Photospheric backscatter & directivity

Alexander & Brown 02

- Analytic inversion of power-law photon spectrum, $I(\varepsilon)$ vs $I_o(\varepsilon)$
- Error Inferred in the Mean electron spectrum F(E) by ignoring photospheric backscatter.

Importance of Albedo Overlooked?

- Prevailing wisdom: Albedo could not be seen in data
- Therefore not import; Not worth studying

Albedo as a diagnostic tool

- Kontar & Brown Spectroscopic Technique for determining
 - $F(E,\,\mu)$ from I($\epsilon),$ splitting into direct and backscattered components
- ∎ I(ε)

9th RHESSI Workshop, Genova, September 2009

MZ 95

Compton reflection from cosmic sources - AGN

Kontar, Green Matrix approach

- Matrix based approach Kontar et al 06
- Assumes isotropic emission
- Investigated anisotropic effects upon the primary spectrum
- Empirical fit Leach & Petrosian 83

How does anisotropy affect the observed spectrum

- Changes shape of I(eps), size
- Empirical fit shape can be obviously seen in $R(\epsilon)$ but size reduced
- effects sensitive to empirical fit chosen

http://www.astro.gla.ac.uk/calum/albedo

Magdziarz & Zdzairski 95

$$I_r(\epsilon) = \int_{\epsilon}^{\infty} G(\mu, \epsilon, \epsilon') I_d(\epsilon') d\epsilon',$$

$$I_{obs} = I_{p} + \int_{\epsilon}^{\infty} \bar{\mathbf{G}}(\mu, \epsilon, \epsilon') I(\epsilon') d\epsilon'$$

Kontar

$$\mathbf{I_{obs}} = \mathbf{I_p} + \hat{\mathbf{G}} \mathbf{I_p}$$

$$(\mathbf{I_{obs}})_i = (\mathbf{I_p})_{\mathbf{i}} + \Sigma_{\mathbf{j}} \hat{\mathbf{G}}_{\mathbf{ij}} (\mathbf{I_p})_{\mathbf{j}}$$

Isotropic R(ϵ) (γ =2)

Hemispheric Approach

- $\alpha(\epsilon)$ fraction of $I_o(\epsilon)$ emitted downward
- $(1-\alpha(\epsilon))$ fraction of $I_o(\epsilon)$ emitted upwards

Anisotropic version

9th RHESSI Workshop, Genova, September 2009

$$I_o(\epsilon) = \alpha I_o^{down}(\epsilon) + (1 - \alpha) I_o^{up}(\epsilon)$$

$$(I_{obs})_i = (I_p^{up})_i (1 - \alpha) + \sum_j \hat{G}_{ij} \alpha (I_{p,i}^{down})_j$$

Anisotropic version - Monoenergetic "beams"

$$I_{obs} = \int_{\epsilon''} \left(I_p(\epsilon'') + \alpha(\epsilon'') \int_{\epsilon}^{\infty} \bar{\mathbf{G}}(\mu, \epsilon, \epsilon') I(\epsilon') d\epsilon' \right) d\epsilon'$$

$$(\mathbf{I}_{obs})_{k} = \Sigma_{i} \left[(\mathbf{I}_{p})_{\mathbf{i}} + \Sigma_{\mathbf{j}} \alpha_{\mathbf{j}} \hat{\mathbf{G}}_{\mathbf{ij}} (\mathbf{I}_{p})_{\mathbf{j}} \right]$$

Empirical Fit

anisotropic, hemispheric approximation

http://www.astro.gla.ac.uk/calum/albedo

Radiative Transfer Solution

- Again developed for cosmic sources Black holes
- Independent Greens function method
- Agrees with MZ95 in isotropic limit.
- Original assumption of isotropic emission but allows for anisotropic emission models

Isotropic emission (low ϵ)

anisotropic emission

Highly anisotropic emission (high $\epsilon)$

Empirical fit model

- $I(\theta)_{\epsilon} = A_{o} \epsilon^{-\gamma} (a_{\epsilon} + b_{\epsilon} \theta)^{\eta \epsilon}$ at $\epsilon = 22 \text{keV}, \epsilon = 210 \text{keV}$
- Chi square fit a_{ϵ} , b_{ϵ} & η_{ϵ}

 $\begin{array}{l} a(\epsilon) = -(0.1/188)^* \epsilon {+} 0.9 \\ b(\epsilon) = -(0.3/188)^* \epsilon {-} 0.2 \\ \eta(\epsilon) {=} 1.95 \end{array}$

• $I(\theta)_{\epsilon} \rightarrow I(\epsilon, \theta) = A_{o} \epsilon^{-\gamma} (a(\epsilon) + b(\epsilon)\theta)^{\eta(\epsilon)}$

Isotropic emission (low ϵ)

anisotropic emission

http://www.astro.gla.ac.uk/calum/albedo

Gold Standard for Compton reflection?

- Full anistropic treatment
- Equivalent empirical fit Leach & Petrosian data
- Anisotropic influence on albedo most noticeable for hard spectral indexes

Bivariate Inversion – Kontar & Brown 06

Stereoscopic Technique

I(eps) observed at earth, in terms of a direct upward and backscattered downwards component at the flare source.

$$I_o(\epsilon) = \frac{\bar{n}V}{4\pi R^2} \int_{\epsilon}^{\infty} \left[Q_F(\epsilon, E) \bar{F}_u(E) + Q_B(\epsilon, E) \bar{F}_d(E) \right] dE$$

$$\bar{F}_{u,d} = (\bar{n}V)^{-1} \int F_{u,d}(E, r) n(r) dV$$

$$\begin{split} I_r(\epsilon) &= \int_{\epsilon}^{\infty} G(\mu, \ \epsilon, \ \epsilon') I_d(\epsilon') d\epsilon', \quad I_r(\epsilon, \ \mu) = \frac{\overline{nV}}{4\pi R^2} \int_{\epsilon}^{\infty} G(\mu, \ \epsilon, \ \epsilon') \ d\epsilon' \int_{\epsilon'}^{\infty} \left[Q^F(\epsilon', \ E) \overline{F_d}(E) \right. \\ &+ \left. Q^B(\epsilon', \ E) \overline{F_u}(E) \right] dE, \end{split}$$

$$I = I_o + I_r = (Q^F + G(\mu)Q^B Q^B + G(\mu)Q^F) \begin{pmatrix} \overline{F_a} \\ \overline{F_u} \end{pmatrix}$$

Stereoscopic Approach

Results

Stereoscopic Technique

9th RHESSI Workshop, Genova, September 2009

•KB technique used as a black box, for $I(\varepsilon,\mu)_{radiative}$ vs $I(\varepsilon,\mu)_{hemisphere}$

a. $\mu = 0.95$ b. $\mu = 0.90$

Results & Conclusions

Results

- Results are similar between methods
- ${\scriptstyle \bullet}$ solutions worsen with increasing γ
- Errors in RT poorer than hemispheric method

What does this tell us?

Using a full radiative transfer approach does not alter the conclusions of Kontar & Brown 06

Comparison – Hemispheric vs **Full Radiative Transfer solutions**

