Astronomy A3/A4H

Statistical Astronomy I: Supplementary Handout

Proof of Poisson variable distribution function (Non-examinable)

Recall the three postulates which define a Poisson RV with pdf $p(r,t) = \frac{(\mu t)^r}{r!} e^{-\mu t}$:

- 1. The probability of an event occurring in time interval, t, is independent of the past history of events prior to t
- 2. For small interval, δt , there is an intrinsic rate, μ (> 0) such that the probability of a single event in δt , $p(1, \delta t) = \mu \delta t + o(\delta t)$
- 3. The probability of two or more events happening at the same time is zero, i.e. $p(r, \delta t) = o(\delta t)$, for all r > 2.

(Here $o(\delta t)$ represents any function such that $o(\delta t)/\delta t \to 0$ as $\delta t \to 0$)

From postulate (1)

$$p(0, t + \delta t) = p(0, t)p(0, \delta t)$$

We can also write $p(0, \delta t)$ as

$$p(0, \delta t) = 1 - \sum_{i=1}^{\infty} p(i, \delta t)$$
$$= 1 - \mu \delta t - o(\delta t)$$

(which follows from postulate (3) since $p(i, \delta t) = o(\delta t)$ for $i \geq 2$)

Hence, we may write

$$\begin{array}{rcl} & p(0,t+\delta t) & = & p(0,t)\left[1-\mu\delta t-o(\delta t)\right] \\ \Leftrightarrow & \frac{p(0,t+\delta t)-p(0,\delta t)}{\delta t} & = & -\mu p(0,t) & - & \frac{o(\delta t)}{\delta t} p(0,t) \\ \Leftrightarrow & \frac{d p(0,t)}{dt} & = & -\mu p(0,t) \end{array}$$

in the limit as $\delta t \to 0$. Solving this differential equation we obtain

$$p(0,t) = Ae^{-\mu t}$$

for some constant A. Since p(0,0) = 1, it follows that A = 1.

Consider now $p(r, t + \delta t)$ where $r \ge 1$. Postulates (1) and (3) imply that (in the limit as $\delta t \to 0$)

We show by induction that $p(r,t) = \frac{(\mu t)^r}{r!} e^{-\mu t}$ is a solution to this equation, for all r. Consider r = 1.

$$\frac{d p(1,t)}{dt} = \mu e^{-\mu t} - \mu t e^{-\mu t}
= \mu p(0,t) - \mu p(1,t)$$

Hence, the assumed functional form of p(r,t) is a solution to the above equation for r=1. Suppose now that $p(s,t) = \frac{(\mu t)^s}{s!} e^{-\mu t}$ is a solution to the equation, for some $s \ge 1$. Consider now the case where r=s+1.

$$\frac{d p(s+1,t)}{dt} = \frac{(s+1)\mu^{s+1}t^s e^{-\mu t}}{(s+1)!} - \frac{\mu^{s+2}t^{s+1}e^{-\mu t}}{(s+1)!}$$
$$= \mu p(s,t) - \mu p(s+1,t)$$

Hence p(r,t) is also a solution for r = s + 1. p(r,t) thus satisfies the Poisson postulates for all r, and the proof is complete.

Proof of approximate expression for var[f(X)] (Non-examinable)

$$\operatorname{var}[f(X)] = \operatorname{var}(X) \left(\frac{\partial f}{\partial x}\right)_{x=\overline{x}}^{2}$$

Proof

We expand f(x) about the mean value of X, \overline{x} . Thus, to second order

$$f(X) = f(\overline{x}) + (X - \overline{x}) \left(\frac{\partial f}{\partial x}\right)_{\overline{x}} + \frac{1}{2}(X - \overline{x})^2 \left(\frac{\partial^2 f}{\partial x^2}\right)_{\overline{x}}$$

Hence, E[f(X)] is given to second order by

$$E[f(X)] = f(\overline{x}) + \frac{1}{2} \text{var}(X) \left(\frac{\partial^2 f}{\partial x^2}\right)_{\overline{x}}$$

(since $E(X) = \overline{x}$). Thus

$$f(X) - E[f(X)] = (X - \overline{x}) \left(\frac{\partial f}{\partial x}\right)_{\overline{x}} + \frac{1}{2}[(X - \overline{x})^2 - \sigma^2] \left(\frac{\partial^2 f}{\partial x^2}\right)_{\overline{x}}$$

(where $\sigma^2 = \text{var}(X)$). It then follows easily that

$$\operatorname{var}[f(X)] = E[(X - \overline{x})^{2}] \left(\frac{\partial f}{\partial x}\right)_{\overline{x}}^{2}$$
$$= \operatorname{var}(X) \left(\frac{\partial f}{\partial x}\right)_{\overline{x}}^{2}$$

as all other terms are of higher than second order.