4. Sensitivity and Noise
We define:

sensitivity of an instrument / detector = smallest signal that
it can measure which is clearly not 'noise’ (i.e. errors from
some other source).
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Poisson statistics

For much of the E-M spectrum astronomical observations involve counting
photons. However, the number of photons arriving at our telescope from a
given source will fluctuate.

We can treat the arrival rate of photons statistically, which (roughly
speaking) means that we can calculate the average number of photons

which we expect to arrive in a given time interval.

We make certain assumptions (axioms):

1. Photons arrive independently in time

2. Average photon arrival rate is a constant

If our observed photons satisfy these axioms, then they are said to follow
a Poisson distribution



Suppose the (assumed constant) mean photon

arrival rate is /{ photons per second.

If we observe for an exposure time T seconds,

then we expect to receive R T photons in that time.

We refer to this as the expectation value of the

E(N)=(N)=Rv

number of photons, written as

If we made a series of observations, each of time T seconds, we
wouldn't expect to receive <N> photons every time, but the
average number of counts should equal <N> —RT

(in fact this is how we can estimate the valve of the rate R J

Given the two Poisson axioms, we can show (see non-
examinable handout) that the probability of receiving
N photons intime T is given by
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For the purposes of A2, all we need to work with is the mean or
expectation value of N ,and its variance.

We already defined the expectation value as E(N)=R7t

We can compute the mean value of N using eq. (4.2),
and this confirms eq. (4.1).

We can also define the variance of N, which is a measure of the
spread in the distribution:

var(N)= o = E{[N - EQV)[ |

We can think of the variance as the mean squared error'in N

For a Poisson distribution, the variance of N can be shown to be

var(N)=Rt

and the standard deviation of N is O = 1,’R T

In practice we usually only observe for one period of (say) T
seconds, during which time we receive (say) a count of Nobs
photons.
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We estimate the arrival rate as K=




We take Nobs as our ‘best estimate for <N> with error NI

i.e we quote our experimental result for the number count of

photons in time interval T as

Nnbs i Nnhs

Adding Noise

Usually there are several sources of noise in our observation,

each with a different variance.

Probability theory tells us that, if the sources of noise are all
independent, then we work out the total noise by adding

together the variances:
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Sources of Poisson noise:

1) fluctuations in photon count from the sky

2) dark current: thermal fluctuations in a CCD

Sources of non-Poisson noise:

1) Readout noise. e.g9. a CCD can gain/lose electrons

during readout. Usually ©p..4,, = constant



Noise and Telescope / Detector Design

Suppose we observe a point source, of flux density SU .
through a telescope with collecting area A fortime T .in
bandwidth Av centred on Vv, .

Total energy collected by detector (ignoring any absorption)
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S AAvrT
No. of photons collected is Ntot R

hv,

Correcting for combined quantum efficiency of telescope and
detector
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/

Fraction of incident photons that
produce a response in the detector

Thus Oy = A/Nu  and SNR « (4Avt)”?

Same result true for radio observations , even though we don't
count photons. Here, noise from source and detector electronics



Line Sources

Eq. (4.12) suggests that we can increase the signal-to-noise-ratio
by increasing the bandwidth of our observation.

This is not necessarily true if we
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are observing a source which emits /

Dﬂl}l" aver a narrow 'FI"EQUEHC)I" range -
e.g. a spectral line.

continuum

Increasing Av beyond the line width /

will increase the amount of noise

intensity

(from the background continuum) EL wlii-d_fh

without further increasing the .

frequency

amount of signal (from the line).

See A2 Theoretical Astrophysics for more on linewidths

Example

A star is observed using a photomultiplier tube through an optical telescope of
diameter 1.3 m. After 5 minutes observing, the number of counts detected through
a standard B filter is 2592 and the number through a standard V filter is 3057.
The combined response quantum efficiency of the telescope and detector is 0.2,
and the centre of the V-band is at a wavelength of 550 nm. Estimate:

a) the flux of the star in the V-band.

b) the uncertainty in this estimate due to photon noise.

c) the apparent B-V colour index of the star.



Example

The 2-D image of a faint galaxy observed by a CCD covers 50 pixels. For an
exposure of 5 seconds a total of photo-electrons are recorded by the CCD from
these pixels. An adjacent section of the CCD, covering 2500 pixels, records the
background sky count. During the same exposure time a total of photo-electrons
are recorded from the adjacent section. Show that, after subtracting the

background sky count, the signal-to-noise ratio for the detection of the galaxy is
estimated to be 73.

Calculate the length of exposure required to increase the signal-to-noise ratio to
100.



Example

E50's Very Large Telescope (VLT) comprises four telescopes each with an
aperture diameter of 8.2 metres. One of these telescopes is used to observe an
unresolved quasar of apparent magnitude s, = 17.1 in the V-band (centre
wavelength 550 nm, bandwidth 89 nm), using a cooled CCD.

Given that m, =0 corresponds to a flux density of 3670 Jy, determine the
integration time necessary to obtain a sighal-to-noise ratio of 100, assuming that
photon arrival statistics dominate the noise and the efficiency of the combined

system is 60 percent.



