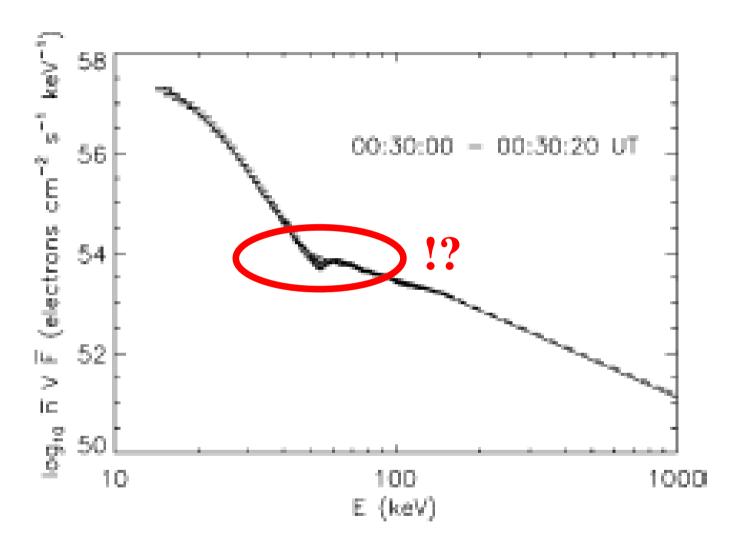
Why do we expect monotonically decreasing electron spectra in flares?

Gordon Emslie

Oklahoma State University

July 23, 2002 event (Piana et al.)



$$I(\varepsilon) = \int_{\varepsilon} F(E) \ Q(\varepsilon, E) \ dE$$

$$dI(\varepsilon)/d\varepsilon = \int_{\varepsilon} F(E) \left[\frac{\partial Q(\varepsilon, E)}{\partial \varepsilon} \right] dE - F(\varepsilon)Q(\varepsilon, \varepsilon)$$

For reasonable forms of the cross section $Q(\varepsilon, E)$, $\partial Q(\varepsilon, E)/\partial \varepsilon < 0 \ \forall E$

So, photon spectra $I(\varepsilon)$ must be monotonically decreasing

But this is <u>not</u> true for electron spectra F(E)!

$$\nu(\epsilon,E_o) = \int_0^t n\,Q(\epsilon,E)\,v\,dt = \int_\epsilon^{E_o} \frac{n\,Q(\epsilon,E)\,v\,dE}{|dE/dt|} = \int_\epsilon^{E_o} \frac{n\,Q(\epsilon,E)\,v\,dE}{n\,v\,|dE/dN|} = \int_\epsilon^{E_o} \frac{Q(\epsilon,E)}{|dE/dN|}\,dE$$

$$I(\epsilon) = \frac{A}{4\pi R^2} \int_{\epsilon}^{\infty} F_o(E_o) \nu(\epsilon, E_o) dE_o = \frac{A}{4\pi R^2} \int_{E_o = \epsilon}^{\infty} \int_{E = \epsilon}^{E_o} F_o(E_o) \frac{Q(\epsilon, E)}{dE/dN} dE dE_o$$

$$I\left(\epsilon\right) = \frac{1}{4\pi R^2} \int_{E=\epsilon}^{\infty} \frac{Q(\epsilon,E)}{|dE/dN|} \int_{E_o=E}^{\infty} A \, F_o(E_o) \, dE_o \, dE$$

$$I(\epsilon) = \frac{1}{4\pi R^2} \int_{E=\epsilon}^{\infty} \overline{n} V \overline{F}(E) Q(\epsilon, E) dE$$

$$\overline{n} V \, \overline{F}(E) = \frac{1}{|dE/dN|} \int_{E_o = E}^{\infty} A \, F_o(E_o) \, dE_o = \frac{E}{K} \int_{E}^{\infty} A \, F_o(E_o) \, dE_o$$

$$\overline{n}V\overline{F}(E) = \frac{E}{K} \int_{E}^{\infty} A F_o(E_o) dE_o$$

$$AF_{o}(E_{o}) = \begin{cases} (\delta - 1) \frac{F}{E_{t}} \left(\frac{E}{E_{o}}\right)^{-\delta} ; E \geq E_{c} \\ 0 ; E < E_{c} \end{cases}$$

$$\int_{E}^{\infty} A F_{o}(E_{o}) dE_{o} = \begin{cases} \mathcal{F}\left(\frac{E}{E_{o}}\right)^{1-\delta} ; E \geq E_{c} \\ \mathcal{F} \end{cases} ; E < E_{c}$$

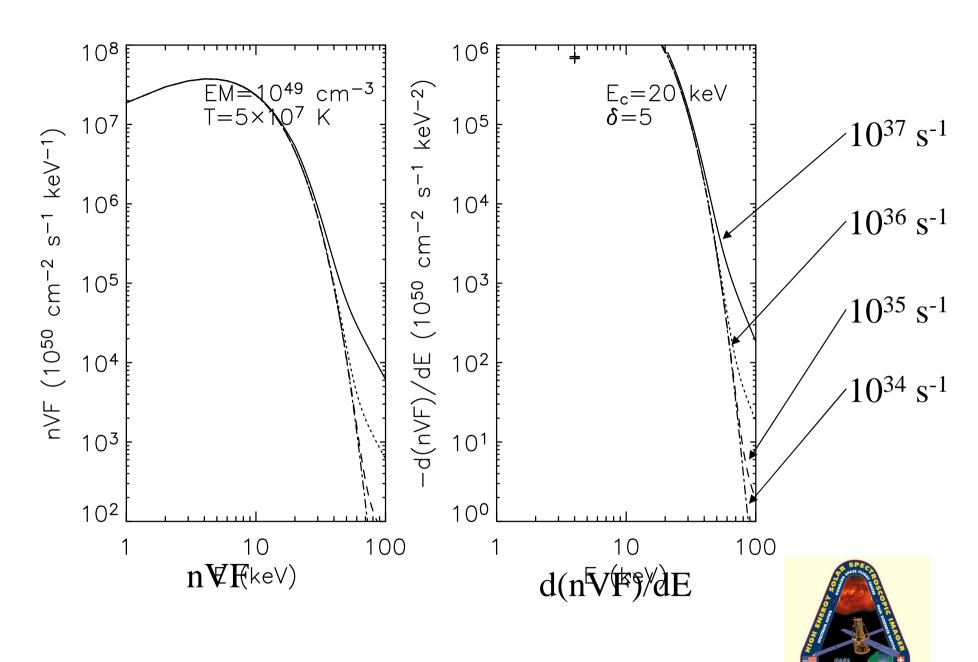
100

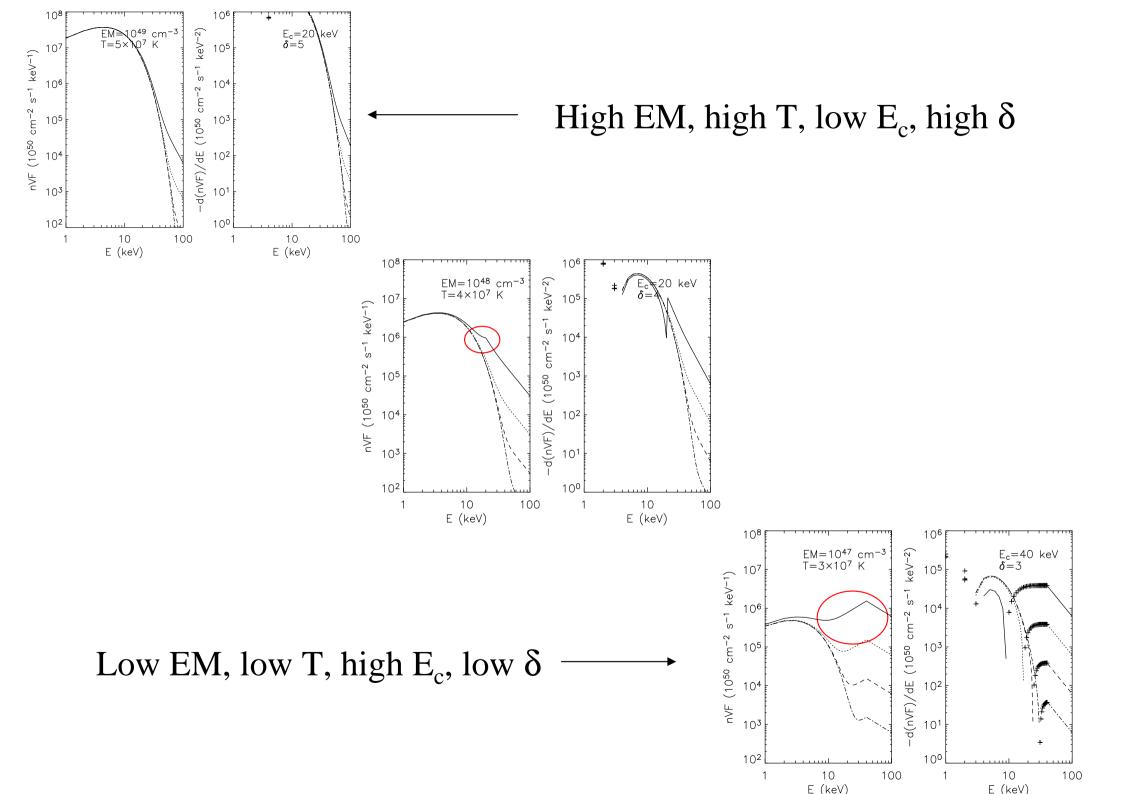
E (keV)

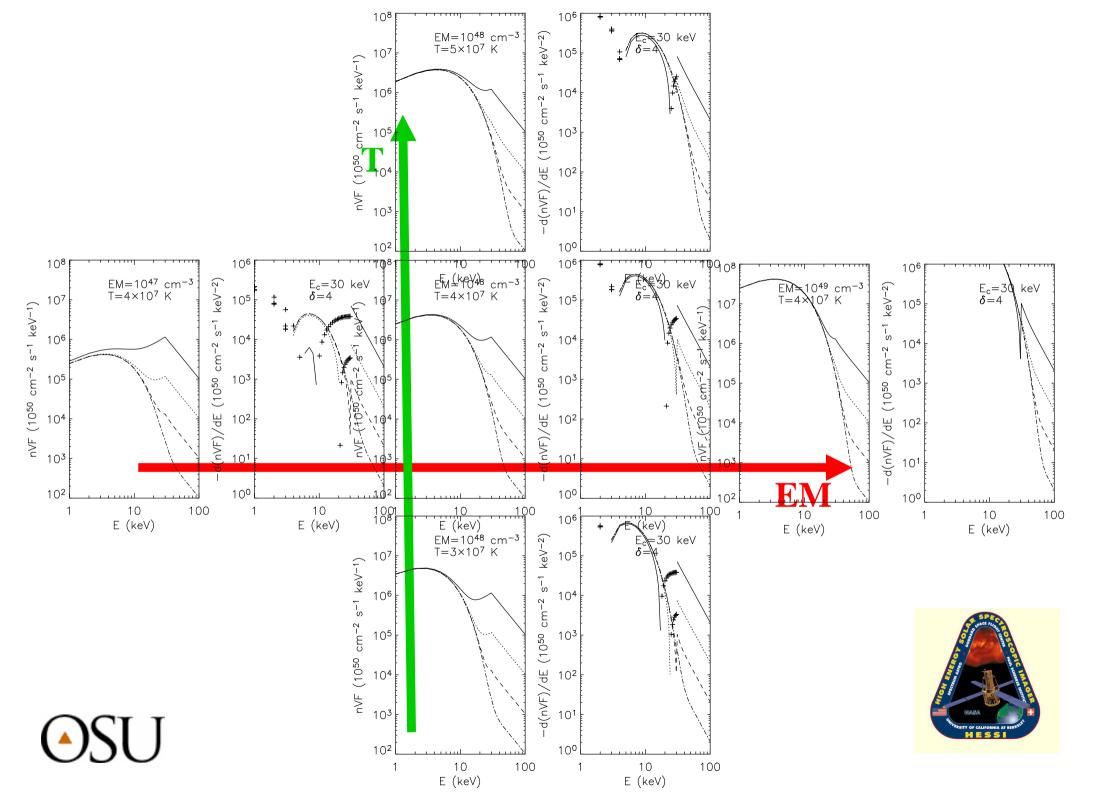
$$\left[oldsymbol{\pi} V \overline{F}(E)
ight]_{ ext{northermal}} = \left\{ egin{array}{c} (rac{F}{K}) \, E_c^{\delta-1} E^{2-\delta} \ (rac{F}{K}) \, E \end{array} ; E \geq E_c \ (rac{F}{K}) \, E \end{array}
ight. ; E < E_c
ight.$$

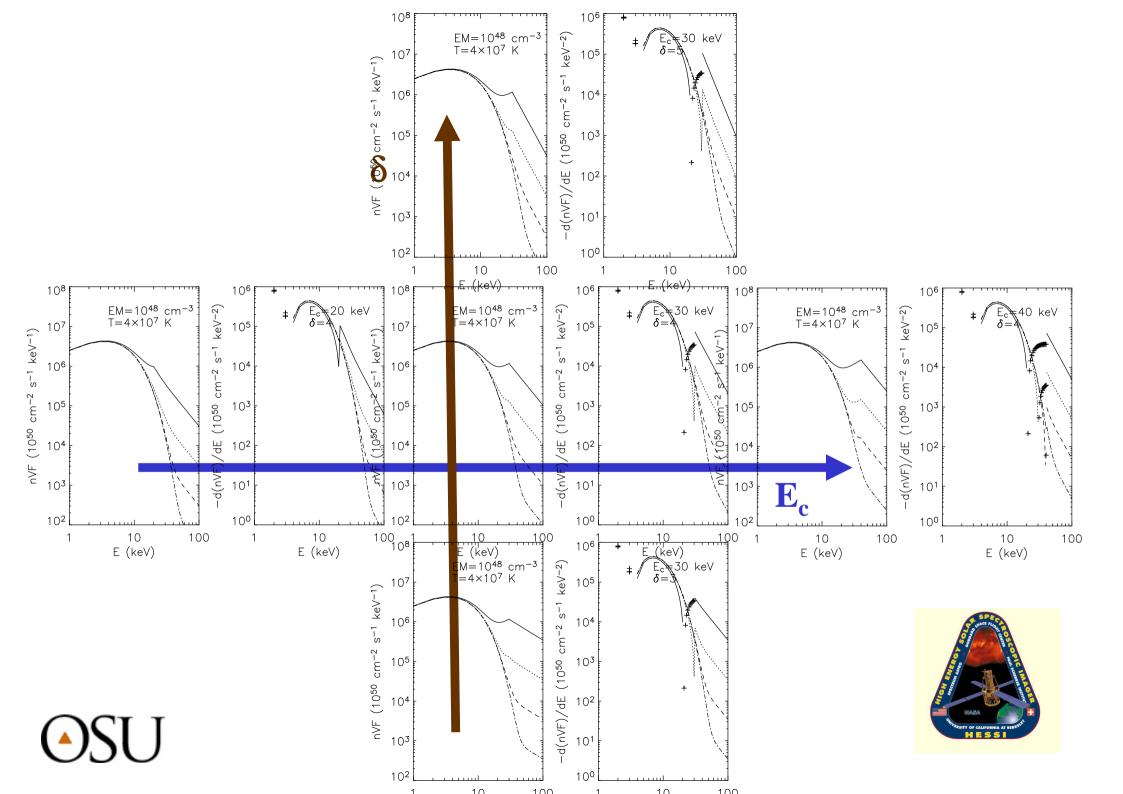
$$\left[\pi V \overline{F}(E)\right]_{ ext{thermal}} = \sqrt{\frac{8}{\pi m_e}} EM \frac{E}{(kT)^{3/2}} e^{-E/kT}$$

$$\frac{d \left[\overline{\pi} V \overline{F}(E) \right]}{dE} = \begin{cases} -(\delta - 2) \frac{F}{K} \left(\frac{E}{E_c} \right)^{1-\delta} - \sqrt{\frac{8}{\pi m_e}} EM \, e^{-E/kT} \, \frac{1}{(kT)^{2/2}} \left(\frac{E}{kT} - 1 \right) \\ \frac{F}{K} - \sqrt{\frac{8}{\pi m_e}} EM \, e^{-E/kT} \, \frac{1}{(kT)^{2/2}} \left(\frac{E}{kT} - 1 \right) \end{cases} ; E \geq E_c \qquad \stackrel{10}{\text{E (keV)}} ; E < E_c \end{cases}$$

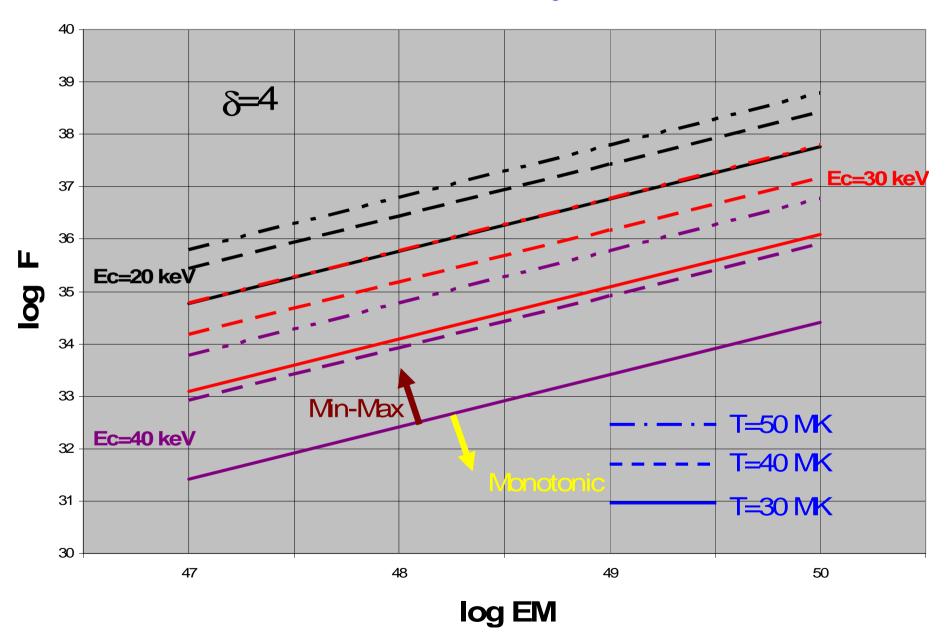








Summary



Conditions for a dip/hump

$$\frac{d\left[\overline{n}\,V\,\overline{F}(E)\right]}{dE} = \begin{cases} -(\delta-2)\,\frac{\mathcal{F}}{K}\left(\frac{E}{E_c}\right)^{1-\delta} - \sqrt{\frac{8}{\epsilon\,m_e}}\,EM\,e^{-E/kT}\,\frac{1}{(kT)^{2/2}}\left(\frac{E}{kT}-1\right) & ; E \geq E_c\\ \frac{\mathcal{F}}{K} - \sqrt{\frac{8}{\epsilon\,m_e}}\,EM\,e^{-E/kT}\,\frac{1}{(kT)^{2/2}}\left(\frac{E}{kT}-1\right) & ; E < E_c \end{cases} ; E < E_c$$

For a hump in F(E) to be present, we must generally have

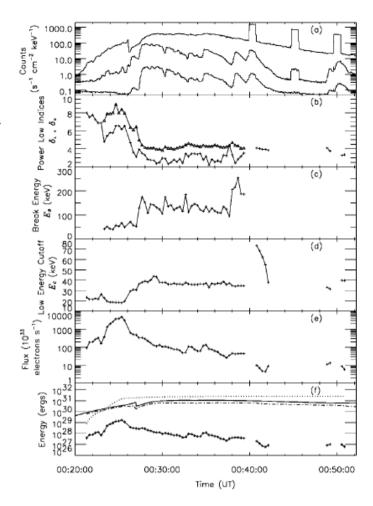
$$F_{36}/EM_{48} > 7000 T_7^{-3/2} exp[-1.16E_c/T_7]$$

- Very sensitive to value of E_c
- Value of δ not that significant, since local thermal δ is large at $E_c >> kT$

For July 23, 2002 event, Holman et al. (2003) get

$$EM_{48} = 41$$
 $T_7 = 3.7$

$$T_7 = 3.7$$

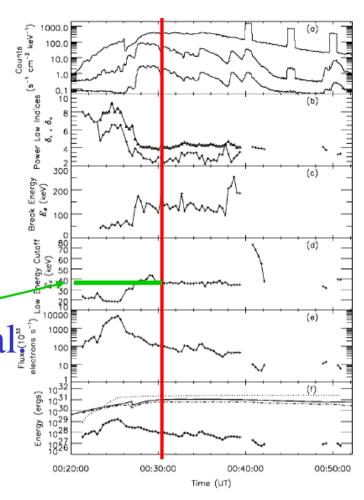


For July 23, 2002 event, Holman et al. (2003) get

$$EM_{48} = 41$$

$$T_7 = 3.7$$

Using value of E_c from Holman et altitude fit ($E_c \sim 34 \text{ keV}$) gives minimum value of $F_{36} = 0.95$



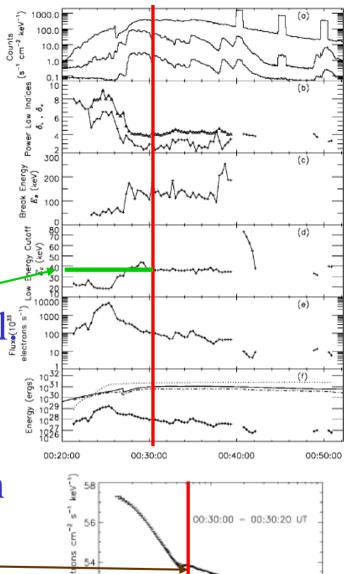
For July 23, 2002 event, Holman et al. (2003) get

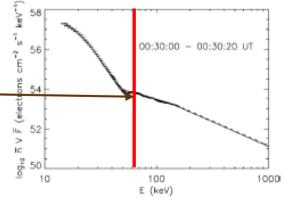
$$EM_{48} = 41$$

$$T_7 = 3.7$$

Using value of E_c from Holman et al fit ($E_c \sim 34 \text{ keV}$) gives minimum value of $F_{36} = 0.95$

Using value of E_c from maximum in $F(E_c \sim 55 \text{ keV})$ gives minimum value of $F_{36} = 0.0013$





For July 23, 2002 event, Holman et al. (2003) get

$$EM_{48} = 41$$

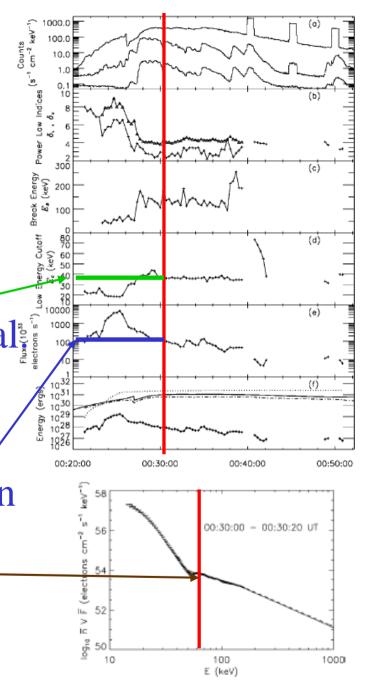
$$T_7 = 3.7$$

Using value of E_c from Holman et altitle fit ($E_c \sim 34 \text{ keV}$) gives minimum value of $F_{36} = 0.95$

Using value of E_c from maximum in $F(E_c \sim 55 \text{ keV})$ gives minimum value of $F_{36} = \underline{0.0013}$

Actual value of F_{36} is ~ 0.1

→ hump not unexpected!



Caveat

E_c may not represent an absolute cutoff:

• Form of nVF below $E=E_c$ may be different

• Value of E_c from Holman et al. fitting routine may not be applicable

Conclusions

 Humps in mean source electron spectra are not unexpected

• Dips may not be an albedo artifact

• Existence (or non-existence) of hump places constraints on F, EM and T