Impact of Electron Beams on the Ambient Material in the Chromosphere and Corona

Ryan Milligan & Brian Dennis (NASA-GSFC)

- 14 December 2007
 - Before Hinode X-band problem
 - After RHESSI's detectors were annealed
- EIRHERRAGYHXR footpoints @AMGARWBTRHESERAGE2EUV emission during -40"x143"Fovusing 2" impulsive phase
 - -3.5 minute raster cadence
 - -22 spectral windows, including:

He II, O IV, O V, O VI, Mg V, Mg VI, Mg VII, Si X, Ca XVII, Fe VIII, Fe X, Fe XI, Fe XII, Fe XIII, Fe XIV, Fe XV, Fe XVI, Fe XVII, Fe XXIII,

RHESSI 20-25 ke

Intensity Maps

-RHESSI 20-25 keV

Velocity Maps

Electron Beam Diagnostics

The combination of RHESSI imaging and spectroscopy provides a measurement of the energy flux of the electrons responsible for driving evaporation

Use

HSI_SPECTRUM_SEP_DET_FILES to generate spectrum and srm files for each detector individually

Allows the most up-to-date corrections for pulse pileup and gain offset to be used

Electron Beam Diagnostics

The combination of RHESSI imaging and spectroscopy provides a measurement of the energy flux of the electrons responsible for driving evaporation

Use

HSI_SPECTRUM_SEP_DET_FILES to generate spectrum and srm files for each detector individually

Allows the most up-to-date corrections for pulse pileup and gain offset to be used

Electron Beam Diagnostics

- Total power contained in electron beam:
 - P_{nth} (E>E_C) = $\int E F(E) dE$ erg/s
 - where $F(E) \sim E^{-\delta}$, is the electron distribution
- Using $E_c = 13\pm2$ keV, $\delta = 7.6\pm0.7$

•
$$P_{nth} \ge 8 \pm 3 \times 10^{27} \text{ erg/s}$$

- Dividing P_{nth} by the footpoint area:
 - $F_{nth} \ge 5 \times 10^{10} \text{ erg/cm}^2/\text{s}$

Summary

- We present the first detailed study of (explosive) chromospheric evaporation using Hinode/EIS and RHESSI (Milligan & Dennis 2009, ApJ, 699, 968)
- EIS is able to determine evaporation velocities across a broad range of temperatures, while RHESSI can establish the parameters of the driving electron beam

• The key findings are:

-The Fe XXIII and Fe XXIV lines profiles were both dominated by stationary components

-Both upflow and downflow velocities were found to be dependent on temperature

-Downflows due to the overpressure of evaporated material occur at higher temperatures than previously observed or predicted by current models

-Energy flux of electrons is high enough to drive explosive evaporation

Future Work

- Observe a variety of events (or one LDE) with varying electron beam parameters (from RHESSI) and measure the response of the atmosphere with Hinode/EIS.
- Mariska et al. 1989 predicts different velocity responses according to changes in $\delta,~{\rm E_c},$ and flux.

• Also perform accurate density diagnostics

