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Abstract. We have developed an exceptionally noise resistant method for accurate and
automatic identification of supergranular cell boundaries from velocity measurements. In
this paper we describe the method, and test it against simulated data. We then apply it
to the analysis of velocity fields derived from high resolution continuum data from the
SOHO Michelson Doppler Imager. From this, we can identify certain basic properties of
supergranulation cells, such as their characteristic sizes, the flow speeds within cells and
their dependence on cell areas at exceptionally high resolution. The effect of the noise and
smoothing on the derived cell boundaries is investigated and quantified using simulated
data. We show in detail the evolution of supergranular cells over their lifetime, including
observations of emerging, splitting and coalescing cells. A key result of our analysis of cell
internal velocities is that supergranules appear to be scale-independent in this respect.

Keywords: Sun Photosphere, Supergranulation, Magnetic elements, Granules, Photo-
spheric Flow

1. Introduction

The convection processes in the Sun have been studied for many years, with
the first observation of the solar granulation made by William Herschel in
1801. Granulation is a small scale rapid convectional process (∼ 1Mm, few
minutes lifetime, 1 km s−1 typical flow speed) which has been well described
and modelled. More recently, larger scale patterns with weaker flows have
been observed superimposed on the basic granulation flow. The clearest of
these is the supergranular flow, first discovered by Leighton, Noyes & Simon
(1961) by analysing dopplergrams taken at the Mount Wilson Observatory.
Supergranulation is a flow with a cellular form, probably convectional in
nature, with characteristic size around 30Mm, 20 hr lifetime and typical flow
speeds around 300 m s−1. The supergranular pattern is most dramatically
seen as patterns in the line-of-sight velocity of the solar surface as seen
in full disk MDI dopplergrams from the SOHO satellite. The velocities in
supergranulation, as seen in the photosphere, are predominantly horizontal.
A consequence of this is that the supergranulation pattern in dopplergrams
is only visible towards the limb of the sun, and disappears at disk centre.
In order to observe the supergranulation at higher resolutions and near
disk centre, analysis of the horizontal photospheric flow fields is required.
Although supergranulation has been observed for nearly 50 years remark-
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ably little is known about it – indeed it is not even certain if it driven by
convection, as no temperature gradient has been measured across the cells.
The best attempts to date at measuring any temperature variation have
concluded that it must be less than 3K across a cell (Lin & Kuhn, 1992).
Part of the difficulty in analysing such flows is that they are masked by the
much more rapidly varying granulation flows which have large temperature
variations, and the higher concentration of magnetic fields at cell boundaries.

With the advent of long time series, high resolution data from satellite
missions such as SOHO and TRACE we can now track the motion within
these larger structures. When looking at the large scale but weak motions
found in supergranulation, it can be hard to interpret the data to iden-
tify coherent structures. In this paper show how supergranular boundaries
can be constructed with confidence from flow fields, and once constructed
how such structures can be exploited to derive further essential diagnostic
information. The article is constructed as follows: Section 2 describes the
algorithm for finding and displaying the cell boundaries, Section 3 tests the
algorithm against simulated data, and compares results with a conventional
divergence algorithm. Section 4 shows how the algorithm works on real solar
data. Section 5 contains notes about the potential problems when using the
method, and how to avoid them.

2. Cell analysis method

This Section describes a noise tolerant way of deriving the cell structure from
a flow field by following the motion of tracker particles in the time-reversed
flow field.

2.1. Data preparation

In order to show the supergranulation pattern and its time variation in
detail, large amounts of high resolution photospheric velocity data are re-
quired. This may be obtained by tracking the motion of the granules as they
are advected by the supergranular flow fields. Long, continuous time series
of data are required in order to see the slow evolution of the supergranular
flows, and high cadence, high resolution images are required to resolve the
granulation patterns. As a result the only possible data source at the present
time is the high resolution (0.6 arcsec/pixel, 1 min cadence) continuum data
sets from the MDI instrument on SOHO. The images were processed to get
the velocity field by tracking the barely resolved granulation signal using
the Balltrack method (Potts, Barrett and Diver, 2003).

The data set used throughout this paper is from a 64 hour continuous
run by MDI from 15-18th January 1997. The run consists of high resolution
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continuum, magnetogram and dopplergram images taken with a 1 minute
cadence. We use a 480x1024 pixel (4.8x10.2 arcmin), 33 hour (2001 frame)
subset of this. This set was used as it gives the longest time series of a
large area co-rotating with the Sun that is available at the current time.
The continuum data was rigidly derotated at a rate of 0.243 pixels/minute
and filtered for p-modes using a fourier filter, and the velocity then derived
using Balltrack. The velocity samples obtained were smoothed in time by
binning in 3 hour segments and spatially smoothed by convolving with a
2D gaussian with FWHM of 5.4 arcsec. Absolute calibration of the data
was achieved by adding a small offset velocity to the raw granulation data
during the derotation operation, and measuring the effect of this in the
derived velocity. A discussion of this method and the intrinsic noise within
the any measurement of the flow field may be found in Potts, Barrett and
Diver (2003).

2.2. Overview

The images in Figure 1 show the steps in generating images of the super-
granular pattern. Figure 1(a) shows the raw velocity field derived from a
Balltrack analysis. Some cell structures, particularly the strong ones, are
visible, but the cell boundaries are indistinct. Producing a divergence map
(outflow regions in red) of the data as shown in Figure 1(b) helps to clarify
the situation somewhat, although the cellular structure is still not clear

Part of the problem is that the data are intrinsically noisy: aside from
observational errors, the motion itself has a stochastic element due to the
turbulent nature of the small-scale flow. Any local method to find the inflows
and outflows that requires taking the spatial derivative of the data is domi-
nated by the small-scale features, at the scale used to smooth the data. This
can be overcome by analysing the integral effect of the flow, as is usually
done by using ‘cork’ like tracking particles. We use the fact that the flow
patterns are asymmetric: mostly point-like sources going to line-like sinks.
To exploit this asymmetry we take a regular array of starting points and
send tracking particles flowing in the opposite direction to the streamlines.
All trackers that end up at the same final area (corresponding to the cell
upflow region) must be part of the same convection cell.

2.3. Method in detail

1. Take the initial velocity field, (see Figure 1(a)) v(x, y), reverse the
flow direction, and normalise to the maximum speed of the flow field
vn = −v/vmax. It is important that the mean velocity of the data set
(normally dominated by the rotation and differential rotation of the sun)
is very much less than the flows due to the supergranules: we depend on
the convergence of the tracers at the upflow regions of the cells, so careful
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(a) velocity arrows (b) local divergence of flow (c) paths of test particles

(d) total distance travelled (e) convection cell boundaries (f) boundaries and upflows

Figure 1. Stages in the identification of the cell boundaries. The data shown is a 2x2 arcmin
region near disk centre under quiet Sun conditions

derotation of the dataset is important. It may be useful to subtract the
mean velocity, or a fitted differential rotation correction of the whole
flow field from the data at this point to avoid artifacts. See Section 5 for
more details.

2. Make a regular array of starting points at whatever final resolution
is required for the cell structure. More points will make for a higher
resolution, but take longer to calculate

3. Advect the test points with the reversed flow field. The tracks for a
low resolution subset of start points are shown in Figure 1c. We use a
simple second-order predictor-corrector method for efficiency. Choose a
maximum step comparable to the correlation length of the velocity data
for maximum efficiency. For maximum clarity enough time steps should
be given for a test particle to travel from the edge of a cell to its centre.
This process can be made numerically more efficient by the non-linear
scaling of the velocity field, so that the particle takes less time to escape
from the slow moving edges of the cell. One way to do this is to raise
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the speed to a power less than unity, while maintaining the direction,
for example we used ṽn = v̂nv0.5

n .

4. Taking the set of the final positions (xf , yf ) of tracer particles mapped
onto a grid of their initial positions (xi, yi), all particles that lie within
the same cell will all record the same value of final position; adjacent
particles that travel to different cells will record a different final posi-
tion. Hence such a grid will contain regions in which the values change
discontinuously. The gradient of this data grid will then reveal the cell
boundaries. The quantity β expressed below quantifies this process:

β =

[(
dxf

dxi

)2

+
(

dyf

dyi

)2
] 1

2

. (1)

A plot of a suitably normalised value of β is shown in Figure 1(e), clearly
showing the cell boundaries. It is an exceptionally low noise measurement
of the local divergence of the flow.

A property of a cell derived in this manner is that all the tracking particles
end up in a similar area, which is the centre of the upflow for the cell. This
is shown by the red blobs in Figure 1f. Notice that the distance travelled
by the tracking particles is a minimum at these points, as can be seen in
Figure 1d. These blobs are a smoothed image of the spatial density of the
final positions of the tracking particles, so each one represents a separate
upflow region. To find which cell any point on the surface belongs to, simply
find out which of these regions the tracking particle ends up nearest to.
The area of any cell is proportional to the number of tracking points that
travel to this final location. In a movie which can be found here (link to
supergran colour.avi) (Potts, 2006a) each cell, as identified by the upflow
regions, has been given a different random colour, and their time evolution
can be clearly seen. The change in area of a few selected cells over time is
shown in Figure 6, described in more detail in Section 4.3.

3. Application to test data

In order to test the accuracy of the algorithm it was run on test data
with a known cell structure. The results were compared with the commonly
used ‘watershed basin’ algorithm (DeRosa & Toomre, 2004; Hagenaar et
al., 1997), which does a local minimum search in the divergence field of the
flow. The test data was made to have similar properties to observations of
photospheric velocity fields, at a resolution equivalent to the of the high
resolution output from SOHO MDI. First, a velocity potential φ was made
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(a) increasing noise at smoothing radius = 4 pixels
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Figure 2. Test data with increasing noise (top) and increasing smoothing(bottom). In
each figure the top row is the divergence field, and the results from our velocity based
segmentation algorithm are shown in the centre row, and the results from the watershed
basin algorithm in the bottom row. The blue dots give the true outflow centres of the cells.
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Figure 3. Recovered characteristic cell dimension as a function of smoothing radius for
the velocity based method (left) and the divergence based method (right), for different
noise:signal ratios.

by producing a Voronoi tessellation of cells from randomly placed generator
points, with the value inside the cells a function of the distance to the cell
centre. The flow pattern was then obtained by taking the x and y gradient
of the potential field, and smoothed by convolving with a gaussian kernel
with σ = 3 pixels to represent instrument effects. Noise was then added
in variable proportion and the data smoothed again by convolution with a
gaussian kernel of variable width.

The response of our supergranulation finding algorithm is summarised
in Figures 2 and 3, along with the performance of the watershed basin
algorithm, for comparison.

In Figure 2(a), the performance of the algorithm is tested as the noise:signal
ratio is increased. The top row shows the divergence of the velocity field,
the centre row shows the cell structure recovered by our velocity based
algorithm, and the bottom row shows the results from the divergence based
algorithm. It is clear that out velocity based algorithm has very high im-
munity to noise, in comparison to the divergence based methods, returning
consistent and accurate results, even when the smoothed RMS noise am-
plitude is similar to that of the data. Note that the left-most plots are the
zero noise case, where both algorithms recover the true cell structure of the
noise-free test data, and so acts as a reference. In Figure 2(b), the effect of
increasing smoothing on noisy data is presented. The test data in this case
had fixed amplitude noise, equivalent to a rms noise:signal ratio of 0.4 when
smoothed with a radius of 4 pixels. As the smoothing level is varied, the
divergence based algorithm gives much better results at higher smoothing
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radii. These effects are compared in more detail in Figure 3, where the effect
of derived cell-size as a function of smoothing is analysed.

The detailed effect of smoothing is shown in Figure 3 for the two method-
ologies. Both algorithms show an average increase in the returned cell size
as the smoothing radius is increased. The true result is a value of unity on
the y-axis. Our velocity-based algorithm fares much better at low smoothing
radii, but becomes more than 20% inaccurate as the smoothing radius ex-
ceeds 7 pixels. The divergence algorithm, conversely, has a complementary
performance, showing poor accuracy up to a smoothing radius of 7 pixels,
and above 15 pixels. Both algorithms show a linear trend in derived cell size
as a function of smoothing.

All real data has an element of smoothing from a variety of unavoidable
sources: for example, instrumental effects, seeing and noise reduction algo-
rithms. To mitigate these effects in the data reduction, one approach that
was first used by Hagenaar et al. (1997), and was also used by DeRosa &
Toomre (2004) is to smooth the data at various different smoothing scales,
and then extrapolate back to infer the true result that corresponds to the
zero-smoothing case. This assumes that the effect of smoothing is linear in
the returned cell size. Since we have test data, we can assess the efficacy
of this technique. The results of this operation are shown by the thick
dashed lines in Figure 3. It is clear from this that the trend of recovered
feature size being proportional to smoothing radius is only linear at large
smoothing radius, where coincidentally the watershed basin algorithm works
well. However, using this linear regime on this test data to extrapolate to the
zero-smoothing radius case significantly underestimates the true underlying
structure size for the test data, mainly because the linear behaviour is not
valid at small smoothing radius. This result leads us to conclude that mean
cell diameters obtained by extrapolation in this way are not necessarily
secure.

4. Application to real data

Here we show how an efficient and accurate supergranular cell finder can be
applied to true solar data, and exploited to reveal additional properties of
the photospheric flow field. The data set used here is the same as that in
Section 2.1.

4.1. Cell sizes

In order to measure the mean cell size in the real data, the same procedure
was followed as described for the test data in Section 3, where the data was
smoothed over a range of radii. The results are shown in figure 4, where
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Figure 4. The effect on cell size of changing smoothing radius and time applied to high
resolution velocity fields derived from MDI continuum data

the derived mean cell dimension is shown as a function of smoothing radius,
for the two algorithms. There is a clear difference between these results
and those of the test data: there is no sharp fall-off at small smoothing
radii. This reflects the fact that there is no definite minimum scale for the
features in the real data in comparison to the test data. The next clear effect
is that there is almost no significant variation in the results at different
smoothing timescales, showing that the supergranulation timescale must be
significantly larger than our smoothing times, as observed by other authors
(Del Moro et al., 2004; DeRosa & Toomre, 2004; Hagenaar et al., 1997).

For the divergence results, at smoothing radii less than 6Mm, the charac-
teristic cell size is nearly proportional to the smoothing radius, as would be
expected if it is dominated by noise. Thereafter the results show a similar
linear form to that observed by DeRosa & Toomre (2004) at these smoothing
radii, and when extrapolated back to zero smoothing yields cell dimension
of around 8Mm, smaller than that from previous analyses of lower resolution
data.

The velocity algorithm yields larger cell dimensions for a given smoothing
radius, and remains linear over the whole smoothing range; unlike the diver-
gence results, the velocity method shows evidence of real structure at low
smoothing radii (right down to an unprecedented spatial resolution of 1 Mm
with only 2 hours of temporal smoothing). The zero-smoothing extrapola-
tion gives a cell dimension of approximately 15 Mm, in broad agreement
with aforementioned previous studies in the literature. As the data becomes
progressively noisier at smaller smoothing radii, this result gives a lower
limit for the characteristic cell dimension, since noise can only decrease the
derived dimension.
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Figure 5. Relation between the area of supergranular cells and their velocities for 2500
cells. The left plot shows the rms velocity across the whole cell, and the right plot shows the
maximum velocity inside the same cells. The lines represent a family of velocity relations
that would be expected if the cells had identical form at all scales

4.2. Cell internal speeds

With an easy way to delimit the parts of the photosphere that belong to a
particular cell other useful data can be derived simply from this. One such
quantity is the velocity profile within supergranular cells. In Figure 5 around
2500 cells from the quiet Sun dataset described in Section 2.1 are analysed.
The left and right plots show the internal rms speed versus cell area, and the
maximum speed verses the rms speed, respectively for the same cells. Cells
were chosen that could be tracked for a minimum of 3 hours, in order to
determine if the they were expanding or contracting. The results are fairly
clear: larger cells have larger rms speeds. A 1000 Mm2 cell has an rms speed
of around 375 m s−1, roughly twice that of a 100 Mm2 cell. This is a similar
trend as that seen in Paniveni et al. (2003), although we cover a substan-
tially larger range of cell sizes and velocities due to our much improved cell
recognition method. It is interesting and a little surprising to note that there
is no significant difference in the distribution of cell internal speeds between
cells that are growing or shrinking, as shown by the distribution of red and
blue markers. Notice also that there are approximately similar numbers of
growing and shrinking cells, which is discussed below.

From these data we also investigated how the velocity profile within the
cells varies with cell size. If the cells of all sizes have the same velocity profile,
we would expect the maximum and rms velocities in cells to be directly
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proportional to each other, and the velocities to be proportional to the cell
radius, or

√
A where A is the cell area. These relations are shown by the

families of black curves in Figure 5, and it can be seen that the data broadly
conforms to them over the 100–1000Mm2 range. The linear relation between
the maximum and mean speeds over the full area range (around 2 orders
of magnitude) is significant as it suggests that the scale of supergranulation
as observed here is not strongly constrained by some physical mechanism
based on a critical scale size, as at around such a critical size we would
expect the physical properties of the cells to be modified. The data suggests
that there is in fact no particular scale length at which cells must become
unstable, because at such a scale length there would be a departure from
the self-similar relation: if cells split at a particular scale length then their
internal rms speeds would be markedly different at that scale from those
predicted by the trend.

4.3. Tracking supergranular cells over time

Identifying a cell at a particular time is interesting, but even a random
velocity field, appropriately smoothed, would show some cell-like structures.
Confidence that the cells obtained are real physical phenomena is gained by
showing the evolution of the supergranular pattern over consecutive times
using independent data sets. If the data can be processed this way it allows
the growth and decay of the patterns to be monitored.

There are many problems with tracking supergranular cells over time,
the most significant of which is that the cells are continuously splitting and
merging. We have developed an algorithm that tracks the upflow points of
the cells though time (see Figure 1(f)). This allows us to track the boundary
of individual cells over long time periods (limited only by the available data),
and stores all the branching and merging events from the entire data set.
All other data about the cells is also stored, such as the cell area, velocities,
centroid and upflow centre.

The evolution of some representative cells found by the algorithm over a
30 hour period are shown in Figure 6. Cell A is an unusual cell that grows
rapidly over a 15 hour period from the intersection of several cell boundaries.
It is worth noting that this cell is unusually free of magnetic field as it grows.
Cell B is a cell that stays very stable over the 30 hour period. Cell C slowly
breaks up and shrinks over the 30 hour period. Cells D are a pair of fairly
large cells that merge to produce a single cell.

Note that although this data set was derotated so that the mean equa-
torial velocity was zero, there is a clear solar westward motion of all the
cells, corresponding to a rotation rate which is around 30nHz faster than
the rotation of the granules themselves. This is a well known phenomenon,
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Figure 6. Evolution of a selection of supergranular cells over a 31 hour period. Each of
the images is 110 × 100 arcsec. Each column shows a cell at different intervals after it
was first observed, shown in hours at the top-left of each frame. This data set has been
corotated with the Sun to set the mean plasma (granule) velocity to be zero, yet note the
significant westwards motion of the supergranules, showing that they rotate faster than
the fluid that forms them. A movie showing the time evolution of the entire data set over
a 36 hour period can be found here (link to supergran colour.avi). (Potts, 2006a).
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(Thompson et al (2003), Beck (2000)), but as yet there is no clear consensus
in the literature as to the underlying physics.

5. Cautionary notes

Whenever a continuous process is studied by looking at discrete time steps,
the frequency of observation and the amount of smoothing in time greatly
influences the results. Such influences can be highly significant in the sort of
data processing addressed in this article: the flow field itself is obtained by
spatially smoothing the small scale granular motions. This means that any
derived supergranulation flow field obtained has been implicitly convolved
with whatever temporal and spatial smoothing was used in the observation.
This problem is ubiquitous in any measurement of supergranulation, whether
from dopplergrams, or even from the measurements of the chromospheric
network, where the lifetime of small magnetic elements imposes a natural
timescale on the data.

It is also important to be very careful about how the velocity data used
to derive the cells is derotated, due to the small values of the velocity field
(∼ 300m s−1) in comparison to the rotation rate of the sun (equator speed
∼ 2 km s−1). For a weak supergranule the outflow speed near the edges is
very small, so the apparent position of the lanes can change considerably
due to a small derotation error. Small cells can completely disappear if the
rotation offset is larger than their peak velocity. One way to help prevent
this is to subtract the mean velocity with differential rotation corrections)
from the velocity field.

6. Conclusions

We have developed a method for automatically identifying supergranulation
cells, including an accurate measure of the position of lanes between cells and
the upflow centre of the cells, without resorting to numerical differentiation
of the data.

Since our method can work at exceptionally small smoothing radii, ex-
trapolation to the zero-smoothing radius case is more secure than conven-
tional algorithms, which tend to need high-smoothing to avoid domina-
tion by noise. This makes out method particularly well suited to the new
generation of high resolution solar data.

We can track the cells over considerable times, limited only by the source
data, and from this observe in detail their evolution. Over a 30 hour period
we have observed cells growing, splitting, merging and shrinking.
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There are many other applications for which the process outlined in this
paper will be useful. For example the the problem of measuring any temper-
ature differential across the cells will be greatly reduced by having accurate
positions for the cell outflow and inter-cell lanes. Accurate measurements of
the statistical properties of supergranulation, both over the supergranular
evolution timescale and over the solar cycle will help expand our knowledge
of this poorly understood process.

The study of small scale energetics will also benefit greatly from this
method, particularly small scale magnetic interactions which are dominated
by the solar surface flows. As high resolution Solar-B data comes available
this will become a very interesting area to study.
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