Astronomy 3/4H: SA-I 

Statistical Astronomy I

  Dr M. Hendry, Room 312 Kelvin Building

10 lectures, starting 11th October 2000





Course Content (10 lectures)

     Section 1: Mathematical Building Blocks

    1.1:    The theory of probability, Probability as the relative frequency of outcomes. Law of Addition. Conditional Probability. Law of multiplication
    1.2:    Statistical independence
    1.3:    Probability distributions. Discrete random variables; Poisson distribution. Continuous random variables. Cumulative distribution function.
                Uniform and normal distributions
    1.4:    Expectation and other measures of a distribution. Expected, or mean, value. Median. Mode. Variance. Skewness. Kurtosis. Variance of a
                function of random variable
    1.5:    Variable transformations
    1.6:    Probability integral transform
    1.7:    Multivariate distributions. Joint PDF of two or more random variables. Marginal distributions. Conditional distributions. Bayes' theorem
    1.8:    Statistical independence revisited
    1.9:    The bivariate normal distribution

    Section 2: Statistical Building Blocks

    2.1:    The sampling distribution
    2.2:    Parameter estimation. Definition of a statistic. Estimators. Bias of an estimator. Risk of an estimator. The sample mean. The law of large
                numbers. The central limit theorem
    2.3:    The principle of maximum likelihood. Likelihood functions. Maximum likelihood estimators
    2.4:    The principle of least squares. Least squares fits to straight lines. Linear regression
    2.5:    Goodness of fit. The chi-squared distribution
    2.6:    Fitting general models

    Sec. 3: Hypothesis Tests

    3.1:    Simple hypothesis tests. Test statistics. Null and alternative hypotheses. Critical regions
    3.2:    Incorrect decisions. Type I and II errors. Power of a hypothesis test
    3.3:    Level of significance
    3.4:    Two-tailed tests
    3.5:    Goodness of fit for discrete distributions. The binomial distribution
    3.6:    Are two distributions equal?. The Kolmogorov-Smirnoff test
    3.7:    The student's t test
    3.8:    Testing the difference of means
    3.9:    Testing the ratio of variances
    3.10:  Testing hypotheses on the correlation coefficient

    Section 4: Point and Interval Estimation

    4.1:    Defining confidence intervals
    4.2:    Interpreting confidence intervals
 

Martin Hendry,
October 2000


Lecture Notes
 
 

 Course Contents and Introduction
 Mathematical Building Blocks: Section 1.1
 Statistical Independence and Probability Distributions
 Expectation and Other Measures of a Distribution
 Variable Transformations, Multivariate Distributions, Statistical Independence
 The Bivariate Normal Distribution
 Statistical Building Blocks: Sampling Distribution to Central Limit Theorem
 The Principles of Maximum Likelihood and Least Squares
 Goodness of Fit and Fitting General Models
 Hypothesis Tests: Incorrect Decisions, Significance, Two-Tailed Tests
 Goodness of Fit for Discrete Distributions; the Kolmogorov Smirnov Test
 The Student's t Test; F Test and Hypothesis Tests on the Sample Correlation Coefficient
 Confidence Intervals

Example Sheets
 
 Examples 1  Examples 2  Examples 3  Examples 4  Examples 5

Model Answers
 

Sheet 1:       page 1       page 2      page 3      page 4
Sheet 2:       page 1       page 2      page 3      page 4
Sheet 3:       page 1       page 2      page 3      page 4
Sheet 4:       page 1       page 2      page 3      page 4       page 5
Sheet 5:       page 1       page 2      page 3      page 4       page 5

 

Handouts
 

 Proofs of Poisson PDF and approximate formula for the variance of a function (non-examinable)
 Bivariate Normal Distribution: Examples of Isoprobability Contours
 Exercises: mean and variance of random variables -  page1   page2    page3   page4
 Exercises: transformations of random variables -  page1   page2
 Properties of the sample mean
 Standard error on the mean
 Mean and variance of the binomial distribution:  page1     page2
 Functions of two random variables
 The Law of Large Numbers


Please send any comments or questions on SA-I to Martin Hendry