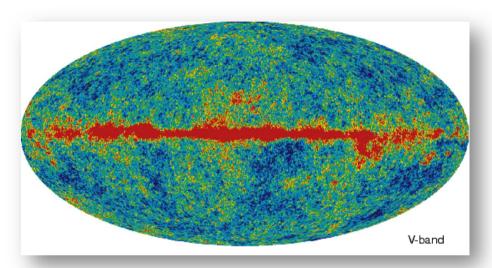
Astronomical Data Analysis: the Bayesics

Alan Heavens
University of Edinburgh, UK
Lectures given at STFC Introductory School,
University of Glasgow, August 2011

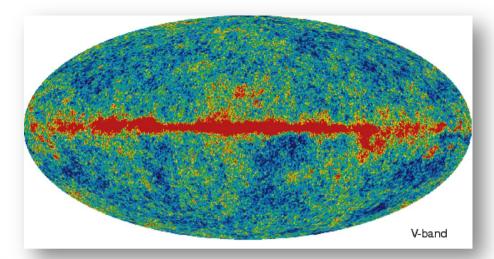
Outline

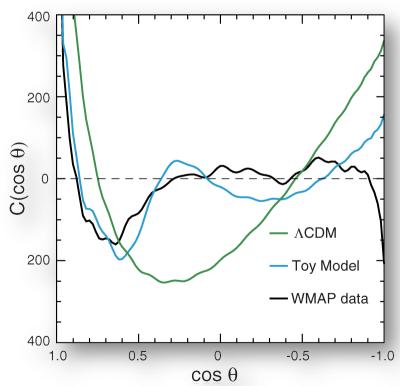
- Types of problem
- Bayes' theorem
- Parameter Estimation
 - Marginalisation
 - Errors

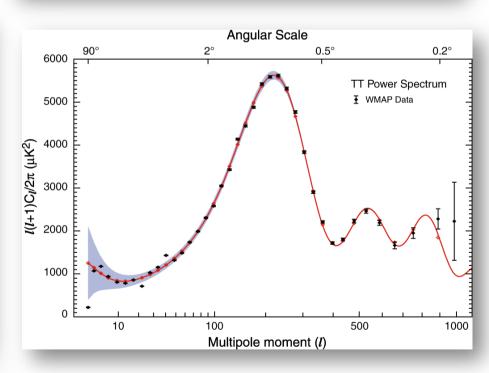


- Error prediction and experimental design:
 Fisher Matrices
- Model Selection

LCDM fits the WMAP data well.







Inverse problems

- Most cosmological problems are inverse problems, where you have a set of data, and you want to infer something.
- Examples
 - Hypothesis testing
 - Parameter estimation
 - Model selection

Examples

- Hypothesis testing
 - Is the CMB radiation consistent with (initially) gaussian fluctuations?
- Parameter estimation
 - In the Big Bang model, what is the value of the matter density parameter?
- Model selection
 - Do cosmological data favour the Big Bang theory or the Steady State theory?
 - Is the gravity law General Relativity or higherdimensional?

What is probability?

- Frequentist view: p describes the relative frequency of outcomes in infinitely long trials
- Bayesian view: p expresses our degree of belief
- Bayesian view is closer to what we seem to want from experiments: e.g. given the WMAP data, what is the probability that the density parameter of the Universe is between 0.9 and 1.1?
- Cosmology is in good shape for inference because we have decent model(s) with parameters – well-posed problem

Bayes' Theorem

Rules of probability:

•
$$p(x)+p(not x) = 1$$
 sum rule

•
$$p(x,y) = p(x|y)p(y)$$
 product rule

•
$$p(x) = \sum_{k} p(x,y_{k})$$
 marginalisation

p(x,y)=p(y,x) gives Bayes' theorem

$$p(y|x) = \frac{p(x|y) p(y)}{p(x)}$$

p(x|y) is not the same as p(y|x)

- x = female, y=pregnant
- p(y|x) = 0.03
- p(x|y) = 1

An exercise in using Bayes' theorem

You choose this one



?

Do you change your choice?

This is the Monty Hall problem

Bayes' Theorem and Inference

 If we accept p as a degree of belief, then what we often want to determine is*

$$p(\theta|x)$$

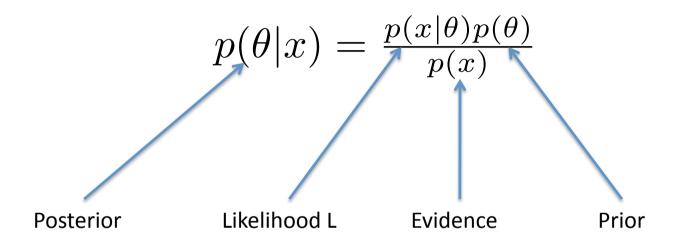
 θ : model parameter(s), x: the data

To compute it, use Bayes' theorem

$$p(\theta|x) = \frac{p(x|\theta)p(\theta)}{p(x)}$$

*This is RULE 1: start by writing down what it is you want to know RULE 2: There is no RULE n, n>1

Posteriors, likelihoods, priors and evidence

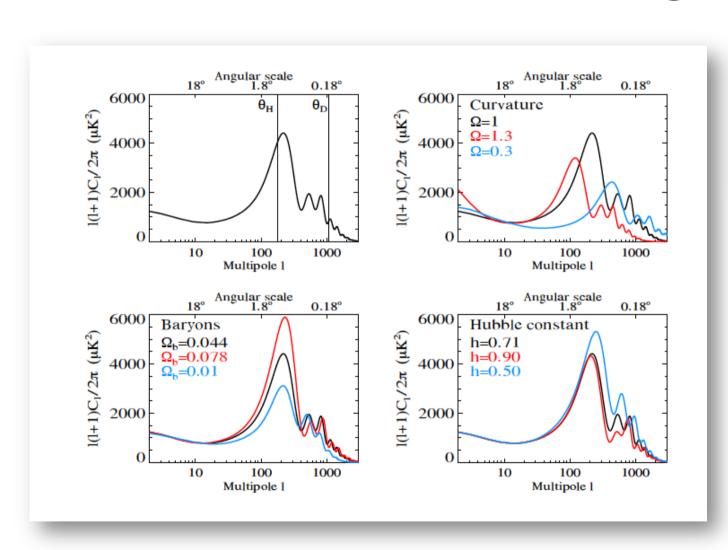


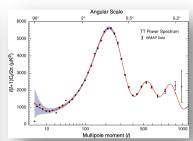
Note that we interpret these in the context of a model M, so all probabilities are really conditional on M (and indeed on any prior info I). E.g. $p(\theta) = p(\theta|M)$

The *evidence* looks rather odd – what is the probability of the data? For parameter estimation, we can ignore it – it simply normalises the posterior.

Noting that p(x)=p(x|M) makes its role clearer. In model selection (from M and M'), $p(x|M)\neq p(x|M')$

Forward modelling $p(x|\theta)$





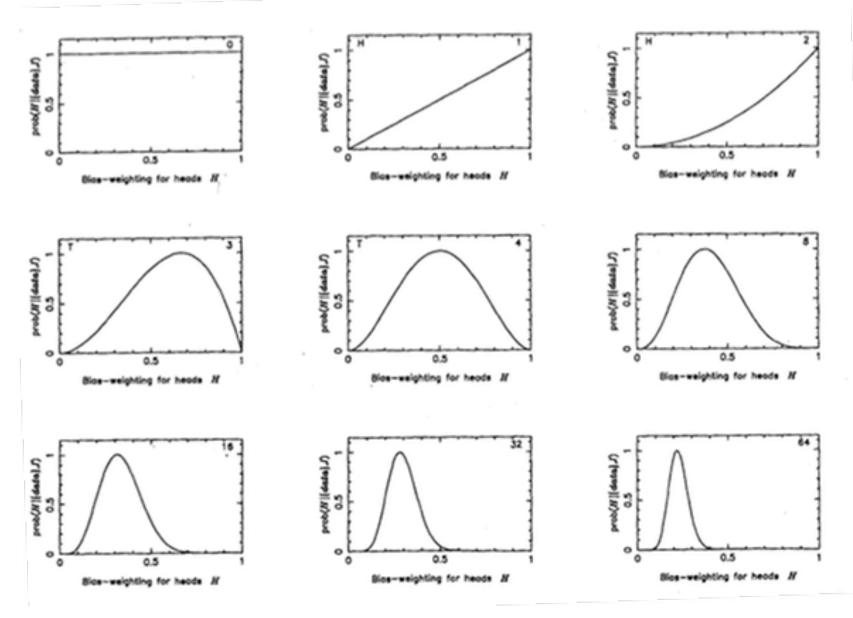
With noise properties we can predict the Sampling Distribution (the probability for a general set of data; the Likelihood is the probability for the specific data we have)

State your priors

- In easy cases, the effect of the prior is simple
- As experiment gathers more data, the likelihood tends to get narrower, and the influence of the prior diminishes
- Rule of thumb: if changing your prior[†] to another reasonable one changes the answers significantly, you need more data
- Reasonable priors? Uninformative* constant prior
- scale parameters in $[0,\infty)$; uniform in log of parameter (Jeffreys' prior*)
- Beware: in more complicated, multidimensional cases, your prior may have subtle effects...

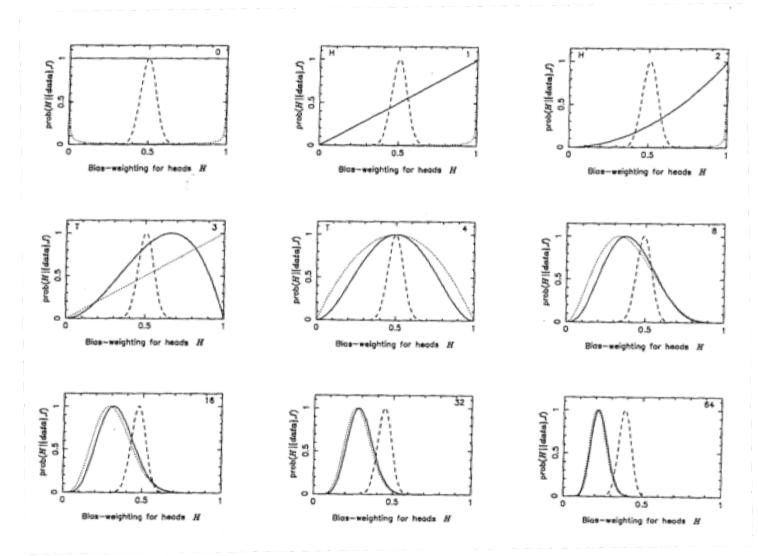
[†] I mean the raw theoretical one, not modified by an experiment

^{*} Actually, it's better not to use these terms – other people use them to mean different things – just say what your prior is!



Sivia & Skilling. IS THE COIN FAIR?

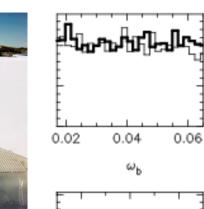
The effect of priors

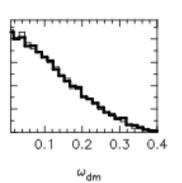


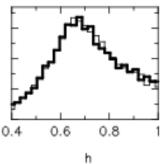
Sivia & Skilling

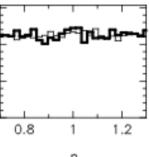
VSA CMB experiment

(Slosar et al 2003)



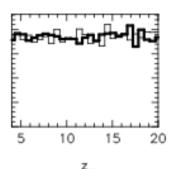


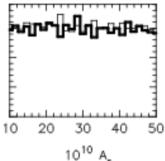




0.04

0.06

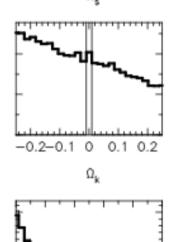




Priors: ∧≥0 10 ≤ age ≤ 20 Gyr

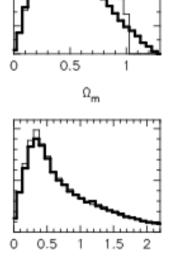
 $h \approx 0.7 \pm 0.1$

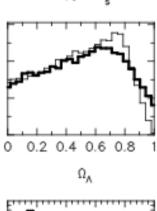
There are no data in these plots – it is all coming from the prior!

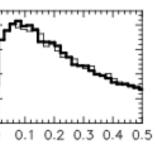


12 14 16 18 20

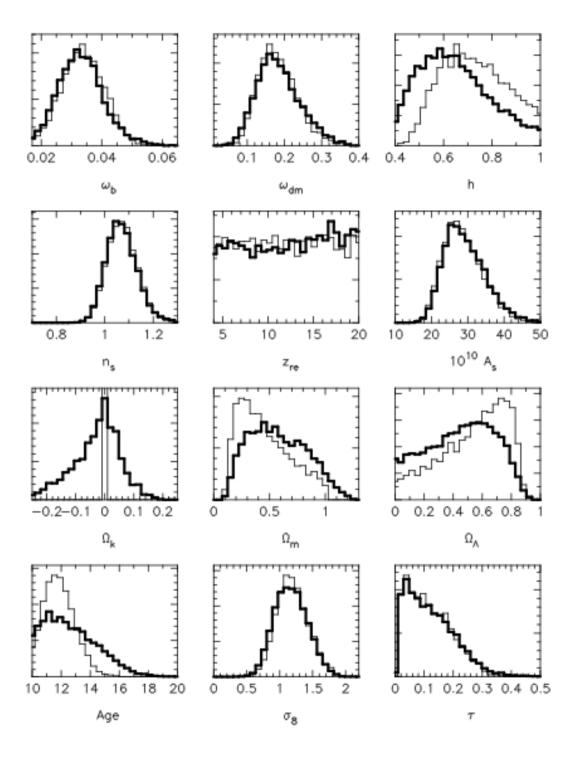
Age







VSA posterior



Estimating the parameter(s)

- Commonly the mode is used (the peak of the posterior)
- Mode = Maximum Likelihood Estimator, if the priors are uniform
- The posterior mean may also be quoted

$$\overline{\theta} = \int \theta \, p(\theta|x) d\theta$$

Errors

If we assume uniform priors, then the posterior is proportional to the likelihood.

If further, we assume that the likelihood is single-moded (one peak at θ_0) , we can make a Taylor expansion of lnL:

$$\ln L(x;\theta) = \ln L(x;\theta_0) + \frac{1}{2}(\theta_\alpha - \theta_{0\alpha}) \frac{\partial^2 \ln L}{\partial \theta_\alpha \partial \theta_\beta} (\theta_\beta - \theta_{0\beta}) + \dots$$

$$L(x;\theta) = L_0 \exp\left[-\frac{1}{2}(\theta_{\alpha} - \theta_{0\alpha})H_{\alpha\beta}(\theta_{\beta} - \theta_{0\beta}) + \ldots\right]$$

where the Hessian matrix is defined by these equations. Comparing this with a gaussian, the *conditional error* (keeping all other parameters fixed) is

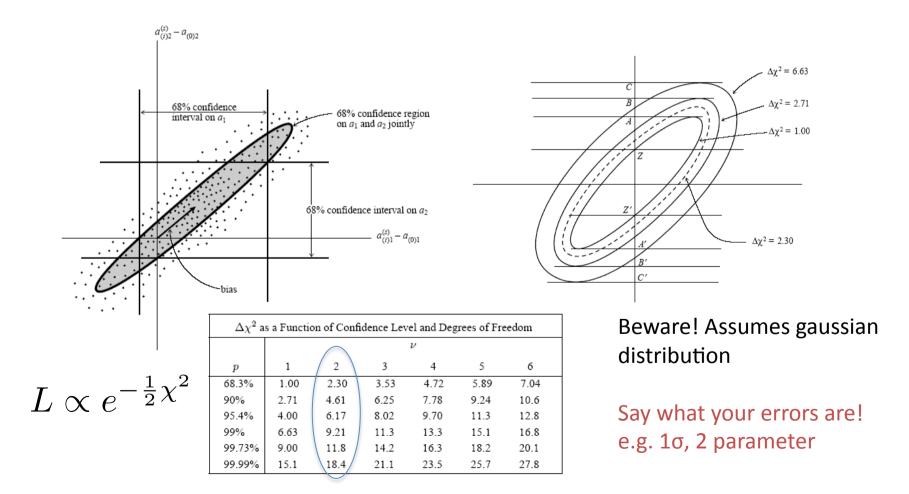
$$\sigma_{\alpha} = \frac{1}{\sqrt{H_{\alpha\alpha}}}$$

Marginalising over all other parameters gives the marginal error

$$\sigma_{\alpha} = \sqrt{(H^{-1})_{\alpha\alpha}}$$

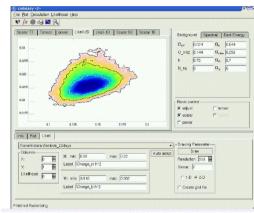
How do I get error bars in several dimensions?

Read Numerical Recipes, Chapter 15.6

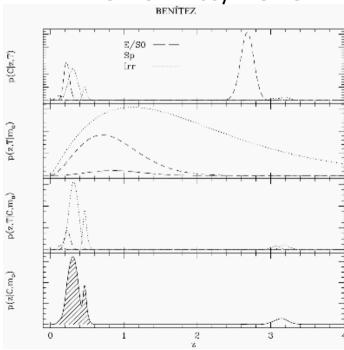


Multimodal posteriors etc

- Peak may not be gaussian
- Multimodal? Characterising it by a mode and an error is probably inadequate. May have to present the full posterior.
- Mean posterior may not be useful in this case it could be very unlikely, if it is a valley between 2 peaks.



From CMBEasy MCMC



From BPZ

Fisher Matrices

- Useful for forecasting errors, and experimental design
- The likelihood depends on the data collected.
 Can we estimate the errors before we do the experiment?
- With some assumptions, yes, using the Fisher matrix

$$F_{\alpha\beta} \equiv -\left\langle \frac{\partial^2 \ln L}{\partial \theta_\alpha \partial \theta_\beta} \right\rangle$$

Gaussian errors

 If the data have gaussian errors (which may be correlated) then we can compute the Fisher matrix easily:

$$F_{\alpha\beta} = \frac{1}{2} Tr[C^{-1}C_{,\alpha}C^{-1}C_{,\beta} + C^{-1}M_{\alpha\beta}],$$

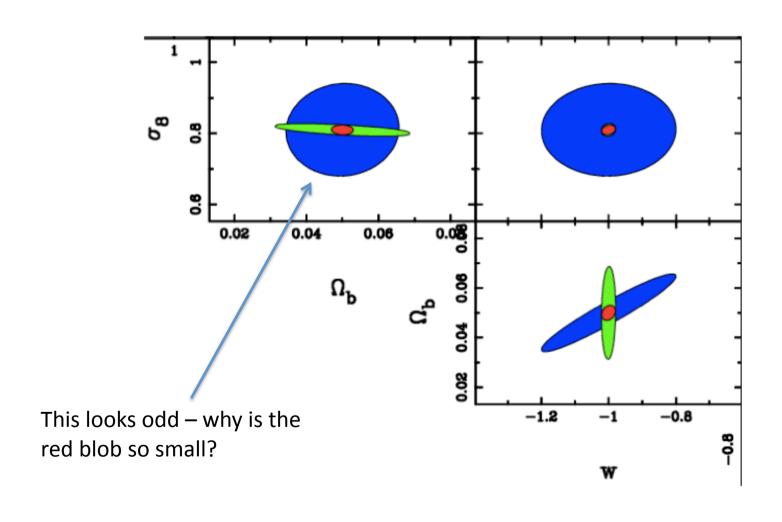
e.g. Tegmark, Taylor, Heavens 1997

Forecast marginal error on parameter lpha

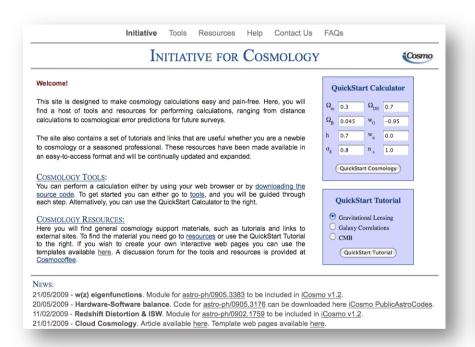
$$\sigma_{\alpha} = \sqrt{(F^{-1})_{\alpha\alpha}}$$

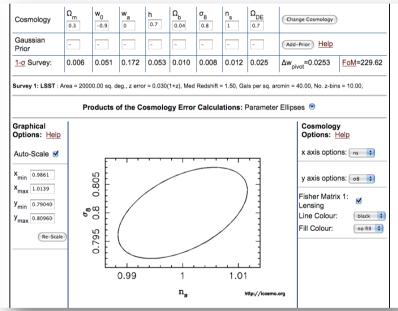
$$\mu_{\alpha} = \langle x_{\alpha} \rangle$$
 $C_{\alpha\beta} = \langle (x - \mu)_{\alpha} (x - \mu)_{\beta} \rangle$ $M_{\alpha\beta} = \mu_{,\alpha} \mu_{,\beta}^T + \mu_{,\alpha}^T \mu_{,\beta}$

Combining datasets



Open source Fisher matrices – icosmo.org





Computing posteriors

- For 2 parameters, a grid is usually possible
 - Marginalise by numerically integrating along each axis
 of the grid

- For ≫2 parameters it is not feasible to have a grid (e.g. 10 points in each parameter direction, 12 parameters = 10¹² likelihood evaluations)
- Methods: Monte Carlo Markov Chain (MCMC) etc

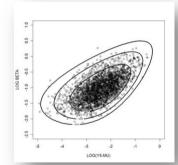
Numerical Sampling methods:

Markov Chain Monte Carlo

Aim of MCMC: generate a set of points in the parameter space whose *distribution* function is the same as the target density.

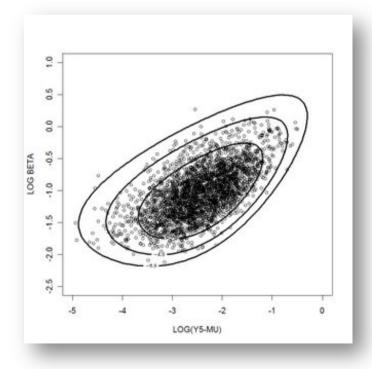
MCMC follows a Markov process - i.e. the next sample depends on the present one, but not on previous ones.

MCMC takes random steps and accepts or rejects the new point

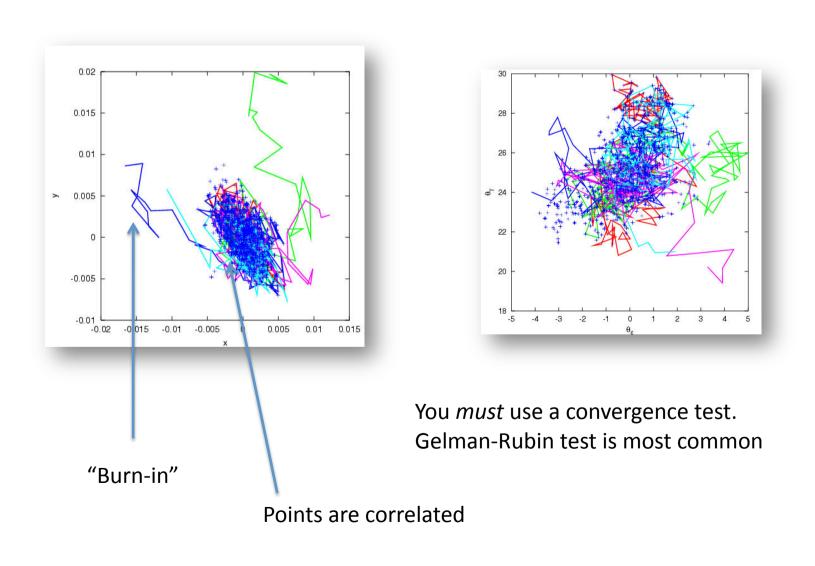


The proposal distribution

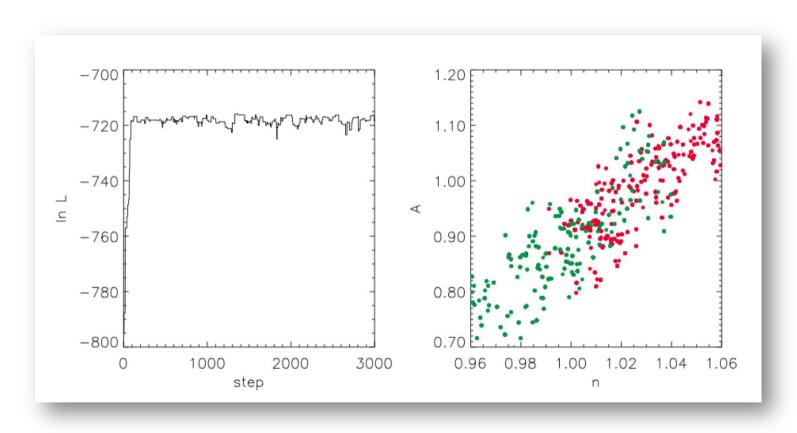
- Too small, and it takes a long time to explore the target
- Too large and almost all trials are rejected
- q ~ `Fisher size' is good.



Burn-in and convergence



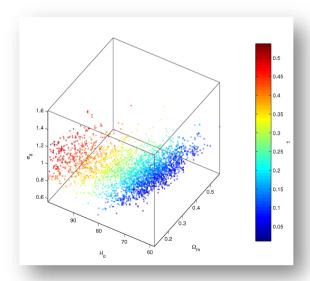
Unconverged chains

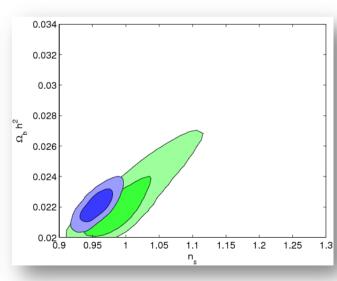


Verde et al 2003

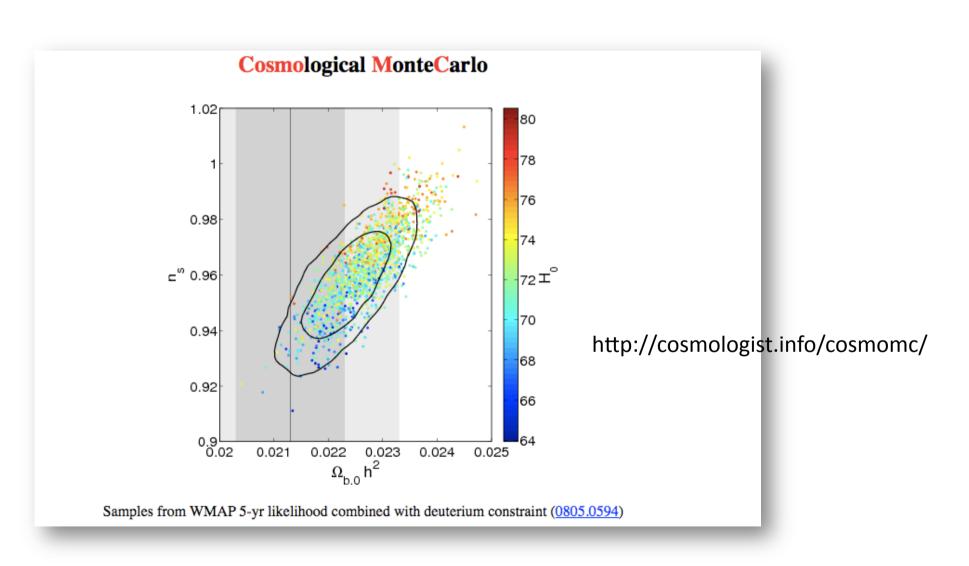
Marginalisation

- Marginalisation is trivial
 - Each point in the chain is labelled by all the parameters
 - To marginalise, just ignore the labels you don't want





CosmoMC

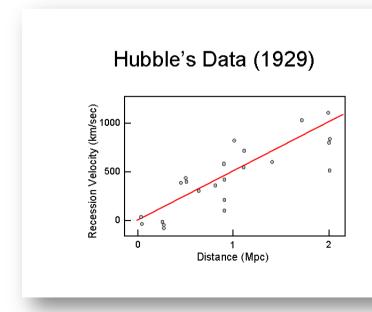


Model Selection

- Model selection: in a sense a higher-level question than parameter estimation
- Is the theoretical framework OK, or do we need to consider something else?
- We can compare widely different models, or may want to decide whether we need to introduce an additional parameter into our model (e.g. curvature)
- In the latter case, using likelihood alone is dangerous: the new model will always be at least as good a fit, and virtually always better, so naïve maximum likelihood won't work.

Hubble and Hendry

- E. Hubble has a theory that v = Hr for all galaxies, where H is a free parameter.
- M. Hendry has a theory that v = 0 for all galaxies
- Who should we believe?



Bayesian approach

- Let models be M, M'
- Apply RULE 1: Write down what you want to know. Here it is p(M|x) - the probability of the model, given the data.

More Bayes:

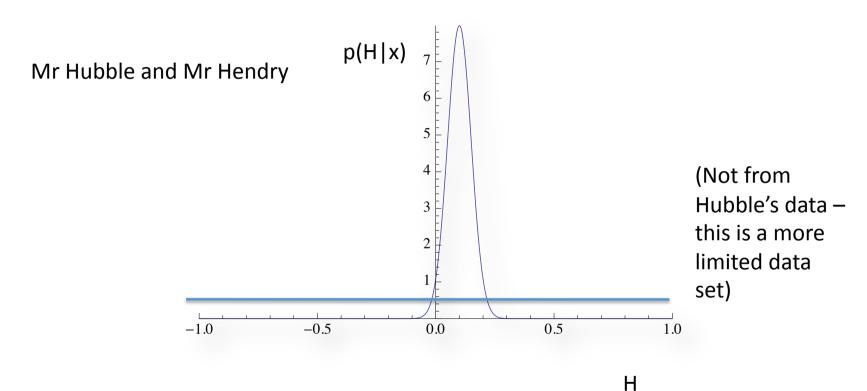
$$p(M|\mathbf{x}) = \frac{p(\mathbf{x}|M)p(M)}{p(\mathbf{x})}$$

$$\frac{p(M'|\mathbf{x})}{p(M|\mathbf{x})} = \frac{p(M')}{p(M)} \frac{\int d\boldsymbol{\theta}' \, p(\mathbf{x}|\boldsymbol{\theta}', M') p(\boldsymbol{\theta}'|M')}{\int d\boldsymbol{\theta} \, p(\mathbf{x}|\boldsymbol{\theta}, M) p(\boldsymbol{\theta}|M)}$$

Define the Bayes factor as the ratio of evidences:

$$B \equiv \frac{\int d\boldsymbol{\theta}' \, p(\mathbf{x}|\boldsymbol{\theta}', M') p(\boldsymbol{\theta}'|M')}{\int d\boldsymbol{\theta} \, p(\mathbf{x}|\boldsymbol{\theta}, M) p(\boldsymbol{\theta}|M)}$$

Which model is more likely?



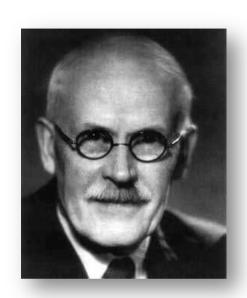
Prior of extra parameter is ½

$$\frac{p(Hendry)}{p(Hubble)} = \frac{1.1}{0.5} = 2.2$$

Jeffreys' criteria

- Evidence:
- 1 < ln B < 2.5 'substantial'
- 2.5 < ln B < 5 'strong'
- In B > 5 'decisive'

 In B=1 corresponds to a posterior probability for the less-favoured model which is 0.37 of the favoured model



Extra-dimensional gravity?

Evidence for beyond-Einstein gravity

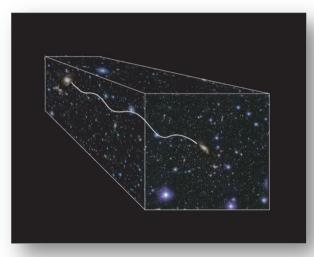
How would we tell? Different growth rate

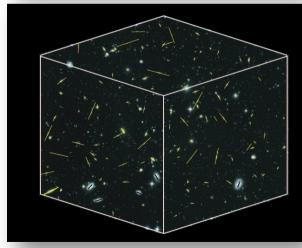
$$\frac{\delta_m}{a} \equiv g(a) = \exp\left\{ \int_0^a \frac{da'}{a'} \left[\Omega_m(a')^{\gamma} - 1 \right] \right\}$$

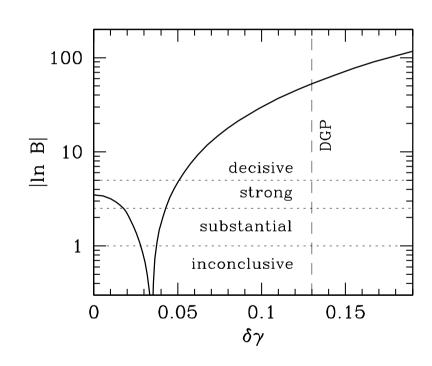
$$\gamma = 0.55(GR), \ 0.68 \ (Flat \ DGP)$$

Do the data demand an additional parameter?

Expected Evidence: braneworld gravity?

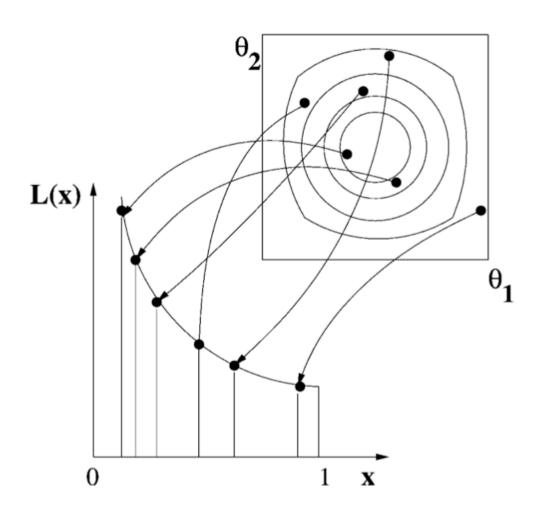






Heavens, Kitching & Verde 2007

Computing the Evidence: Nested Sampling



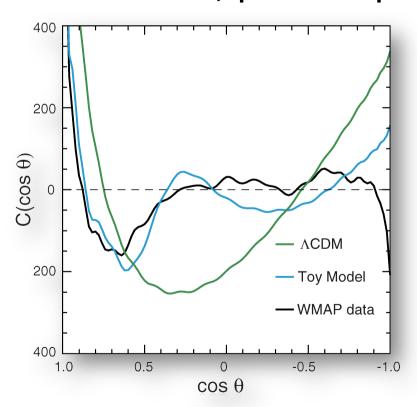
Skilling (2004)
Sample from the prior volume, replacing the lowest point with one from a higher target density.

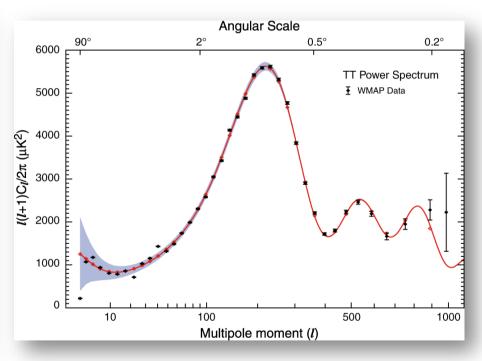
See: CosmoNEST (add-on for CosmoMC)

Multimodal? MultiNEST

Back to WMAP

 Correlation function points are highly correlated; power spectrum points are not





An exercise in using Bayes' theorem

You choose this one

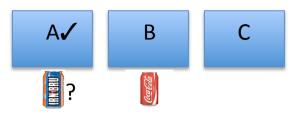


?

Do you change your choice?

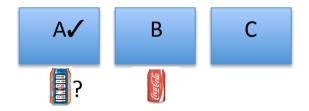
This is the Monty Hall problem

Monty Hall solution



- Rule 1: write down what it is you want
- Let a=Irn Bru is behind Door A (b,c similarly)
- Let B=Monty Hall opened Door B
- It is p(a | B)
- Now p(a|B) = p(B|a)p(a)/p(B)
- Evaluate p(B) = p(B,a)+p(B,b)+p(B,c) (marginalisation)
 - -p(B) = p(B|a)p(a) + p(B|b)p(b) + p(B|c)p(c)
 - $-p(B) = (\frac{1}{2} \times \frac{1}{3}) + (0 \times \frac{1}{3}) + (1 \times \frac{1}{3}) = \frac{1}{2}$
- $p(a|B) = \frac{1}{2} \times \frac{1}{3} / \frac{1}{2} = \frac{1}{3}$ i.e. BETTER TO CHANGE

The one line reason (well, 3 lines)



- If you got it right first time, you'll get it wrong if you change
- If you got it wrong first time, you'll get it right if you change
- And you are more likely to have got it wrong first time