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1 Introduction

In the lectures I briefly covered a number of topics in astronomical data analysis. These notes expand on the
lecture, concentrating on general techniques which are common in astronomy. In fact they have very general
applicability, for problems in which the data are interpreted in the context of a theoretical model, and thus lend
themselves to a Bayesian treatment.

We consider the general problem of estimating parameters from data, and consider how one can use Fisher
matrices to analyse survey designs before any data are taken, to see whether the survey will actually do what
is required. We outline numerical methods for estimating parameters from data, including Monte Carlo Markov
Chains and the Hamiltonian Monte Carlo method. We also look at Model Selection, which covers various
scenarios such as whether an extra parameter is preferred by the data, or answering wider questions such as
which theoretical framework is favoured, using General Relativity and braneworld gravity as an example. These
notes are not a literature review, so there are relatively few references. A slightly expanded version of these
notes is available [10]. For further reading, [22] is a textbook introduction to Bayesian methods, and [6] is a
good resource for MCMC.

After this introduction, the sections are:

• Parameter Estimation

• Fisher Matrix analysis

• Numerical methods for Parameter Estimation

• Model Selection

1.1 Notations:

• Data will be called x, or x, or xi, and is written as a vector, even if it is a 2D image.

• Model parameters will be called θ, or θ or θα

1.2 Inverse problems

Most data analysis problems are inverse problems. You have a set of data x, and you wish to interpret the data
in some way. Typical classifications are:

• Hypothesis testing

• Parameter estimation

• Model selection

Cosmological examples of the first type include

• Are CMB data consistent with the hypothesis that the initial fluctuations were gaussian, as predicted (more-
or-less) by the simplest inflation theories?
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• Are large-scale structure observations consistent with the hypothesis that the Universe is spatially flat?

Cosmological examples of the second type include

• In the Big Bang model, what is the value of the matter density parameter?

• What is the value of the Hubble constant?

Model selection can include slightly different types (but are mostly concerned with larger, often more qualitative
questions):

• Do cosmological data favour the Big Bang theory or the Steady State theory?

• Is the gravity law General Relativity or higher-dimensional?

• Is there evidence for a non-flat Universe?

Note that the notion of a model can be a completely different paradigm (the first two examples), or basically the
same model, but with a different parameter set. In the third example, we are comparing a flat Big Bang model
with a non-flat one. The latter has an additional parameter, and is considered to be a different model. Similar
problems exist elsewhere in astrophysics, such as how many absorption-line systems are required to account for
an observed feature?

These lectures will principally be concerned with questions of the last two types, parameter estimation and
model selection, but will also touch on experimental design and error forecasting. Hypothesis testing can be
treated in a similar manner.

2 Parameter estimation

We collect some data, and wish to interpret them in terms of a model. A model is a theoretical framework which
we assume is true. It will typically have some parameters θ in it, which you want to determine. The goal of
parameter estimation is to provide estimates of the parameters, and their errors, or ideally the whole probability
distribution of θ, given the data x. This is called the posterior probability distribution i.e. it is the probability
that the parameter takes certain values, after doing the experiment (as well as assuming a lot of other things):

p(θ|x). (1)

This is an example of RULE 11: Start by thinking about what it is you want to know, and write it down
mathematically.

From p(θ|x) one can calculate the expectation values of the parameters, and their errors. Note that we are
immediately taking a Bayesian view of probability, as a degree of belief, rather than a frequency of occurrence
in a set of trials.

2.1 Forward modelling

Often, what may be easily calculable is not this, rather the opposite, p(x|θ)2. The opposite is sometimes referred
to as forward modelling - i.e. if we know what the parameters are, we can compute the expected distribution of
the data. Examples of forward modelling distributions include the common ones - binomial, Poisson, gaussian
etc. or may be more complex, such as the predictions for the CMB power spectrum as a function of cosmological
parameters. As a concrete example, consider a model which is a gaussian with mean µ and variance σ2. The
model has two parameters, θ = (µ, σ), and the probability of a single variable x given the parameters is

p(x|θ) =
1√
2πσ

exp
[
− (x− µ)2

2σ2

]
, (2)

but this is not what we actually want. However, we can relate this to p(θ|x) using Bayes’ Theorem, here written
for a more general data vector x:

p(θ|x) =
p(θ,x)
p(x)

=
p(x|θ)p(θ)

p(x)
. (3)

1 There is no rule n: n > 1.
2 If you are confused about p(A|B) and p(B|A) consider if A=pregnant and B=female. p(A|B) is a few percent, p(B|A)

is unity
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• p(θ|x) is the posterior probability for the parameters.

• p(x|θ) is called the Likelihood and given its own symbol L(x; θ).

• p(θ) is called the prior, and expresses what we know about the parameters prior to the experiment being
done. This may be the result of previous experiments, or theory (e.g. some parameters, such as the age of the
Universe, may have to be positive). In the absence of any previous information, the prior is often assumed
to be a constant (a ‘flat prior’).

• p(x) is the evidence.

For parameter estimation, the evidence simply acts to normalise the probabilities,

p(x) =
∫
dθ p(x|θ) p(θ) (4)

and the relative probabilities of the parameters do not depend on it, so it is often ignored and not even calculated.

However, the evidence does play an important role in model selection, when more than one theoretical model
is being considered, and one wants to choose which model is most likely, whatever the parameters are. We turn
to this later.

Actually all the probabilities above should be conditional probabilities, given any prior information I which
we may have. For clarity, I have omitted these for now. I may be the result of previous experiments, or may be
a theoretical prior, in the absence of any data. In such cases, it is common to adopt the principle of indifference
and assume that all values of the parameter(s) is (are) equally likely, and take p(θ)=constant (perhaps within
some finite bounds, or if infinite bounds, set it to some arbitrary constant and work with an unnormalised
prior). This is referred to as a flat prior. Other choices can sometimes be justified, e.g. a uniform distribution
of ln θ, if θ is a parameter which scales the expectation value of the data, and one has no prior idea of which
decade it lies in.

Thus for flat priors, we have simply
p(θ|x) ∝ L(x; θ). (5)

Although we may have the full probability distribution for the parameters, often one simply uses the peak of
the distribution as the estimate of the parameters. This is then a Maximum Likelihood estimate. Note that if
the priors are not flat, the peak in the posterior p(θ|x) is not necessarily the maximum likelihood estimate.

A ‘rule of thumb’ is that if the priors are assigned theoretically, and they influence the result significantly,
the data are usually not good enough. (If the priors come from previous experiment, the situation is different -
we can be more certain that we really have some prior knowledge in this case).

Finally, note that this method does not generally give a goodness-of-fit, only relative probabilities. It is still
common to compute χ2 at this point to check the fit is sensible.

2.2 Errors

Let us assume we have a posterior probability distribution, which is single-peaked. Two common estimators
(indicated by a hat: θ̂) of the parameters are the peak (most probable) values, or the mean,

θ̂ =
∫
dθ θ p(θ|x). (6)

An estimator is unbiased if its expectation value is the true value θ0:

〈θ̂〉 = θ0. (7)

Let us assume for now that the prior is flat, so the posterior is proportional to the likelihood. This can be relaxed.
Close to the peak, a Taylor expansion of the log likelihood implies that locally it is a mutivariate gaussian in
parameter space:

lnL(x; θ) = lnL(x; θ0) +
1
2

(θα − θ0α)
∂2 lnL
∂θα∂θβ

(θβ − θ0β) + . . . (8)

or

L(x; θ) = L(x; θ0) exp
[
−1

2
(θα − θ0α)Hαβ(θβ − θ0β)

]
. (9)

The Hessian matrix Hαβ ≡ − ∂2 lnL
∂θα∂θβ

controls whether the estimates of θα and θβ are correlated or not. If it is
diagonal, the estimates are uncorrelated. Note that this is a statement about estimates of the quantities, not the
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quantities themselves, which may be entirely independent, but if they have a similar effect on the data, their
estimates may be correlated. Note that in cases of practical interest, the likelihood may not be well described
by a multivariate gaussian at levels which set the interesting credibility3 levels (e.g. 68%). We turn later to how
to proceed in such cases.

2.3 Conditional and marginal errors

If we fix all the parameters except one, then the error is given by the curvature along a line through the likelihood
(posterior, if prior is not flat):

σconditional,α =
1√
Hαα

. (10)

This is called the conditional error, and is the minimum error bar attainable on θα if all the other parameters
are known. It is rarely relevant and should almost never be quoted.

2.4 Marginalising over a gaussian likelihood

The marginal distribution of θ1 is obtained by integrating over the other parameters:

p(θ1) =
∫
dθ2 . . . dθNp(θ) (11)

a process which is called marginalisation. Often one sees marginal distributions of all parameters in pairs, as a
way to present some complex results. In this case two variables are left out of the integration.

If you plot such error ellipses, you must say what contours you plot. If you say you plot 1σ and 2σ contours,
I don’t know whether this is for the joint distribution (i.e. 68% of the probability lies within the inner contour),
or whether 68% of the probability of a single parameter lies within the bounds projected onto a parameter axis.
The latter is a 1σ, single-parameter error contour (and corresponds to ∆χ2 = 1), whereas the former is a 1σ
contour for the joint distribution, and corresponds to ∆χ2 = 2.3.

Note that ∆χ2 = χ2 − χ2(minimum), where

χ2 =
∑
i

(xi − µi)2

σ2
i

(12)

for data xi with µi = 〈xi〉 and variance σ2
i . If the data are correlated, this generalises to

χ2 =
∑
ij

(xi − µi)C−1
ij (xj − µj) (13)

where Cij = 〈(xi − µi)(xj − µj)〉.

For other dimensions, see Table 1, or read...

The Numerical Recipes bible, chapter 15.6 [20]

Read it. Then, when you need to plot some error contours, read it again.

Table 1. ∆χ2 for joint parameter estimation for 1, 2 and 3 parameters.

σ p M=1 M=2 M=3

1σ 68.3% 1.00 2.30 3.53
2σ 95.4% 4.00 6.17 8.02
3σ 99.73% 9.00 11.8 14.2

Note that some of the results I give assume the likelihood (or posterior) is well-approximated by a multivariate
gaussian. This may not be so. If your posterior is a single peak, but is not well-approximated by a multivariate
3 Often this is called the confidence level, but the credibility level is the appropriate terminology for Bayesian statistics.

The 95% confidence interval is a frequentist construct: it is the interval which, for a given model and parameter, then,
allowing for all data which MIGHT have been obtained, the procedure for constructing the confidence interval would
include the true parameter 95% of the time.
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gaussian, label your contours with the enclosed probability. If the likelihood is complicated (e.g. multimodal),
then you may have to plot it and leave it at that - reducing it to a maximum likelihood point and error matrix
is not very helpful. Not that in this case, the mean of the posterior may be unhelpful - it may lie in a region of
parameter space with a very small posterior.

A multivariate gaussian likelihood is a common assumption, so it is useful to compute marginal errors for
this rather general situation. The simple result is that the marginal error on parameter θα is

σα =
√

(H−1)αα. (14)

Note that we invert the Hessian matrix, and then take the square root of the diagonal components. Let us prove
this important result. In practice it is often used to estimate errors for a future experiment, where we deal with
the expectation value of the Hessian, called the Fisher Matrix:

Fαβ ≡ 〈Hαβ〉 =
〈
− ∂2 lnL
∂θα∂θβ

〉
. (15)

We will have much more to say about Fisher matrices later. The expected error on θα is thus

σα =
√

(F−1)αα. (16)

It is always at least as large as the expected conditional error. Note: this result applies for gaussian-shaped
likelihoods, and is useful for experimental design. For real data, you would do the marginalisation a different
way - see later.

To prove this, we can use characteristic functions. See expanded version of these notes[10]

3 Fisher Matrix Analysis

This has been adapted from [24] (hereafter TTH).

How accurately can we estimate model parameters from a given data set? This question was basically
answered 60 years ago [5], and we will now summarize the results, which are both simple and useful.

Suppose for definiteness that our data set consists of N real numbers x1, x2, ..., xN , which we arrange in an
N -dimensional vector x. These numbers could for instance denote the measured temperatures in the N pixels
of a CMB sky map, the counts-in-cells of a galaxy redshift survey, N coefficients of a Fourier expansion of
an observed galaxy density field, or the number of gamma-ray bursts observed in N different flux bins. Before
collecting the data, we think of x as a random variable with some probability distribution L(x; θ), which depends
in some known way on a vector of M model parameters θ = (θ1, θ2, ..., θM ).

Such model parameters might for instance be the spectral index of density fluctuations, the Hubble constant
h, the cosmic density parameter Ω or the mean redshift of gamma-ray bursts. We will let θ0 denote the true
parameter values and let θ refer to our estimate of θ. Since θ is some function of the data vector x, it too is a
random variable. For it to be a good estimate, we would of course like it to be unbiased, i.e.,

〈θ〉 = θ0, (17)

and give as small error bars as possible, i.e., minimize the standard deviations

∆θα ≡
(〈
θ2α
〉
− 〈θα〉2

)1/2
. (18)

In statistics jargon, we want the BUE θα, which stands for the “Best Unbiased Estimator”.

A key quantity in this context is the so-called Fisher information matrix, defined as

Fαβ ≡
〈

∂2L
∂θα∂θβ

〉
, (19)

where
L ≡ − lnL. (20)

Another key quantity is the maximum likelihood estimator, or ML-estimator for brevity, defined as the parameter
vector θML that maximizes the likelihood function L(x; θ).

Using this notation, a number of powerful theorems have been proven (see e.g. [14],[13]):
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1. For any unbiased estimator, ∆θα ≥ 1/
√

Fαα (the Cramér-Rao inequality).

2. If an unbiased estimator attaining (“saturating” ) the Cramér-Rao bound exists, it is the ML estimator (or
a function thereof).

3. The ML-estimator is asymptotically BUE.

The first of these theorems thus places a firm lower limit on the error bars that one can attain, regardless of
which method one is using to estimate the parameters from the data. You won’t do better, but you might do
worse.

The normal case is that the other parameters are estimated from the data as well, in which case, as we have
seen, the minimum standard deviation rises to

∆θα ≥ (F−1)1/2αα . (21)

This is called the marginal error, and I reemphasise that this is normally the relevant error to quote.

The second theorem shows that maximum-likelihood (ML) estimates have quite a special status: if there is
a best method, then the ML-method is the one. Finally, the third result basically tells us that in the limit of
a very large data set, the ML-estimate for all practical purposes is the best estimate, the one that for which
the Cramér-Rao inequality becomes an equality4. It is these nice properties that have made ML-estimators so
popular.

Note that conditional and marginal errors coincide if F is diagonal. If it is not, then the estimates of the
parameters are correlated (even if the parameters themselves are uncorrelated). e.g. in the example shown in
Fig. 1, estimates of the baryon density parameter Ωb and the dark energy equation of state w ≡ p/ρc2 are
strongly correlated with WMAP data alone, so we will tend to overestimate both Ωb and w, or underestimate
both. However, the value of Ωb in the Universe has nothing obvious to do with w - they are independent.

Note that it is quite common to see plots like this, where all parameters except for two have been marginalised
over. To produce such plots, a 2 × 2 matrix (F(2)) of relevant rows and columns (corresponding to the two
parameters whose marginal probability distribution is to be plotted) is extracted from F−1. What is plotted is
then

lnL = lnL0 −
1
2

(θ − θ0)αF
(2)
αβ(θ − θ0)β α, β = 1, 2.

Fig. 1. The expected error ellipses for cosmological parameters (σ8, baryon density parameter Ωb, and dark energy
equation of state w ≡ p/ρc2) from a 3D weak lensing survey of 1000 square degrees, with a median redshift of 1 and a
photometric redshift error of 0.15. Probabilities are marginalised over all other parameters, except that n = 1 and a flat
Universe are assumed. Dark ellipses represent a prior from WMAP, pale represents the 3D lensing survey alone, and the
central ellipses show the combination (from Kitching T., priv. comm.).

4 This is sometimes called ‘saturating the Cramér-Rao bound’
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Combining experiments

If the experiments are independent, you can simply add the Fisher matrices (why?). Note that the marginal
error ellipses (marginalising over all but two variables) in the combined dataset can be much smaller than you
might expect, given the marginal error ellipses for the individual experiments, because the operations of adding
the experimental data and marginalising do not commute.

3.1 The Gaussian Case

Let us now explicitly compute the Fisher information matrix for the case when the probability distribution is
Gaussian, i.e., where (dropping an irrelevant additive constant N ln[2π])

2L = ln det C + (x− µ)C−1(x− µ)T , (22)

where in general both the mean vector µ ≡ 〈x〉 and the covariance matrix

C = 〈(x− µ)(x− µ)T 〉 (23)

depend on the model parameters θ. Although vastly simpler than the most general situation, the Gaussian case
is nonetheless general enough to be applicable to a wide variety of problems in cosmology. Some interesting
mathematics allows us to compute the Fisher matrix, which is simply the expectation value of − lnL (see [24, 10]
for more details), giving the important result that

Fαβ = 〈L,αβ 〉 =
1
2

Tr[C−1C,αC−1C,β + C−1Mαβ ], (24)

where we have defined the matrix Mαβ ≡ 〈D,αβ 〉 = µ,α µ,Tβ +µ,β µ,Tα , and C,α ≡ ∂C/∂θα.

Note that the Fisher matrix requires no data.

This result is extremely powerful. If the data have a (multivariate) gaussian distribution (and the errors can
be correlated; C need not be diagonal), and you know how the means µ and the covariance matrix C depend on
the parameters, you can calculate the Fisher Matrix before you do the experiment. The Fisher Matrix gives you
the expected errors, so you know how well you can expect to do if you do a particular experiment, and you can
then design an experiment to give you, for example, the best (marginal) error on the parameter you are most
interested in.

Note that if the prior is not uniform, then you can simply add a ‘prior matrix’ to the Fisher matrix be-
fore inversion. Fig. 1 shows an example, where a prior from CMB experimental results has been added to a
hypothetical 3D weak lensing survey.

Treat the Fisher errors as a one-way test: you might not achieve errors which are this small, but you won’t
do better. So if you want to measure some quantity with an accuracy of a metre, and a Fisher analysis tells you
the error bar is the size of Belgium, give up.

Reparametrisation

Finally we mention that sometimes the gaussian approximation for the likelihood surface is not a very good
approximation. With a good theoretical model, it is possible to make nonlinear transformations of the parameters
to make the likelihood more gaussian. See [15] for more details.

iCosmo: a great resource

icosmo.org has a web-based calculator for Fisher matrices for cosmology. You can download results, or even the
source code, to compute Fisher matrices for various experiments in lensing, BAOs, supernovae etc, or custom-
design your own survey. It also gives many other useful things, such as lensing power spectra, angular diameter
distances etc.
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4 Numerical methods

If the problem has only two or three parameters, then it may be possible to evaluate the likelihood on a
sufficiently fine grid to be able to locate the peak and estimate the errors. If the dimensionality of the parameter
space is very large, then, as the number of grid points grows exponentially with dimension, it becomes rapidly
unfeasible to do it this way. In fact, it’s very inefficient to do this anyway, as typically most of the hypervolume
has very small likelihood so is of little interest. There are various ways to sample the likelihood surface more
efficiently, concentrating the points more densely where the likelihood is high.

The most common method in use is Monte Carlo Markov Chain (MCMC). We will also cover here a relatively
new method (to cosmology), Hamiltonian Monte Carlo, which seems more efficient in cases studied.

4.1 Monte Carlo Markov Chain (MCMC) method

The aim of MCMC is to generate a set of points in the parameter space whose distribution function is the
same as the target density, in this case the likelihood, or more generally the posterior. MCMC makes random
drawings, by moving in parameter space in a Markov process - i.e. the next sample depends on the present one,
but not on previous ones. By design, the resulting Markov Chain of points samples the posterior, such that
the density of points is proportional to the target density (at least asymptotically), so we can estimate all the
usual quantities of interest from it (mean, variance, etc). The number of points required to get good estimates
is said to scale linearly with the number of parameters, so very quickly becomes much faster than grids as the
dimensionality increases. In cosmology, we are often dealing with around 10-20 parameters, so MCMC has been
found to be a very effective tool.

The target density is approximated by a set of delta functions (you may need to normalise)

p(θ) ' 1
N

N∑
i=1

δ(θ− θi) (25)

from which we can estimate any integrals (such as the mean, variance etc.):

〈f(θ)〉 ' 1
N

N∑
i=1

f(θi). (26)

The basic procedure to make the chain is to generate a new point θ∗ from the present point θ (by taking
some sort of step), and accepting it as a new point in the chain with a probability which depends on the ratio of
the new and old target densities. The distribution of steps is called the proposal distribution. The most popular
algorithm is the Metropolis-Hastings algorithm, where the probability of acceptance is

p(acceptance) = min

[
1,
p(θ∗)q(θ∗|θ)
p(θ)q(θ|θ∗)

]
(27)

where the proposal distribution function is q(θ ∗ |θ) for a move from θ to θ∗.

If the proposal distribution is symmetric (as is often the case), the algorithm simplifies to the Metropolis
algorithm:

p(acceptance) = min

[
1,
p(θ∗)
p(θ)

]
. (28)

• Choose a random initial starting point in parameter space, and compute the target density.

• Repeat:

• Generate a step in parameter space from a proposal distribution, generating a new trial point for the chain.

• Compute the target density at the new point, and accept it (or not) with the Metropolis-Hastings algorithm.

• If the point is not accepted, the previous point is repeated in the chain5.

• End Repeat:

The easy bits: this is trivial to code - you might just take a top-hat proposal distribution in each parameter
direction, and it should work. The harder parts are (even in the tophat case): choosing an efficient proposal
distribution; dealing with burn-in and convergence.
5 It is a common mistake to neglect to do this
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Proposal distribution

If the proposal distribution is small, in the sense that the typical jump is small, then the chain may take a
very long time to explore the target distribution, and it will be very inefficient. Since the target density hardly
changes, almost all points are accepted, but it still takes forever. This is an example of poor mixing. If the
proposal distribution is too large, on the other hand, then the parameter space is explored, but the trial points
are often a long way from the peak, at places where the target density is low. This is very inefficient as well,
since they are almost always rejected by the Metropolis-Hastings algorithm. So what is best? You might expect
the chain to do well if the proposal distribution is ‘about the same size as the peak in the target density’, and
you would be right. In fact, a very good option is to draw from a multivariate gaussian with the Fisher matrix
as Hessian. However, having said that, if you want something quick to code (but sub-optimal), a top-hat of
about the right dimensions will do a decent job. You might have to run a preliminary chain or two to get an
idea of the size of the target, but the rules say you are not allowed to change the proposal distribution in a
chain, so once you have decided you must throw away your chains and begin again.

Burn-in and convergence

Theory indicates that the chain should fairly sample the target distribution once it has converged to a stationary
distribution. This means that the early part of the chain (the ‘burn-in’ are ignored, and the dependence on the
starting point is lost. It is vitally important to have a convergence test. Be warned that the points in a MCMC
chain are correlated, and the chain can appear to have converged when it has not (one can reduce this problem
by evaluating the correlation function of the points, and ‘thinning’ them by (say) taking only every third point
(or whatever is suggested by the correlation analysis). Fig. 2 shows one such example. The classic test is the
Gelman-Rubin (1992) convergence criterion. Start M chains, each with 2N points, starting at well-separated
parts of parameter space. In this example, the first N are discarded as burn-in.

The idea is that you have two ways to estimate the mean of the parameters - either treat the combined
chains as a single dataset, or look at the means of each chain. If the chains have converged, these should agree
within some tolerance.

Following [26], let θJI represent the point in parameter space in position I of chain J . Compute the mean of
each chain (J):

θ̄J ≡ 1
N

N∑
I=1

θJI (29)

and the mean of all the chains

θ̄ ≡ 1
NM

N∑
I=1

M∑
J=1

θJI . (30)

The chain-to-chain variance B is

B =
1

(M − 1)

M∑
J=1

(θ̄J − θ̄)2 (31)

and the average variance of each chain is

W =
1

M(N − 1)

N∑
I=1

M∑
J=1

(θJI − θ̄J)2. (32)

Under convergence, W and B/N should agree.

The weighted estimate of the variance,

σ2 =
N − 1
N

W +
B

N
(33)

overestimates the true variance if the starting distribution is overdispersed.

Accounting for the variance of the means gives an estimator of the variance

V = σ2 +
B

NM
(34)

V is an overestimate, and W is an underestimate. The ratio of the two estimates is



10 Alan Heavens

R̂ =

(
N−1
N

)
+B

(
1 + 1

M

)
W

. (35)

R should approach unity as convergence is achieved. How close to R = 1? Opinions differ; I have seen suggestions
to run the chain until the values of R̂ are always < 1.03, or < 1.2, but a proof would be nice.

Fig. 2. Examples of unconverged chains. The left panel suggests the chain has converged, but the right panel shows the
chain and a second one, also apparently converged, but showing clearly different distributions. From Verde et al. ApJS,
148, 195 (2003).

CosmoMC

Excellent resource. MCMC sampler with cosmological data (CMB + support for LSS, SNe).
http://cosmologist.info/cosmomc/

For more details on MCMC in general, see [6, 17, 27].

4.2 Hamiltonian Monte Carlo

As we’ve seen, the proposal distribution has to be reasonably finely tuned to ensure good mixing, but not be
too inefficient. What we would really like is to be able to take rather big jumps, so the chain is well-mixed,
but in such a way that the probability of acceptance of each point is still high. Hamiltonian (or Hybrid) Monte
Carlo (HMC) tries to do this, via a rather clever trick. In practice, it seems that it can be about M times faster
than MCMC in M dimensions. Typical applications report that 4 times shorter chains give the same accuracy
as MCMC. Originally developed for particle physics [3], there is a nice exposition in astrophysics by Hajian [7].

HMC works by sampling from a larger parameter space than we want to explore, by introducing M auxiliary
variables, one for each parameter in the model. To see how this works, imagine each of the parameters in the
problem as a coordinate. HMC regards the target distribution which we seek as an effective potential in this
coordinate system, and for each coordinate it generates a generalised momentum. i.e. it expands the parameter
space from its original ‘coordinate space’ to a phase space, in which there is a so-called ‘extended’ target
distribution. It tries to sample from the extended target distribution in the 2M dimensions. It explores this
space by treating the problem as a dynamical system, and evolving the phase space coordinates by solving the
dynamical equations. Finally, it ignores the momenta (marginalising, as in MCMC), and this gives a sample of
the original target distribution.

There are several advantages to this approach. One is that the probability of acceptance of a new point is
high - close to unity; secondly, the system can make big jumps, so the mixing is better and the convergence
faster. In doing the big jumps, it does some additional calculations, but these do not involve computing the
likelihood, which is typically computationally expensive.
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Let us see how it works. If the target density in M dimensions is p(θ), then we define a potential

U(θ) ≡ − ln p(θ). (36)

For each coordinate θα, we generate a momentum uα, conveniently from a normal distribution with zero mean
and unit variance, so the M -dimensional momentum distribution is a simple multivariate gaussian which we
denote N (u). We define the kinetic energy

K(u) ≡ 1
2
uTu, (37)

and the Hamilitonian is
H(θ,u) ≡ U(θ) +K(u). (38)

The trick is that we generate chains to sample the extended target density

p(θ,u) = exp [−H(θ,u)] . (39)

Since this is separable,
p(θ,u) = exp [−U(θ)] exp [−K(u)] ∝ p(θ)N (u) (40)

and if we then marginalise over u by simply ignoring the u coordinates attached to each point in the chain (just
as in MCMC), the resulting marginal distribution samples the desired target distribution p(θ). This is really
very neat.

The key is that if we exactly solve the Hamiltonian equations

θ̇α = uα

u̇α = − ∂H
∂θα

(41)

then H remains invariant, so the extended target density is always the same, and the acceptance is unity.
Furthermore, we can integrate the equations for a long time if we wish, decorrelating the points in the chain.

There are several issues to consider.

• We seem to need the target density to define the potential, but this is what we are looking for. We need to
approximate it.

• The aim is to do this fast, so we do not want to do many operations before generating a new sample. An
easy way to achieve this is to employ a simple integrator (e.g. leap-frog; even Euler’s method might do) and
take several fairly big steps before generating a new point in the chain.

• We need to ensure we explore the extended space carefully.

The result of the two approximations is that H will not be quite constant. We deal with this as in MCMC
by using the Metropolis algorithm, accepting the new point (θ∗,u∗) with a probability

min {1, exp [−H(θ∗,u∗) +H(θ,u)]} , (42)

otherwise we repeat the old point (θ,u) as usual.

How do we approximate? We want the gradients to be cheap to compute. It is usual to generate an approx-
imate analytical potential by running a relatively short MCMC chain, computing the covariance of the points
in the chain, and approximating the distribution by a multivariate gaussian by a multivariate gaussian with the
same covariance. The gradients are then consequently easy to compute analytically.

The last point is that if we change the momentum only with Hamilton’s equations of motion, we will restrict
ourselves to a locus in phase space, and the target distribution will not be properly explored. To avoid this, a
new momentum is generated randomly when each point in the chain is generated. The art is to choose a good
step in the integration, and the number of steps to take before generating a new point. Perhaps unsurprisingly,
choosing these such that the new point differs from the previous one by about the size of the target peak works
well. Thinning can be performed, and a convergence test must still be applied. Fig. 3 shows a comparison
between HMC and MCMC for a simple case of a 6D gaussian target distribution, from [7].

5 Model Selection

Model selection is in a sense a higher-level question than parameter estimation. In parameter estimation, one
assumes a theoretical model within which one interprets the data, whereas in model selection, one wants to
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Fig. 3. A comparison of HMC sampling (top) and MCMC sampling (bottom). Note that the computer time required to
generate each point in the HMC sampling will be larger than that of MCMC, so the actual gains are less than appears.
From [7].

know which theoretical framework is preferred, given the data (regardless of the parameter values). The models
may be completely different (e.g. compare Big Bang with Steady State, to use an old example), or variants
of the same idea. E.g. comparing a simple cosmological model where the Universe is assumed flat and the
perturbations are strictly scale-invariant (n = 1), with a more general model where curvature is allowed to vary
and the spectrum is allowed to deviate from scale-invariance. The sort of question asked here is essentially ‘Do
the data require a more complex model?’. Clearly in the latter type of comparison χ2 itself will be of no use -
it will always reduce if we allow more freedom. There are frequentist ways to try and answer these questions,
but we are all by now confirmed Bayesians6, so will approach it this way.

5.1 Bayesian evidence

The Bayesian method to select between models (e.g. General Relativity, & modified gravity) is to consider the
Bayesian evidence ratio. Essentially we want to know if, given the data, there is evidence that we need to expand
the space of gravity models beyond GR. Assuming non-commital priors for the models (i.e. the same a priori
probability), the probability of the models given the data is simply proportional to the evidence.

We denote two competing models by M and M ′. We assume that M ′ is a simpler model, which has fewer
(n′ < n) parameters in it. We further assume that it is nested in Model M ′, i.e. the n′ parameters of model M ′

are common to M , which has p ≡ n − n′ extra parameters in it. These parameters are fixed to fiducial values
in M ′.

We denote by x the data vector, and by θ and θ′ the parameter vectors (of length n and n′).

Apply Rule 1: Write down what you want to know. Here it is p(M |x) - the probability of the model, given
the data.

The posterior probability of each model comes from Bayes’ theorem:

p(M |x) =
p(x|M)p(M)

p(x)
(43)

and similarly for M ′. By marginalisation p(x|M), known as the Evidence, is

p(x|M) =
∫
dθ p(x|θM)p(θ|M), (44)

which should be interpreted as a multidimensional integration. Hence the posterior relative probabilities of the
two models, regardless of what their parameters are7, is

p(M ′|x)
p(M |x)

=
p(M ′)
p(M)

∫
dθ′ p(x|θ′M ′)p(θ′|M ′)∫
dθ p(x|θM)p(θ|M)

. (45)

With non-committal priors on the models, p(M ′) = p(M), this ratio simplifies to the ratio of evidences, called
the Bayes Factor,
6 If not, please leave the room
7 If a model has no parameters, then the integral is simply replaced by p(x|M)
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B ≡
∫
dθ′ p(x|θ′M ′)p(θ′|M ′)∫
dθ p(x|θM)p(θ|M)

. (46)

Note that the a complicated model M will (if M ′ is nested) inevitably lead to a higher likelihood (or at least
as high), but the evidence will favour the simpler model if the fit is nearly as good, through the smaller prior
volume.

We assume uniform (and hence separable) priors in each parameter, over ranges ∆θ (or ∆θ′). Hence
p(θ|M) = (∆θ1 . . . ∆θn)−1 and

B =
∫
dθ′ p(x|θ′,M ′)∫
dθ p(x|θ,M)

∆θ1 . . . ∆θn

∆θ′1 . . . ∆θ′n′
. (47)

Note that if the prior ranges are not large enough to contain essentially all the likelihood, then the position of
the boundaries would influence the Bayes factor. In what follows, we will assume the prior range is large enough
to encompass all the likelihood.

In the nested case, the ratio of prior hypervolumes simplifies to

∆θ1 . . . ∆θn

∆θ′1 . . . ∆θ′n′
= ∆θn′+1 . . . ∆θn′+p, (48)

where p ≡ n− n′ is the number of extra parameters in the more complicated model.

Here we see the problem. The evidence requires a multidimensional integration over the likelihood and prior,
and this may be very expensive to compute. There are various ways to simplify this. One is analytic - follow
the Fisher approach and assume the likelihood is a multivariate gaussian, others are numerical, such as nested
sampling, where one tries to sample the likelihood in an efficient way. There are others, but we will focus on
these. Note that shortcuts with names such as AIC and BIC may be unreliable as they are based on the best-fit
χ2, and from a Bayesian perspective we want to know how much parameter space would give the data with
high probability. See [18] for more discussion.

5.2 Laplace approximation

The Bayes factor in equation (47) still depends on the specific dataset x. For future experiments, we do not yet
have the data, so we compute the expectation value of the Bayes factor, given the statistical properties of x.
The expectation is computed over the distribution of x for the correct model (assumed here to be M). To do
this, we make two further approximations: first we note that B is a ratio, and we approximate 〈B〉 by the ratio
of the expected values, rather than the expectation value of the ratio. This should be a good approximation if
the evidences are sharply peaked.

We also make the Laplace approximation, that the expected likelihoods are given by multivariate Gaussians.
For the correct model M , the peak of the expected likelihood is located at the true parameters θ0. Note, however,
that for the incorrect model M ′, the peak of the expected likelihood is not in general at the true parameters
(see Fig. 4 for an illustration of this). This arises because the likelihood in the numerator of equation (47) is
the probability of the dataset x given incorrect model assumptions.

The Laplace approximation is routinely used in forecasting marginal errors in parameters, using the Fisher
matrix. Clearly the approximation may break down in some cases, but for Planck, the Fisher matrix errors
are reasonably close to (within 30% of) those computed with Monte Carlo Markov Chains. If we assume that
the posterior probability densities are small at the boundaries of the prior volume, then we can extend the
integrations to infinity, and the integration over the multivariate Gaussians can be easily done.

The final expression (see [10] for a derivation) for the expected Bayes factor is then

〈B〉 = (2π)−p/2
√

det F√
det F′

exp
(
−1

2
δθαFαβδθβ

) p∏
q=1

∆θn′+q. (49)

where the offsets are given by δθα = δθ′α for α ≤ n′ and δθα = δψα−n′ for α > n′. Note that F and F−1 are
n × n matrices, F′ is n′ × n′, and G is an n′ × p block of the full n × n Fisher matrix F. The expression we
find is a specific example of the Savage-Dickey ratio (see e.g. [25]). For a nested model with a single additional
parameter θi, 〈B〉 = p(θi|x)/p(θi).

Here we explicitly use the Laplace approximation to compute the offsets in the parameter estimates which
accompany the wrong choice of model, and compute the evidence ratio explicitly. Finally, note that this is the
expected evidence ratio (nearly); it does not address the issue of what the distribution of evidence ratios should
be.
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δψ

δθ

Fig. 4. Illustrating how assumption of a wrong parameter value can influence the best-fitting value of other model
parameters. Ellipses represent iso-likelihood surfaces, and here in the simpler model, the parameter on the horizontal
axis is assumed to take the value given by the vertical line. Filled circles show the true parameters in the more complicated
model, and the best-fit parameters in the simpler model. From [9].

Note that the ‘Occam’s razor’ term, common in evidence calculations, is to some extent encapsulated in the
term (2π)−p/2

√
det F√
det F′ , multiplied by the prior product: models with more parameters are penalised in favour of

simpler models, unless the data demand otherwise. In cases where the Laplace approximation is not a good one,
other techniques must be used, at more computational expense.

It is perhaps worth remarking that Occam’s razor appears not to be fully incorporated into this term, as
can be seen by considering a situation where the data do not depend at all on an additional parameter. In this
case, the Bayesian evidence ratio is unity, so disappointingly no preference is shown at all.

As an example, consider testing General Relativity against other gravity theories, which predict a different
growth rate of perturbations, d ln δ/d lnΩm = γ, where γ = 0.55 for GR, and (for example) γ = 0.68 for a flat
DGP braneworld model. This can be probed with weak lensing, and we ask the question do the data favour a
model where γ is a free parameter, rather than being fixed at 0.55?

We take a prior range ∆γ = 1, and we ask the question of how different the growth rate of a modified-gravity
model would have to be for these experiments to be expected to favour a relaxation of the gravity model from
General Relativity. This is shown in Fig.5. It shows how the expected evidence ratio changes with progressively
greater differences from the General Relativistic growth rate. We see that a next-generation weak lensing survey
could even distinguish ‘strongly’ δγ = 0.048. Note that changing the prior range ∆γ by a factor 10 changes the
numbers by ∼ 0.012, so the dependence on the prior range is rather small.

If one prefers to ask a frequentist question, then a combination of WL+Planck+BAO+SN should be able to
distinguish δγ = 0.13, at 10.6σ. Alternatively, one can calculate the expected error on γ [1] within the extended
model M . In this section, we are asking a slightly different question of whether the data demand that a wider
class of models needs to be considered at all, rather than estimating a parameter within that wider class.

The case for a large, space-based 3D weak lensing survey is strengthened, as it offers the possibility of
conclusively distinguishing Dark Energy from at least some modified gravity models.

5.3 Numerical sampling methods

In order to compute the evidence numerically, the prior volume needs to be sampled, in much the same way as
in parameter estimation, except the requirements are slightly more stringent. MCMC could be used, although
there are claims that it is not good at exploring the parameter space adequately. I find these claims puzzling,
as in evidence calculations we are doing an N -dimensional integral, which is not so different from doing the
(N − 1)-dimensional integral in MCMC to get marginal errors. However, here are a couple of other sampling
techniques.
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Fig. 5. The expected value of | ln〈B〉| from a future large-scale deep weak lensing survey, as might be done with Euclid,
JDEM or LSST, in combination with CMB constraints from Planck, as a function of the difference in the growth rate
between the modified-gravity model and General Relativity. The crossover at small δγ occurs because Occam’s razor will
favour the simpler (General Relativity) model unless the data demand otherwise. To the left of the cusp, GR would be
likely to be preferred by the data. The dotted vertical line shows the offset of the growth factor for the flat DGP model.
The descriptors are the terminology of Jeffreys (1961) [12]. From [9]

Nested sampling

Other sampling methods can also be very effective (see e.g. [25, 2, 11, 19]). Nested sampling was introduced by
Skilling [23]. One samples from the prior volume, and gradually concentrates more points near the peak of the
likelihood distribution, by repeatedly replacing the point with the lowest target density by one drawn strictly
from the prior volume with higher target density. This has proved effective for cosmological model selection. I
will not go into details here, except to say that the key is in drawing the new point from a suitable subset of the
prior volume. This must be increasingly smaller as the points get more confined, otherwise the trial points will
be rejected with increasing frequency and it becomes very inefficient, but it must also be a large enough subset
that the entire prior volume above the lowest target density is almost certainly included inside. For further
details, see the original papers. Note that, for multimodal target distributions, a modification called MultiNest
exists [4]. CosmoNest and MultiNest are publicly-available additions to CosmoMC.

Fig. 6. The Nested Sampling algorithm. From [19]
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6 Summary

We have explored the use of (principally) Bayesian methods for parameter estimation and model selection, and
looked at some common numerical methods for performing these tasks. We have also shown how it is possible to
work out the (minimum) errors on parameters, and on model probabilities, in advance of doing an experiment,
to see if it is worthwhile. These are the common Fisher matrix approach for parameter estimation, and the
expected evidence for model selection, which requires no more than the Fisher matrix to compute.
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