Internal structure of Jupiter

Upper atmosphere:

90% H₂ 10% He

0.2% CH₄, ammonia, water

Lower atmosphere:

High pressure, density 'squeezes' H2

Molecular bonds broken; electrons shared, as in a metal — 'liquid metallic hydrogen'

Core:

Dense, 'soup' of rock and liquid 'ices' (water, methane ammonia) of about 15 Earth masses

Evidence of internal heating – gravitational P.E. released during planetary formation (collapse of gas cloud)

[see SSP2 and A1Y Stellar Astrophysics]

Rock (Mg, Si, Fe) and liquid ices

Metallic hydrogen gives Jupiter a strong magnetic field (19000 times that of the Earth)

Internal structure of Saturn

Upper atmosphere:

97% H₂ 3% He

0.2% CH₄, ammonia, water

Lower atmosphere:

'liquid metallic hydrogen' (but at much greater depth than in Jupiter — due to lower mass and density)

Core:

Dense, 'soup' of rock and 'ices' (water, methane ammonia) of about 13 Earth masses

Internal heating not entirely explained by planetary formation; extra heating from release of P.E. as heavier He sinks.

Effect more pronounced for Saturn, as outer atmosphere cooler to begin with

Metallic hydrogen gives Saturn a strong magnetic field (but weaker than Jupiter's)