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Inverse problems

* Most cosmological problems are inverse
problems, where you have a set of data, and
you want to infer something.

 Examples
— Hypothesis testing

— Parameter estimation
— Model selection



Examples

* Hypothesis testing

— |s the CMB radiation consistent with (initially) gaussian
fluctuations?

e Parameter estimation

— In the Big Bang model, what is the value of the matter
density parameter?

e Model selection

— Do cosmological data favour the Big Bang theory or
the Steady State theory?

— |Is the gravity law General Relativity or higher-
dimensional?



What is probability?

Frequentist view: p describes the relative frequency of
outcomes in infinitely long trials

Bayesian view: p expresses our degree of belief

Bayesian view is closer to what we seem to want from
experiments: e.g. given the WMAP data, what is the
probability that the density parameter of the Universe
is between 0.9 and 1.17

Cosmology is in good shape for inference because we
have decent model(s) with parameters — well-posed
problem



Bayes’ Theorem

Rules of probability:

p(x)+p(not x) =1 sum rule

p(x,y) = p(x]y)pl(y) product rule

p(x) =2, p(x,y,) marginalisation

Sum — integral continuum limit (p=pdf)

p(x,y)=p(y,x) gives Bayes’ theorem

p(zly) p(y)
p(x)

p(y|r) =



p(x]y) is not the same as p(y|x)

* X =female, y=pregnant
* p(y|x)=0.03
* p(x]y)=1




An exercise in using Bayes’ theorem

Do you change your choice?

This is the Monty Hall problem



Bayes’ Theorem and Inference

* |f we accept p as a degree of belief, then what
we often want to determine is*

p(0]x)

0: model parameter(s), x: the data

To compute it, use Bayes’ theorem

p(0|z) = p(x]0)p(0)
p(x)
*This is RULE 1: start by writing down what it is you want to know
RULE 2: There is no RULE n, n>1




Posteriors, likelihoods, priors and
evidence

_ p(=|0)p(0)
p(0]z) = p(x)

Posterior Likelihood L Evidence Prior

Note that we interpret these in the context of a model M, so all probabilities
are really conditional on M (and indeed on any prior info l). E.g. p(8) = p(6|M)

The evidence looks rather odd — what is the probability of the data? For
parameter estimation, we can ignore it — it simply normalises the
posterior.

Noting that p(:E) = p(:E|M) makes its role clearer. In model selection
(fromMand M), p(x|M) # p(x|M')
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State your priors

In easy cases, the effect of the prior is simple

As experiment gathers more data, the likelihood tends to
get narrower, and the influence of the prior diminishes

Rule of thumb: if changing your priorT to another
reasonable one changes the answers significantly, you need
more data

Reasonable priors? Uninformative™ — constant prior

scale parameters in [0, c0) ; uniform in log of parameter
(Jeffreys’ prior™)

Beware: in more complicated, multidimensional cases, your
prior may have subtle effects...

T I mean the raw theoretical one, not modified by an experiment
* Actually, it’s better not to use these terms — other people use them to mean

different things — just say what your prior is!
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The effect of priors
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* VSA CMB
experiment

(Slosar et al 2003)

Priors: A>0
10 < age < 20 Gyr

h=0.7+0.1

There are no data in
these plots — it is all

coming from the
prior!
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VSA posterior
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Estimating the parameter(s)

e Commonly the mode is used (the peak of the
posterior)

* Mode = Maximum Likelihood Estimator, if the
priors are uniform

* The posterior mean may also be quoted

7 — /9p(6’|x)d6’



Errors

If we assume uniform priors, then the posterior is proportional to the likelihood.

If further, we assume that the likelihood is single-moded (one peak at §) ) , we can
make a Taylor expansion of InL:

In L(x;0) = In L(x; 60) + 3 (6o — foa) 25252 (65 — Oop) + - -

L(ZC; (9) — L() eEXP [—%(Ha — Hoa)Haﬁ(Hﬁ — (9()5) + .. ]

where the Hessian matrix is defined by these equations. Comparing this with a
gaussian, the conditional error (keeping all other parameters fixed) is
1

~ VHoa

Marginalising over all other parameters gives the marginal error

Oaq — \/(H_l)aa

Oq




How do | get error bars in several
dimensions?

 Read Numerical Recipes, Chapter 15.6
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Multimodal posteriors etc

* Peak may not be gaussian

* Multimodal? Characterisingitby .. . =~
a mode and an error is probably -5 -~ =
inadequate. May have to " From CMBEasy MCMC
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Fisher Matrices

* Useful for forecasting errors, and experimental
design
* The likelihood depends on the data collected.

Can we estimate the errors before we do the
experiment?

* With some assumptions, yes, using the Fisher
matrix

— 0%1In L
Fop = <aeaaeg>



Gaussian errors

 |f the data have gaussian errors (which may be
correlated) then we can compute the Fisher
matrix easily:

Fop = :Tr[C71C,C71C 5+ C 1t Mygl,

e.g. Tegmark, Taylor, Heavens 1997

Forecast

marginal error _ \/( —1 )
on parameter (X Oaq — F @78




Combining datasets
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Open source Fisher mat
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Computing posteriors

* For 2 parameters, a grid is usually possible

— Marginalise by numerically integrating along each axis
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* For >2 parameters it is not feasible to have a
grid (e.g. 10 points in each parameter direction,
12 parameters = 10*? likelihood evaluations)

 Methods: Monte Carlo Markov Chain (MCMC) etc




Numerical Sampling methods:
Markov Chain Monte Carlo

Aim of MCMC: generate a set of points in
the parameter space whose distribution
function is the same as the target
density.

MCMC follows a Markov process - i.e. the ==
next sample depends on the present
one, but not on previous ones.

MCMC takes random steps and accepts or
rejects the new point



The proposal distribution

* Too small, and it takes a long time to explore
the target

* Too large and almost all trials are rejected
* q~ Fisher size’ is good.

LOG(YS5-MU



Burn-in and convergence
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You must use a convergence test.
Gelman-Rubin test is most common

“Burn-in”

Points are correlated
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Marginalisation

 Marginalisation is trivial

— Each point in the chain is labelled by all the
parameters

— To marginalise, just ignore the labels you don’t
want
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CosmoMC

Cosmological MonteCarlo
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Model selection: in a sense a higher-level question
than parameter estimation

Is the theoretical framework OK, or do we need to
consider something else?

We can compare widely different models, or may want
to decide whether we need to introduce an additional
parameter into our model (e.g. curvature)

In the latter case, using likelihood alone is dangerous:
the new model will always be at least as good a fit, and
virtually always better, so naive maximum likelihood
won’t work.



Hubble and Hendry

* E. Hubble has a theory that v = Hr for all galaxies,
where H is a free parameter.

* M. Hendry has a theory that v = 0 for all galaxies
* Who should we believe?

Hubble’s Data (1929)

sion Velocity (km/sec)

Reces

1
Distance (Mpc)




Bayesian approach

 Let models be M, M’

* Apply RULE 1: Write down what you want to
know. Here it is p(M|x) - the probability of the
model, given the data.



More Bayes:
p(x|M)p(M)
p(x)
p(M'|x) _ p(M') [ d6 p(x|6', M")p(6'| M’)

p(M|x) =

p(M[x) — p(M) [d6p(x|6, M)p(6|M)

Define the Bayes factor as the ratio of evidences:

5 _ ] 46/ p(x/6', M)p(6'| M)
~ [ d0p(xI6, M)p(6]M)




Which model is more likely?

p(HIX) 5
Mr Hubble and Mr Hendry 7;
6
4 (Not from
3| Hubble’s data —
o this is a more
limited data
1L
i set)
“““““ i
-10 -0.5 0.0

Prior of extra parameter is %

p(Hendry) 1.1 59
p(Hubble) 05




Jeffreys’ criteria

Evidence:
1 <InB<2.5 ‘substantial’
2.5<InB<5 ‘strong’

InB>5 ‘decisive’

These descriptions seem too aggressive:

— In B=1 corresponds to a posterior probability for
the less-favoured model which is 0.37 of the
favoured model



Extra-dimensional gravity?




Evidence for beyond-Einstein gravity

* How would we tell? Different growth rate

= ga) = e { [ 9 @@~ 1]}

a a’

v = 0.55(GR), 0.68 (Flat DGP)

* Do the data demand an additional parameter?



Expected Evidence: braneworld
gravity?
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Computing the Evidence:
Nested Sampling

Skilling (2004)

Sample from the prior
volume, replacing the
lowest point with one from
a higher target density.
Lx)!
See: CosmoNEST (add-on
for CosmoMC()

Multimodal? MultiNEST




Back to WMAP

* Correlation function points are highly
correlated; power spectrum points are not
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An exercise in using Bayes’ theorem

Do you change your choice?

This is the Monty Hall problem



?

Monty Hall solution -l —

=

1=
—
&8
==
=

* Rule 1: write down what it is you want

e Let a=Irn Bru is behind Door A (b,c similarly)

* Let B=Monty Hall opened Door B

* Itisp(a|B)

* Now p(a|B) = p(B|a)p(a)/p(B)

* Evaluate p(B) = p(B,a)+p(B,b)+p(B,c) (marginalisation)

— p(B) = p(B|a)p(a) + p(B|b)p(b) + p(B|c)p(c)
—p(B)=(ax¥%)+(0Ox %)+ (1x¥%)=%
e p(a|B)=%x¥%/%=% i.e BETTER TO CHANGE




The one line reason (well, 3 lines)

* If you got it right first time, you’ll get it wrong if
you change

* If you got it wrong first time, you’ll get it right if
you change

* And you are more likely to have got it wrong first
time



