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ABSTRACT

We report results from the BICEP2 experiment, a Cosmic Microwave Background (CMB) polarimeter specif-
ically designed to search for the signal of inflationary gravitational waves in the B-mode power spectrum around
f ~ 8B0. The telescope comprised a 26 cm aperture all-cold refracting optical system equipped with a focal plane
of 312 antenna coupled transition edge sensor (TES) 150 GHz bolometers each with temperature sensitivity of
=300 pK,,.+/s. BICEP2 observed from the South Pole for three seasons from 2010 to 2012. A low-foreground
region of sky with an effective area of 380 square degrees was observed to a depth of 87 nK-degrees in Stokes
( and U. In this paper we describe the observations, data reduction, maps. simulations and results. We find
an excess of B-mode power over the base lensed-ACDM expectation in the range 30 < ¢ < 150, inconsistent
with the null hypothesis at a significance of > 57. Through jackknife tests and simulations based on detailed
calibration measurements we show that systematic contamination is much smaller than the observed excess.
We also estimate potential foreground signals and find that available models predict these to be considerably
smaller than the observed signal. These foreground models possess no significant cross-correlation with our
maps. Additionally, cross-correlating BICEP2 against 100 GHz maps from the BICEP1 experiment, the excess
signal is confirmed with 37 significance and its spectral index is found to be consistent with that of the CME,
disfavoring synchrotron or dust at 2.3+ and 2.2, respectively. The observed B-mode power spectrum is well-
fit by a lensed-ACDM + tensor theoretical model with tensor/scalar ratio r= 0.20%]-0%, with r= 0 disfavored at
7.07. Subtracting the best available estimate for foreground dust modifies the likelihood slightly so that r =10
is disfavored at 5.90.

Subject headings: cosmic background radiation — cosmology: observations — gravitational waves — infla-
tion — polarization
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Instrumentation

BICEP2 cbserves on degree angular scales deep into the same
patch of sky as BICEP1, employing cutting-edge technology to
pack many more detectors onto the same size focal plane as
BICEP1, thus dramatically increasing sensitivity. BICEP2 aims to
measure the polarization of the cosmic microwave background
(CMB) with better sensitivity than ever before.

The BICEP2 telescope is a small aperture, refracting telescope,
allowing for precise control of systematic effects. The telescope
optics are cooled to 4K. BICEPZ relies on the same principles as
BICEP1, but with new detectors which allow for closer packing
onto the focal plane. BICEP2 has 512 antenna-coupled TES
bolometers in the focal plane. The focal plane is kept at 250 mK
for CMB observations. Gaining detector sensitivity is critical in the
search for "B-mode" polarization, and BICEP2 has an order of
magnitude greater mapping speed than BICEP1.
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The 512-detector BICEP2 focal plane and a zoom in of a dual
polarization pixel with TES bolometer shown.
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Grav rtatncnal """ VES
discovery: We ha.e a
first tantalising glimpse
of the cosmic birth

Scientists detected telitale signs of gravitational waves using the Bicep2 telescope
(far left) at the south pole. Photograph: Keith Vanderlinde/NSF
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Cosmic inflation: 'Spectacular’ discovery
hailed

By Jonathan Amos

Science comrespondent, BBC News

STUFFIN RICHTIR, HARVARD UNIVIRSITY

The measurements were taken using the BICEPZ instrument at the Scuth Pole Telescope facility
Scientists say they have extraordinary new evidence to 2
support a Big Bang Theory for the origin of the Universe. Related Stories
Researchers believe they have found the signal left in the sky by the
super-rapid expansion of space that must have occurred just fractions
of a second after everything came into being.

Inflation: A compact
guide to big science

All the Universe's
It takes the form of a distinctive twist in the oldest light detectable with matter is mapped

telescopes. Stunning new view of
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Modelling the Universe

Cosmological principle: universe is homogeneous and
Isotropic on large scales (> 100 - 300 Mpc).

Zo.

2dF" Galaxy Redshift Survey

Good evidence
for this from:

 galaxy surveys

4° slice
656237 galaxies
113438 total

* isotropy of the
CMBR

Comaving distance (Mpc)
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Modelling the Universe

Background cosmological model described
by the Robertson-Walker metric

— ) _
2 2 o| dr 2 12
ds® = —dt” + R(t) ~+1r°dQ2
1—Kkr
_ ~1, open
R(t) = cosmic scale factor k = curvatureconstant =< 0, flat
+1, closed
RE) 1
R, 1+z
7 = Zovs = Aemit _ reqiohift

emit

Closed



Friedmann's Equations:

-\ 2
L2 R :87sz+A_ k2
R 3 3 R

e ——47;(3 (p—I—BP)—I—%

R

Can tune A to give R=0 forall t but unstable
(and Hubble expansion made idea redundant)

But Lambda term could still be non-zero anyway !



Adapted from Hubble (1929)
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Evolution of scale factor given
by Friedmann’s equation
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Re-expressing Friedmann's Equations

For A:O
87Gp K 87G |
H? = 3 _R2 — k:O<:>p:|:3H2i| = Plrit
Define
a,-+r/ -87p Q, =2 Q, = -—X
Pait  3H 3H R°H

It follows that, at any time

Q +Q, +Q =1




Is the Universe speeding up or slowing down?

B Band
20° o e |
; o
Er ¥ Narrow range of i
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o E Standard Candle
'T -17; |
g 7 \ '. °
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using type la supernovae 45k | S
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Geometry of the universe affects ;,,,\
the relationship between redshift (
and luminosity distance of distant

supernovae L

Closed



Hubble diagram of distant supernovae

measure of distance
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‘Speeding up’ model

Hubble’s law for

nearby supernovae
| 1 1 | 1 |

o Supernova
Cosmology

‘Slowing down’ model

redshift

Adapted from Perlmutter et al (1998)



A% The Nobel Prize in Physics 2011
€4 Saul Perlmutter, Brian P. Schmidt, Adam G. Riess

The Nobel Prize in Physics 2011

Saul Perimutter Brian P. Schmidt Adam G. Riess
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Early Universe too hot for

neutral atoms to exist

Free electrons scatter
light (as in a fogQ)

Image from wikipedia
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Image from wikipedia

Early Universe too hot for
neutral atoms to exist

Free electrons scatter
light (as in a foQ)

After ~380,000 years,

Universe cool enough 2
for neutral hydrogen to d

form: the fog clears!



Background radiation

predicted in 1950s and 1960s
by Gamov, Dicke, Peebles.

lfﬁn“g;iitdq.
A

Jim Peebles

Arno Penzias and Robert Wilson
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COBE map of temperature across the sky




CMBR ‘ripples’ are the
seeds of today’s galaxies

Galaxy formation is highly T

sensitive to the pattern of ¢

CMBR temperature i - ;
. e .
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Power spectrum of temperature fluctuations

Cosmological parameters from the CMBR

90°

Angular Scale
B 0.5°

Amplitude of Doppler peaks
sensitive to density of matter

0.2°

Predicted curve very

sensitive to
‘ingredients’ of
cosmological model.

/ ;

Angular size of
sound horizon
at recombination

Adapted from Bennett etl al (2006)

Friedmann equation
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CMBR spectrum tightly constrained but H, degenerate with other parameters
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Planck satellite: Maps detail Universe's ancient light

A map tracing the "oldest light" in the sky has been produced by Europe's Planck Surveyor satellite. Its pattern confirms the Big Bang theory for the origin
of the Universe but subtle, unexpected details will require scientists to adjust some of their ideas.




State of the Universe: Mar 2013

Dark Matter

Dark Energy
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Inflation for astronomers

We have been considering ), , =0 but suppose that
in the past QQ, #0 . From the Friedmann equations it
would then be very difficult to explain why it is so

close to zero today.

Actual Mass Density

Critical Mass

Omega -

Density

By

10

N
1.0
= —  0.98
(). O¢
(.94
Yiﬁﬁf
20

Time (seconds)

From Guth (1997)



Present day ‘closeness’ of matter density to the critical
density appears to require an incredible degree of ‘fine

tuning’ 1n the very early Universe.

Omega at Present
-

0

FLATNESS PROBLEM

TTTTTI

Pl

0.9999998999999995

Omega at 1 Second

1.0000000000000005

From Guth (1997)
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How do we explain the isotropy of the CMBR, when
opposite sides of the sky were ‘causally disconnected’
when the CMBR photons were emitted?

HORIZON PROBLEM




Image from wikipedia

300 000 years

Universe



Inflationary solution to the Horizon Problem

Limit of observable
Universe today

Small, causally
connected region

From Guth (1997)



Following Albrecht (2000)
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Inflation also provides a mechanism for generating
CMBR fluctuations in the first place.

Primordial quantum fluctuations become
magnified to super-horizon scales, that
we see in the CMBR



l(1+1)C

Doppler Peaks

5p|>@4

Sachs-Wolfe P]ateaq

3(1) = constant

Simplified CMBR Power Spectrum

Damping

1 0.1 degrees

}e super horizon—=|«<——sub horizon =

Adapted from Lineweaver (1997)



Power spectrum of temperature fluctuations

Cosmological parameters from the CMBR
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We can obtain information
from the CMBR
polarisation as well as
temperature maps.

Quadrupole
Anisotropy

e’

Y
Thomson

) Scattering

Linear
Polarization

arXiv:astro-ph/9706147v1 16 Jun 1997

A CMB Polarization Primer

Wayne Hu!
Institute for Advanced Study, Princeton, NJ 08540

Martin White
Enrico Fermi Institute, University of Chicago, Chicago, 1L 60637

ABSTRACT

We present a pedagogical and phenomenological introduction to the study of cosmic
microwave background (CMB) polarization to build intuition about the prospects and
challenges facing its detection. Thomson scattering of temperature anisotropies on the
last scattering surface generates a linear polarization pattern on the sky that can be
simply read off from their quadrupole moments. These in turn correspond directly
to the fundamental scalar (compressional), vector (vortical), and tensor (gravitational
wave) modes of cosmological perturbations. We explain the origin and phenomenology
of the geometric distinction between these patterns in terms of the so-called electric
and magnetic parity modes, as well as their correlation with the temperature pattern.
By its isolation of the last scattering surface and the various perturbation modes, the
polarization provides unique information for the phenomenological reconstruction of the
cosmological model. Finally we comment on the comparison of theory with experimental
data and prospects for the future detection of CMB polarization.



We can obtain information
from the CMBR
polarisation as well as
temperature maps.

Quadrupole
Anisotropy \
g
Y
Thomson
> Scattering
o
e
S
Linear
Polarization

From Hu and White (1997)

Tensors
(Gravity Waves)



Because the Thomson scattering is

anisotropic, the CMBR is polarised.

We can decompose the polarisation
field into E and B modes.

P(n)=VE+VxB

N N
—:o— |« | Grad
/N NS

NN s

Polarization: How It Works
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(a) Polarization Pattern (b) Multipole Power
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From Hu and White (1997)
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BICEP2 B-mode signal
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Ade et al (2014) BICEP-2 results
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What can we constrain with CMBR data?

It 1s usually a good approximation to take the power
spectra as being power-laws with scale. So

- 1ng-1
Density perturbations Aﬁ(k):Ag(kﬂ) kﬁ

_ 0
Gravitational waves A;(k):A;(kU) k_

_ 0 _

Following Melchiorri (2008)



What can we constrain with CMBR data?

The 4 parameters are related to the inflaton potential and to
its first two derivatives:

me [ V. : me [ V. |
ng—l=——"»=%2—| + 2| —
s\ V. 4\ 'V,

Following Melchiorri (2008)



Ade et al (2013) Planck results
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Ade et al (2014) BICEP-2 results
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Ade et al (2013) Planck results
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Ade et al (2013) Planck results
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Allows for a running spectral index
Ade et al (2013) Planck results
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Ade et al (2013) Planck results
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Allows for a running spectral index
Ade et al (2013) Planck results
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Ade et al (2014) BICEP-2 results
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So...

» Detection of B-mode polarisation looks
secure. Is it primordial?....



BICEP2 B-mode signal
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So...

» Detection of B-mode polarisation looks
secure. Is it primordial?....

* Are we seeing gravitational waves from
Inflation?

See Dent, Krauss & Mathur arxiv: 1403.5166

Isocurvature perturbations — not quite ruled out!

See Bonvin, Durrer & Maartens arxiv: 1403.6768

Some of B-mode signal from magnetic fields
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