal with
events which are not simple, but rather are composite — i.e. combinations of two
or more simple events. Consider, for example, a pack of cards. (Assume that the

probability of drawing each card is 1/52). Three such composite events would be:-
e Probability of drawing an ace or a spade
e Probability of drawing an ace and a spade

e Probability of drawing an ace then a spade



To handle such events we need laws for combining probabilities. We will not prove
these, but justify them by counting arguments — essentially using our well-known
ideas about the intersection and union of sets.

1.1.3 : Law of Addition

Let X and Y be two different sets of outcomes of an experiment. Let X +Y denote
the set of outcomes which occur in either X or in Y, and XY the set of outcomes

which occur in both X and Y. Then
P(X+Y) = PX) + PY) — P(XY)

We can justify this equation by counting arguments. Suppose we carry out the
experiment N times. let n(X), n(Y), n(X +Y) and n(XY) denote the number of
elements in the sets X, Y, X +Y and XY respectively (c.f. Figure 1).

Figure 1: Venn diagram showing two intersecting sets of outcomes

X Y

XY

Simple counting gives
n(X+Y) = n(X) + n(Y) — n(XY)

Dividing by N and letting N — oo, we obtain the law of addition. Thus, in order
to determine the probability that an outcome belongs to set X or set Y, we add the
probability that the outcome belongs to set X to the probability that it belongs to



set Y. But this means that we have counted twice those outcomes which belongs to

both X and Y, so we need to subtract, P(XY).

Ex: P(ace or spade) = P(ace) + P(spade) — P(ace and spade)
= 4/52+13/52 — 1/52
= 16/52 = 4/13

1.1.4 : Conditional Probability

Consider an experiment which is repeated n times — i.e. we have a total of n out-
comes. Let n; of these outcomes have some attribute A;, no have another attribute

As and nyo have attributes A; and As. Then,

P(A) = % (strictlyP(Al)zlim%, as N — 00)

Also
U]
P(Ay) = —
(A2) = —
and
12
P(Al andAg) = —
n
We can write this last equation as
P(Ajand 4;) = 127 = ™2 pogy
nt n 1

ni2/ny is the relative frequency of those outcomes which have attribute A;, which

also have attribute A,.

In the limit as n; — 00, n12/ny is defined as the conditional probability of the
outcome having attribute A,, given that it has attribute A;. It is usually written
as P(A2|A1)

1.1.5 : Law of Multiplication
In the above notation
P(Al andAQ) = P(Al Az) = P(Al) P(A2|A1) = P(AQ) P(A1|A2)
Thus
P(A; Ap)
P(A)

which is often how conditional probabilities are defined in practice.

P(As|Ar) =



